Tanaka: Good afternoon. It is the time to start
the afternoon session. My name is Hidehiko
Tanaka. [am going to serve as the session chair.

This session is for the invited lecture by Pro-
fessor Dines Bjgrner titled, “Algorithmic and
Knowledge Based Methods: Do They "Unify’?".
Professor Bjgrner had been working at IBM for
thirteen years after his graduation from the Tech-
nical University of Denmark in 1962. He moved
1o the Technical University of Denmark in 1976 as
the professor of computer science. After holding
several managerial positions, incloding Chairman
of the Danish Government Information Comimnis-
sion, and Director of the Dansk Datamatik Center,
he is now the Director of International Institute of
Software Technology of the United MNations Uni-
versity. He published many papers, and is well
known as a distinguished researcher in the area of
programming methodology such as the “Vienna
Development Meathod".

Today, we expect that we can hear about his
latest consideration from a very wide viewpoint in
the programming. Professor Bjgmer.

Bjerner: Thank you very much, Professor
Tanaka-san.

I hope you can hear my voice, It seems that
we have guite a few people in the andience, so, if
you think you've been drinking too much Japanese
tea for lunch and see three screens, you have not
been drinking too much.

Dines Bjorner
Director
The United Natione University's £
i Internafional Institute for :

? Software Technology

an’ Knowledge Based
ey ‘Unify’

'-|3t 1 Some Prﬂg.r;_a_ s me Remarks for UNUIIIST—

I am very greatful to have been invited to
come here and address yon. The fitle of the talk
was, of course, chosen on the basis of the main
topic of this conference and on the basis of my
own personal background. Very briefly, there will
be three parts to the talk: first, I will talk in gen-
eral, very much so, about model-oriented or alge-
rithmic software development; then, about the
contrast between algorithmic and knowledge
based methods irying, to suggest a way in which
we may understand the two; and finally, T will talk
a little bit about my next job.

When [was invited to give this talk, the orga-
nizers, the people here expressed a desire to hear
about strategies for the United Nations University
International Institute for Software Technology
for prompting research and development, creativ-
ity in the national cooperation, and so on. And 1
will certainly cover that in various parts of the talk,

When I acknowledged this invitation, [wrote,
and I still stand by that, that the decision by MITI
to start ten years ago the Fifth Generation Com-
puter Project, 1 believe, has had enormous and
very positive influence on world wide research,
engineering, and application on knowledge based
computing systems. Japan has, thus, as an ex-
ample, made the world of computing, I believe,
dramatically more professional and exeiting.

What is the background on my giving this
talk? Basically, I am myself primarily working in
the algorithmic or modeling approach to software

-42-

development, whereas, the project we are here to
hear about is primarily focused on the knowledge
based approach. For that reason, 1 solicited my
colleague, Professor Jgrgen Fischer Nilsson to
help me writing the paper.

So, let me repeat again. First, in general about
algorithmic development, 1 will just very briefly
outline some of the issues. For each of the three
parts there I will express some dogmas; then, T will
g0 into a comparison between the two approaches:
first, I will briefly show a case study; and indepen-
dent of that, 1 will systematically “tabularize” the
algorithmic versus the knowledge based ap-
proaches as I see it. Mind you, this is certainly not
a deep, let alone, a scientific tabularization, but it
is an atternpt; maybe it will inspire an undoubtedly
much better such comparisons. And [conclude
‘that part by trying to relate in a more mathematical
sense, perhaps, the two approaches. Then, 1 will
sketch what my next job assignment is all about.

In the algorithmic approach, in the modeling
approach to software development, the way I see
it, basically we persue a very extensive and thor-
ough development of the requirements before we
even start thinking about the software. Once we
believe that we have captured the requirements,
then, and only then, are we ready to start the soft-
ware development,

The requirements development, to me, con-
sists of describing the problem domain, of model-
ing various aspects of the domain, and of capturing
the aspects which are to go into software. Once
that is done, we can progress into the software de-
velopment, 1o the specification, the stepwise de-
sign, and into excutable code.

A number of facets, a number of sleps are in-
volved, not necessarily sequentially, in the re-
quiremnents modeling. Such things as understand-
ing which are the components, what are the invari-
ants governing the various components of our
problem domain, what are the input-output behay-
ior of some of the things that occur, the actions, the
events; how are the events traced together or
linked together in behaviors; and in total, how
does it all hang together. Some of the aspects for
which one can write down, more or less indepen-
dent or not independent, but isolated models mat
can then be composed and related,

Orthogonal to doing these things, one may fo-
cus on safety criticality aspects, if that is required,
of the system that one is modeling, of probabilitics
of failure, of efficiency of the suggested system,
and of the computer human interfaces. So, each of
the latter can be applied to parts of the former.
And again, independently, one can simulate vari-
ous aspects of these. But, what should be remam-
bered here is that all these activities are concemed
with understanding the problem domain and not
concerned with understanding the software yet.

