PROCEEDINGS OF THE INTERMATIONAL CONFERENCE
OM FIFTH GEMNERATION COMPUTER 5YSTEMS 1952,
edited by 1COT. © 1COT, 1992

694

A Mechanism for Reasoning about Time and Belief

Hideli Isozaki
NTT Basic Research Laboratories
3-0-11, Midoricho, Musashino-shi
Tokyo 180, Japan

Abstract

Several computational frameworks have been proposed
to maintain information about the evelving world, which
embody a default persistence mechanism; examples in-
clude fime maps and the eveni ealewdue, In multi-agent
environments, fime and belief both play essential roles.
Belief interacts with time in two ways: there is the time
at which something is believed, and the time abouf which
it iz believed.

We augment the default mechanisms proposed for the
purely temporal case 30 as to maintain information not
only about the objective world but also about the evo-
lution of beliefs. In the simplest case, this yields a two-
dimensional map of time, with persistence along each di-
mengion.

Since beliefs themselves may refer to other beliefs,
we have to think of a statement referring to an agent's
tempotal beliel abowet another agent’s tempaoral belief (a
nested {emporal belief statement). It poses both semanti-
cal and algorithmic problems. In this paper, we concen-
trate on the algorithmic aspect of the problems. The gen-
eral case involves multi-dimensional maApS of time called

Temporal Belief Maps.

1 Introduction: Time Maps and
Temporal Belief Maps

In multi-agent environments, time and belief both play
essential roles. Belief inleracts with time in two ways:
there is the time af which something is believed, and
the time about which it is believed. As in the atemporal
treatment of belief, beliefs themselves may refer to beliefs
(of other agents, or even the same one). For example, in
the framework of Agent Oriented Programming [Shoham
1920], at any time the mental state of an agent contains
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information about the mental states of other agents at
various times.

A statement referring to an agent’s temporal belief
about ancther agent’s temporal belief will be called a
nested temporal belief statement. An example of it is the
sentence *On Wednesday John believed that on the pre-
vious Monday Janme believed that on the following Sat-
urday they would clean the house.” Nested temporal be-
liefs pose a number of interesting problems, both seman-
tical and algorithmic, In this paper we concentrate on
the latter kind; we propose & computational mechanism
called a Temporal Belief Map, which functions as a data
base of nested ternporal beliefs.

Consider a formel language for expressing nested tem-
poral beliefs. A standard construction would extend clas-
sical logic with a modal operator Eilp for each agent des
ignator 2 and time point symbol {, meaning intuitively
that at time ¢ the agent a believes w. To ensure that the
modal operator respects the properties of belief (or, more
exactly, its erude approximation that has been emploved
in computer science and AI), varlous restrictions on this
operator have been suggesied, and then extensively ex-
plored