The first set of dogmas s, therefore, basically
this: that, if we canmot in precise natural language
describe what we are about to do, if we cannot
write down mathematical models of the various
aspects that [listed on the requirement modeling
before, and if we cannot capture these require-
ments that have to go into the software succinctly,
then we can have little or no trust in the develop-
ment. - And I say this because, it does mean that |
have very little trust in any of the developments
that I am myself undertaking; there is still a lot of
work to be done here.

After requirements development, we go info

software development, which I see as consisting
hand in hand of programming and software engi-
neering. In programming, I treat specifications,
designs, and code as formal objects. I reason
about them; I calculate properties,
-~ And again, 4 set of dogmas here are that, if we
cannont express the functions that we expect our
software to exhibit, once implemented, if we can-
not beforehand, before costly implementation
write down all the behaviors we expect this sofi-
ware 10 exhibit, and the assumptions on the envi-
ronment apon which it is built, if from these func-
tional and behavior specifications, we cannonit cal-
culate properties before, again, costly implementa-
tion, then we can have little or no trust. Here it
seems that there is a lot of work that ought to be
done and used. But still, of course, mm: is a lot of
research 1o be done.

Hand in hand with programming, uﬁenunws
the same people, typically the same developers
perform acts of what I call software engineering;
plan, monitor and control quality assurance. After
software has been put into service, monitor and
control if the environment still conforms to the

43-

written requirements. In software engineering we
primarily look upon the design documents, the
software, as physical objects, we execule them, we
observe them, we compose them.

And again, a set of dogmas are needed, 1 be-
© lieve. Whenever we say that a product conforms
to ils expectations or to the requirements, when-
ever we configure a new product out of various
versions, et cetera, et celera, we make claims that
the software is still fulfilling requirements and
specifications, And as long as these claims
cannnot be supporied by calculated evidence, then
we can have little or no trust, And again, there is
very little we can do about it today.

Concluding the first part, the generalities part,
concluding the three dogmas we can say that in
mechanicel engineering, they do parform calcula-
tions on, for example, ship designs before costly
implementation. Electronic engineers perform
calculations on, say, data communication designs
before costly implemeniation. Civil engineers
perform calculations on, for example, bridge de-
signs, The clients who contract ships, satellite or
bridges they do expect their insurance companies
to help them in validating these designs, in in-
specting these calculations.

In requirements and in software engineering,
we are, today, in a better position to perform such
calcnlations, only noboedy seems to be doing it. -

30, that was the end of the first part where 1
assumed that the tradition of algorithmic software
development as witnessed by the PASCAL school,
was the basis.

Mow, I would like to go into comparing algo-
rithmic to knowledge based development.

Let me first give an overview example. Imag-
ine that you have a railway computing system
{Fig. 1): asystem in which vou can do planning of
train schedules, or in which you can de a realtime
regulation of the train traffic, or in which you can
do service functions like ticketing and reserva-
tions, et cetera.

For such a railway computing system --- and it
doesn't matter, of course, that it hasn't anything to
do with railways -- vou can either rake a compiler
approach in which the specifics of the particular
railway, the Shinkansen, for example, and its
many stations, are hidden in the code. The Fact

QVERVIEW ExAMPLE

Railway Computing System: Planning, Regu-
lation, Service & Mgt :
Three approaches:

1. The Compiled Algorithmic Appreach
€ Specifics of railways hidden in code: in
constants and code structure; composi-
tion of statements.

2. The Interprated Algorithmic Approach
I Tracks, trains, schedute, ete.; constant
data structures; computation proceeds
through interpretation. '

Interpreter { T) is general: same inter-
preter can handie wide variety of railway
sysiems,

Exsoution is slower, but easy infroduction
of changes to the schedule, tracks, trains,
ate.

Fig. 1

that there may be a specific number of stations
down the line, may be embodisd in the composi-
ton of a similar number of statements in the code,

In the interpreted approach, we think of the
tracks, the trains, the schedule, et cetera, as con-
stant data structures and the competation proceeds
throngh and interpretation: that is, the interpreter
is general. For a different, constant data structure,
potentially the interpreter can be reused for an-
other railway system.

We can compare the two approaches (Fig. 2)
and say that compilation represents a partially
evaluated version of interpretation that the com-
piled code, respectively of the interpreter. does not
express any reasoning about train systems. In-
stead, the compiled code and the interpreter ex-
press computations, embody in the case of a mrain
regulation, mathematical laws of kinematics, and
in the case of schedule planning, some laws of op-
erations research. Butl these laws are packed into
the compiler code respectively into these specific
interpreter. . :

In the knowledge based approach, we have 1o
think of these laws; whatever governs, the plan-
ning, the scheduling, the train control regulation,

we have to imagine these laws as being repre-
sented in logical form as rules, and what in the in-
terpreted approach amounted to some comnstant
data structure, we have to think of them as being
represented as some facts. '

And now, the computation here proceeds by
means of an infarence machine, and basically the
same inference machine can be used for a broad
range of systems, not just railway systems,

To show an example of what [mean by a base
model, I give an algorithmic model-oriented speci-
fication (Fig. 3); and with a few additions, maybe
one more page, ten, fifteen more lings, I think we
can capture anything vou would ever want to
know about a railway system, something that re-
call to what time we have, a schedule which says
from stations to stations certain trains depart and
arrive at certain times, and that there is a graph, a
track system, that between stations contain racks
with various segments of individual lengths and
that the trains have a location on the wack or at
stations, and that the trains have certain length,
velecity, acceleration or deceleration,

Let that model here be the basis for some first

1-2 Compiled and Interpreted Algorithmics
A Compilation represents a partially
evaluated vergion of interpretation,
Compiled code respectively interpreter
does not express reasoning about train
system. '
Instead they express arithmetic computa-
tions, classical mathematical laws of kine-
matics and operations research,
Laws are "baked” into compiled code, re-
gpectively into specific interpreter.

3 The knowledge Based Approach X
Represents laws in logical form, Rules,
and represents railway system compo-
nents, Facts.

"Computation” procesds, by means of in-
ference machine A4 . Same A for broad
range of virtuaily "anything".

Fig. 2

Base MooeEL Domams:

1.0 8RS = Time xSCHxG =TS
20 se:8CH = Sm (8o (Tw (DmA)))
30 oG = Sor (Sal1*)

40 18TS = Tm(LOC xKIN)

50 W:A0C = S| (S xNrx8)

6.0 kKIN = LxVxAD

70 wveV = Np xg-maxMN1

8.0 adAD = INTGxs-maxiINTG
9.0 Time = Week xDay xHour »Min
10.0 Week = 1|2]..|52

1.0 Day = 0].|6

120 Hour = 0)|2|,..|23

13.0 Min = 0)1]... |59
140 DA
150 s8 = TOKEN
160 T = TOKEN
17.0 el = MWy

Fig. 3

comparisons, (Fig, 4) The first comparisons now
iry to compare how I would approach basically the
same preblem in the knowledge based approach.
In the model-criented approach, | might write
down the domain equations, whereas, in the classi-
cal Prolog type, I would write down some appro-
priate predicates and there would have 1o be some
integrity constraints fike there would have to be
some invariants on these which could be exprassed
in various clausal forms. :

In the two approaches one would deal with ir-
regularities in the schedule in different ways. (Fig.
5) If the schedule is irregular, then we would have
to give clauses for each pair of stations and trains
in departure and arriving times, like we would
have in the model-oriented approach. If it is fairly
regular, namely, the schedule is sustained every-
day, seven days a week, 363 days a year, then, one
could invent appropriate predicates which would
speak about the intervals with which trains depart,
and the time it takes for a train to travel certain
distances,

A5

Representation .4
Railway Scheduls &c.
A | Algorithmic Development Method

1 | Domain Equation:

SCH = 8m (Sm (T (DmA}))
De-Curried:

SCH = (S =8 =T = D)mA
Wersus

Representation £

i[O 0alE ngine Sre G

1| Schedule given &s a 5-ary Predicate:
SCH(5 8, T7,D A)
with indicated argument typas:
SxEXTxD %A ~-BOOL
Funclional constraints on arrivals could
be expressed
Horn-clause-wise as an integrity con-
straint;
arror{} + SCH {51, 5:, T.D A')
8 SCH (&1, 52, T, D, A")
&EA A"

Fig. 4

Lat us make a first comparizon before we go
to the more general ones.

So, hopefully being objective here, the knowl-
edge based form seems to be neural and uncom-
mitted with respect to how you look up, vou could
say, facts; the five arguments to our search predi-
cates are the same kind. You could think of six
arguments and input and output is symmetric,
which they certainly are not. In the algorithmic
form, the way in which I chose to model] the do-
main favored what I might have belisved was the
most usual application or the most common way
of using my data structure,

Other aceess forms, than finding what the ar-
riving time would be, given stations and trains,
and departure times -— other access forms would
have to be rather tediously specified, and they will
not be easy to understand in the algorithmic ap-
proach. However, in the algorithmic approach,
those are just an efficient elaboration.

REMARKS

It schedule is iregular, then SCH given as col-
lection of factual clauses:
SCH (51, 82, 1, d, a).
If schedule is fairy’” regular SCH could be
given as clausal form rules of principal form:

180 SCH(81, S T,0,A) +~
A THAINSG
(S, Sz, T, FST, ITV, LST, LAG),
2 INTERVALS (FST, ITV, LST, D,
3 A=LAG+ D

INTERVALS vyields all possible values for D
according to a regular schedule,

Factual clauses can be derlved from this rule
form by means of parial deduction thus ax-
panding the INTERVALS predicate.

Fig.5

If I go down to scheduling, if I'm a customer
wishing to perform a certain jurney invelving
changing trains, and so on, then, I could imagine a
more elegant predicate being specified in the
knowledge based approach in the Prolog than in
the algorithmic approach. And rescheduling
could, then, be accomplished by some form of
meta-regsoning on the scheduler rules.

Let me generalize this and &y 1o compare the
two approaches, and now 1 am not doing it with
respect to the particular railway example that [
started out with,

S0, I'm basically going to read these wranspar-
encies; they are all in the seperate folder for the
invited talk. (Table 1) In the algorithmic ap-
proach, we specify 1f0 functions which are then to
be implemented in & mathematical sense. So we
speak about implementation relations, refinement
relations, and so on. In the model-oriented, the al-
gorithmic approach, we use such data structures as
SETS, as Cartesian products, as triples, as maps.
And we do make a distinction in the algorithmic
approach between the specification language and
the concrete programming language.

In the knowledge based approach, one by one,
we formulate the description and the specification

as asserions; we think of computation results un-
derstood as proofs corresponding to the logical
consequences, and we have a dual view that our
specification language is also our programming
language. _

So, there are some presumptions at the root of
what we are doing. (Table 2) In the algorithmic
approach we do make the distinction that pro-
grams are not the same as specifications, that
specifications are refined in stages nto executable
programs, and that it is the job of the individual
programmer and software engineer to do so, and
many of us do believe that specifications should
not necessarily be executable.

The focus is on implementing data structure
specifications, and finally, there is the notion of
compilation crucially burried.

In the knowledpe based approach, logic is our
object language; programs. and specifications are
often confused or partially identified with each
other, whereas, in the algorithmic approach speci-

Table 1

fications are refined; in terms of Robert Kowalski,
we think of executable specifications in the sense
of algorithm equals logic ples control.

And here, in the next point I want to make,
creeps in some of the problems. In my listing of
the algorithmic aspect, I am primarily focusing on
the software development. Certainly, I started out
by advocating in the algorithmic approach a lot of
work on the requirements development. In the re-
quirements development, the focus was on domain
knowledge. In knowledge engineering develop-
ment, the focus remains on the domain knowledge,
whereas, the focus in algorithmic development, in
the software development, we have the focus on
increasingly more efficient implementations, I'1l
come back to that,

Table 2

Table 2 4

Fﬂrmal Specification Aspectaf'f-"rasumpmms
[A Algorithmic Developmant M&thnd |

Table 1.4
Furmal Suﬂwara Sp-acmcanun Aspects: Aims

i ; | Algarithmic Development Method |

1 | Specification of O function in math-
amatical sense to be implemented.

2 | Use of such data structures as sets, Gar-
tesian products, tuples, maps.

3 | Distinction between abstract specrﬁca
tion and concrete programming lan-

1 Fmgram # Specification

2 | Specification refined in stages into Ex~
scutable Programs, Speclfleations not
necessarily Executable

3 | Focus on implementing data structure
spacification, for example Stachks,
Clueuss, eto.

4 | Finally: Compilation

Varsus

- fahlee.t
K| Knowladge Engineering

proofs corresponding 1o logical conse-
quences of M.

3 | Dual view of logic as both specification
and programming language.

guege. | L[Ehhowledge tngineennd
Versus 1 | Logic as Object language
Table 1 K Program and Specification often can-
fused or partially identified
=£ Knowleogs Engineerdng | 2 | Specification of Executable Specifica-
1 | Desecription and spemflcanun of real | tions = Declarative Programming
world relationships as assertions cf. Kowalski; Algorithms = Logic +
2 | Computation results understood as Control

3 | Focus on domain knowledge

4 | Finally, efficiency through general meth-
ods such as: Gonstraint Satisfaction and
Intelligent Backtracking

-47-

So, compilation here compares then in knowl-
edpe enpineering approach to constraint satisfac-
tion and to intelligent back tracking,

This table attempts to focns on some of the
mathematical forms of computation. (Table 3} In
the algorithmic approach, we have a concept of
computation as that of functions, as that of
stepwise refinement by means of imperative pro-

Table 3

Table 3.4
Mathematical Form of Computed Object
| A | Algorithmic Development Method

1 | Functional Gonception of Computation
Stepwise Refined and eventualiy
algorithmitized by means of imperative
programming language constructs, Op-
erations on Data Objects
P
Dsterministic Compilation
A -Calculus reduction as Computational
Basis

3 | Specifications are often functional’ (ak

" | gebraic)

UEI_'SI.IS

Table 3 X
¥ i Knowledgs Engineering
[T_Haiﬁﬂanal Conception of Computation
=
Links with Relational Database, Non-de-
terminism ("Backiracking™ '

{Quasi) Paratielism
e
Proof Rule Deduction {Resolution)
Unification as Computational Basis
2 | Derivation of answers from Assertions
(b=}
—
Deduction
Abduction (Calse Analysis)
Induction (Machine Leaming)
3 | Specifications often ‘relational’ strug-
tures stressing (m: n) relationships.

gramming language constructs, which in a sense
leads to a notion of deterministic compilation.
Behind it all, there is the notion of the calculus
making us understand what is going on.

In comparison, in the knowledge engineering
approach, the knowledge based approach, we have
a relational concept rather than & functional con-
cept of computation. And this is why we see the
links to relational databases, In contrast, because
of the relational aspects, it is quite natural to think
in terms of non-determinism, We then have unifi-
cadon as a computational basis,

It addition, we have, perhaps a more interest-
ing variety of computational objecs: deduction,
abduction, induction.

I touched upon the problem before. I will re-
peat it again in larger context. In the algorithmic
approach, the people who developed the specifica-
tons are usually the people who also understand
the problem domain, and they are also the people
who will then be asked to provide an efficient
implementation,

Where efficiency i3 not any more expected to
result from compilation itself, the algorithmic de-
veloper is charged with securing efficiency in his
or her stepwise development. (Table 4} So, from
the specifications we derive, in many stages, the
programs, usually informally, or usually not auto-
matically. We have such notions as developing it-
erative loops, or iterative formulations from recur-
sive ones. A paradigmatic example is that of com-
piler development from formal specifications of
the static and dynamic semantics.

In conirast to this, we have that the knowledge
based specifications are ideally executable, and we
achieve efficiency through cleverly devised infer-
ence machine which features partial reduction,
constraints satisfaction, and especially unification.

Initially we have an uncommitted choice be-
tween top-tdown use of rules versus bottom-up use
of rules, The paradigmatic systems, which for the
algorithmic one was the compiler example, here
typically is that of deductive databases.

The two notions of types interfere -— in the
notion of types, as we see it in standard ML (Table
5}, one is concerned with avoiding paradoxes ---
that notion of type basically has its root in
Bertrand Russels’ type theory, The notion of types

_48-

Table 4

Table 4.4
Towards Computational Efficiency
L*f-_l_ Algorithmic Development Method

1 | Stepwise Development {Refinament)
Spacification ~+ ... - Programs
Informally or (semi} automatically
Btressing Data Abstraction and
Applicative

Forms, Cperations on sets (an example)
| becoma cperations on lists.

2 | Development of lterative Formalisms
from Recursive ones
3 | Paradigmatic Systems, Examples:

4 | Compiler Development from Formal
Specification of Static & Dynamic Se-
mantics

vVensus

Table 4 X

} | Knowledge Enginearing
1 | Specifications are ideally executable Ef-
ficiancy ag. by

Partial Deduction

Constraint Satigfaction Methods

Special Unification Methods
2 | Initially uncommitted choice between
Top-Down (Backward) use of Rules (cf.
Recursive Forms) versus Bottom-Up
{Forward) use of Rules {cf. lterative
Farms)
Commitment through Meta-interpreta-
Paradigmatic Systams, Examples:
Deductive Databases = subset of
Prolog’s logic in which true declarativity
and termination {decidability} is achiev-
abla.

EU

that we have in the knowledge based engineering
is more Aristotelian and is viewed as a classifica-
tion of entities. Of course, the two overlap, but
they have a different background.

In the algorithmic, we use types as a means of

protection, as a compile time thing, as a choice of
representation, whereas, here, in the knowledge
engineering approach, we deal with various logics,
terminological logics, syllogistic forms, all the
sorts of logics, and so on, as generalizations of
classification hierarchies,

In the algorithmic development, units of
specifications are possibly non-determinate on the
specfifed functions versus rules and facts in the
knowledge based approach. The composition
principle in the algorithmic approach is that a
functional composition versus that of the conjunc-
tion, .

This leads us into another way of comparing
these two approaches, the various structoral
mechanisms. (Table 6) First recall my finely
grained stepwise approach 1o requirement model-

Table 5

Table 5: Surprisingly few logic programming
systems offer recursively defined, compound or
structurad typas

Table 5.4
. {Data) Types
| A | Aigorithmic Development Method
1 | Traditicnally Types as Protection and
choice of representation, (for example:
_integer and floating point)
2 | Types as Structuring Mechanism:
Polymarphism
Abstract Data Types

VErsus

Table 5 KC
K | Knowledge Enginsering
1 | Types viewed as classification of 'real

world' antities
=
Terminclogical Logics (Concept Log-
ics) -
Syliogistic Forms
Order-sorted Logics
as Generalisation of Hierarchies

~d9-

ing, the facilities, the functions, the behavior, the
safety, the performance, and so on; they helped
give me some structuring, but with our present un-
derstanding it conld not be mathematically ex-
plained.

In the knowledge approach, we may think of
such things as the schemes in the database world,
as the inheritance classification hierarchies. In the
algorithmic.approach there's a lot of work, there's
a lot of examples of structuring mechanisms in the
sense of block structores, modules, and proce-
dures, whereas, in the knowledge engineering ap-
proach, there seems to be much less structuring
available.

Exceptions play an important tols. Coming
back to our examples of the raitway, the schedule
assumed some modularity; 5o no exceptions were
made there, If I do not have some kind of given
interval over which the schedule repeats itself,
then [may have to fix this in the algorithmic ap-
proach by extending the schedunle with all the ex-
ceptions. O, 1 could repair that by just enlarging

Table 6

Table 6.4
Descriptional Structuring Mechanisms
A | Algorithmic Development Method

1 | Finely grained reguirements modsls
Base, Funclion, Behaviour; Ervirenment
& Intarface, Safety Criticality, Depend-
ability, CHI

2 | Block Structures and Modules with En-
capsulation

Proceduras

varsus

Table 6 X
K | Knowledge Engineering
1 | Database Conceptual Models and
Schemes Inheritance Classification Hier-
archies
The Aule Clauses as 'seli-contained'

Linits of Specification
2 | (Definite) Horn Clauses

on the interval by detailing the data structure. (Fig.
6)

In the knowladge based approach I might
avail myself of various features from non-mono-
tonic logics by overwriting the irregular schedule
with more specific singularities in order to avoid
exploding the rules. So, in the algorithmic devel-
opment, we handie exceptions by explicit enu-
meration, whereas, in the knowledge based ap-
proach, there is, of course, that fundamental dis-
tinction between being able to derive not A, and
not being able to derive A, (Table 7)

Now comes the end of the second part of my
presentation, I go back to the initial example of the
first part, namely the railway example. [spoke
about an inference machineg which would reason
over rules and facts. 1 spoke about an interpreter
which would work on a constant data structure,
And | spoke about a program that could be com-

CoPING WITH EXCERTIONS:

« Scheduls assumed some modularity, say, a
weakly plan: working days & week-ends.
Mo exceptions were made.

« A “ix" this sither by ‘extending’ the sched-
ule: acomposition of a regular schedule, as
first shown, with an excaption schedule:

189.0 SCH = REG xEXC Schedule
20.0 REG = Sm (Sm {Tm {DxmA))) Regular
21.0 EXC = Time . (TwAftr] Exception
220 Attr =.. Exception Attributes

« O "repair” original schedule: complete
orginal schedule to always spans a full year:

23.0 SCH = Time m (Gn (Gm (Tm (DmA)))

« Non-manotonic logic: maodify the regular
schedule by "overwriting” with the more spe-
cific singularities,

+ thus aveiding proliferation of exceptions into
the regular schemes.

Fig. &

=50-

Table 7

Table 7.4
Domain Model Exceplions and Non-monotonicity

2 | Exceptions handled by Explicit Enu-
meration of Cages

Versus

Table 7 C
| Knowledge Engineering
1 | "Nagation as {finite) Fallure” {SLDNF-

Resolution) -
2 | Distinction between - — Aand |/ A,

piled, all for the same system. And basically, one
could expect some kind of partial evaluator, which
applied to the inference machine the rules and the
facts, basically derived the pair of the interpreter
and the constant data stracture, _

Similarly one can imagine a partial evaluator,
and hopefully the same which could be applied 1o
the interpreter and the constant data structure,
which would vield my program. (Fig.'7) So, such
a partial evaluator should satisfy certain laws.
These laws are as follows: :

So, the meaning of inference machine applied
to the rules and the facts should give me the same
as the meaning of the interpreter applied to the
constant data structure and should give the same as
the meaning on my program. And, of course, I
could indsed write down the inference machine,
the interpreter, and the program in the same lan-
guage, L. And that, of course, should be the same
as the meaning of the compiler which may be writ-
ten in some other language applied to my program,
and the meaning of that program in some machine
language. That's one aspect that must be satisfied,
of course; and here comes the rules that must be
satisfied by the partial evaluator. So, the first pant
is the meaning of the partial evaluator applied to
the inference machine and the rules which should
basically give me the interpreter. Some kind of
isomorphic representational identity should be sat-

C - T- X APPROACHES

P Partial Evaluator
Functional must satisfy the [aws:

o [MILrf=[Z]Les[p]L=l[ClepIM
AIPILMrf) = (T,6)
s [Plerd=p

LEGEND:

» p: railway system program (to be com-
piled)

= ¢! raiiway sysiem constant data structure
{to be interpreted)

« . knowledge base facts which reflect the
railway system components

+ r: knowledge base rules which refiect laws
of railway systems

+ C: compiler

« I interpreter

« M inference machine

Futamura PROJECTIONS:
Mmix B S] 0] =[PISD
T = H_ﬂ'IiK]ll P
C = [fmix] mix |
CG = [[mix] mix mix

Fig. 7

isfied between the facts on my -- in this case —-a
railway system in the constant data structure. If
they were written all in the same language, then I
would have an equal sign. And similarly the par-
tial evaluator applied the meaning of that applied
to the interpreter should give me the same.

-51-

Now, that's all very nice, and looks very
preity, but the question is, how do we construct
-that partial evaluator. And that is, of course, a
good question; and if [knew the answer to that
question, 1 probably wounldn’t be standing here,
and that's why I'm presenting it for you to help me
o find out. There is a growing experience in
building such partial evalpators, They must sat-
isfy various laws.

The most classical one of these are shown here
at the bottom. So, MIX is a partial evalvator, and
the idea is that MIX applied to the meaning of the
program and its static data, the meaning of that ap-
plied to the dynamic data, the meaning of that
should be equal to the meaning of the program in
somme other language, perhaps, applicd to the static
data and the dynamic data.

Given an interpreter and a source program ap-
plying the meaning of the partial evaluator to that,
I gel the target program, Given that, [can now
write down the rules, the laws that MIX must sat-
isfy. So, the meaning of MIX applied to MIX and
interpreter gives me a compiler, and the meaning
of MIX applied to MIX, and MIX gives me a com-
piler generator., Now, this is a twenty-vear old
knowledge that I'm presenting vou with; perhaps
it is more elegantly written down by Professor
NMeil Jones, but certainly you should know about it
very well; these are known as the Futamura pro-
jections, these last three equations. -

So, the question is, we would like to know
how to eonstroct this Pardal Evaluator, P, and the
point of me bringing this here after my many tabu-
lar comparisons is that, in 4 sense - to be made
precise, of course -— in 4 sense, that P must em-
body -- certainly the first P here must embody ex-
actly the meta --- [shouldn’t use the word ‘knowl-
edge’, but —- it should embody the facts, or the
things we know about the relationships between
the algorithmic approach and the knowledge based
approach. Se, the various comparisons that were
made in the tables somehow express that partial
evaluator; and that is my point. :

This brings me to the end of the second part,
the more technical part; and I should now finish by
telling you a little bit about what the United Na-
tions University is and the fact that they have de-
cided to create a research and training center to be

located in Macao and to be started on June 8th,
next Monday. So, the UNUMAIST is endowed by
30 million dollars from the governments of Portn-
gal and China, and the governor of Macao. Tis ac-
tivities will be oriented towards the developing
world. It seems rather ambitious in its spread; it
shall help, it shall assist in the software usage, in
software technology management, in development
of software, in comiculum development, and in re-
search, It hopefully will be able to do so, and it
will eperationally do so through a combination of
projects, courses, research, consultancy, and dis-
semination.

We plan that the UNU/ILST should engage in
three kinds of projects; small explorative projects
which will apply research ideas to small but diffi-
cult subsets in order to investigate feasibility of
new approaches and new applications. Such
projects may lead 1o demonstrator projects and
they may lead to other research. Demonstrator
projects apply what we hope to be scalable state-
ol-the-art techniques to applications, and they
serve as the basis for education courses, And fi-
nally, they may lead to technology transfer
projects. The idea is that the UNTVTIST should not
itself develop software but should maobilize forces
in the developing world so that eventually the
projects will ransfer to new or previously identi-
fied groups in the developing world.

Training is achievad through a combination of
projects and courses., We work with three kinds of
courses: training, awareness and education
courses. Training in the application, software in-
stallation, operation and use. Awareness courses
focusing on software technology management,
and education courses which, in the sense of this
talk, very much focus on the things we’ve been
talking about, namely, three-month specialist
courses for post-graduates both from universities
and from industries,

Research will be done, but it will not be a ma-
jor feature of the institute. We would certainly
hope te be able to bring the results of the industrial
world to bear, and vice versa there are many fasci-
nating results and ideas in, say, China and India
that cught to be more widely known in the indus-
trial world. Initially, our own research will be con-
ducted by our own staff, by visiting experts, and

research scholarship students. And almost always
in joint collaboration with other institutes and in-
dustries in the developing world. Initially we will
focus on the algorithmic approach to software de-
velopment, and we will initially focus primarily on
a continuous time interval temporal logic called
the duration calculus.

There will be created some kind of organic
network that will tie university groups, software
houses, and other centers topether,

We will operate through offering scholarships
to post-graduates from universities and industries
to participate in Macac in projects and courses,
short courses or seminars or long intensive resi-
dential courses, and also to invite six to nine-
month research scholarships or research scholars
to come to Macao,

S0, basically the UNU/HST will have many
features; we hope to be able to do consultancy
work for the UN system; we certainly are planning
a number of workshops and panels already this
fall; we'll do some research; we'll have varions
kinds of courses, and we'll have various kinds of
projects. And in this we will interface with differ-
ent segments of institutions in the developing
world.

Now, I come to the conclusion. T tried to be
faithful to what I was expected to say in that [have
mentioned some of the UNU/IST strategies for
prompting research and development. In my talk
on the algorithmic parts and the algorithmic and
knowledge based parts, you have seen some of the
attitudes that lie behind our research and develop-
ment. 1 have made a plea for caleulations at all
levels. I have briefly mentioned some of this. In
the invitation there was also asked that I address
the issue of creativity and future prospects, and in
the interest of time, you can read that in the sub-
mitted paper.

So, I would like to acknowledge and thank my
chairman, Professor Hidehiko Tanaka, and Koich
Furukawa-san for inviting me; I've had great help
frem Kanbayashi-san in preparing these. And also
thanks to my co-author. So, with this, ladies and
gentlemen, thank you very much for your atten-
tion.

Tanaka: Thank you very much, Professor Bjgmer.

As we have a few more minutes for this ses-
sion, so, I would like to have some discussions us-
ing these minutes. Is there any gquestions? Use the
microphone, please,

Wolfgang Bibel: Professor Bjgrner, | must ad-

mit that 1 have a very different view of the com-

patison of the algorithmic and the knowledge part.

So, basically my first question will be, could it be

that you take a oo narrow view of the knowledge

engineering part. As I would figure, you view
knowledge engineering simply as prelog program-

ming, and that seems to me to be a very namow

view; bacause, just think of extraction of pro-
grams, real programs from proofs, or, think of in-

tegrating abstract data types with the knowledge

specification of a given problem, and many other

things like that. Even compilation into a real effi-

cient program, that is the target of many researcher

in program synthesis. So, may be it is believed

that all these things are not so well and widely

known as they should be, but there is, I feel, a dis-

torted view if you just put these two things, algo-

rithms on the one side and knowledge engineering

on the other side. That is my first question.
Couldn’tit be that it is oo narrow?

The other question ig, that knowledge engi-
neering has a wide perspective, and the perspec-
tive is that we can de modification of programs. In
the sense, you just modify the knowledge specifi-
cation and then take the consequence into the syn-
thesis part. My question is, is there anything com-
parable on the algorithmic part, or, sn’t it wue that
an algorithmic programmer has to re-do all these
things from scratch.

Bjgrner: Okay. So, you did not ask two ques-
tions; you asked three questions at least. First of
all, Twas almost saying “yes® to you when you had
the first part of your first question. Yes, Idotakea
narrow view of knowledge engineering, namely, [
take that view in which everything can be writtan
down precisely in mathematics, in closed form,
But, to the second part of your first question, no, 1
ceriainly felt that the aspect yon mentioned with
extracting pregrams from proofs and so on is in-
deed a part of my comparison. 1 think you'll find
that in the inductive programming, abductive pro-

-53-

gramming, and soon. The point hers is that the
developer, whom I asked to develop a compiler or
a database system, that person is charged with
implementing all the efficiencies, whereas, the
problem domain modeler who comes out with a
succinet logical form of the problem domain in the
way that vou would do it, That person is not
charged with any efficiency of use. Such is asked
fior by some other people who invent clever algo-
rithms for resolution and for imification and many
other things for extracting the programs from the
proofs and so on.

In your second question, I intend to agres
with you there, but only historically. If you can
develop a very precise requirements model for
banking, Andif any new software and addition to
existing software follows exactly that, then you
have a homo-morphism so that any changes are
very easily introduced. But sull, vou have to
algorithmitize. But you don't have to go back and
change any of the old things. But that's a more
technical argument.

E.A Feigenbaum: Could you give us some his-
torical background on how the International Insti-
tnte of Software Technology came to-be located in

such an exwaordinarily strange interesting place
like Macao?

Bjerner: They had the money, So, there was a
commission in 1985, and centain people traveled
around to Singapore, to Hong Kong, to Macao, to
South Korea: these four places. And the Macao
people, the government of Macao immediately
came up with the promise for the meney. If yon
think Hong Kong is more exciting than Macao,
you will also think that Macao has certain wonder-
ful tranquil Portugese features that Hong Kong
does not have,

So, basically, a need was identified for having
such an ingtitute, and then, people went around
asking where the moneyv was, and the Macao
people came wp with 30 million U.S. dollars, It
should be put in the following context: the United
Nations University has other institutes: they have
one for world development economy in Helsinki,
Finland; they have one for new techmology: social
consequences of new technologies in Magstricht
in Holland; and they have other institutes predomi-
nant in the developing world, But all of them
charged with issues that have to do with the devel-
oping world. All of them were in the indusirial
world, but charged with issues in the developing
world. So, certainly this institute ought to be in the
developing world, and it is,

I personally find Macao an exciting place.
['m not walking about the presttution or anything
like that or gambling, but it is a fine place. 1 invite
you to come and visit us.

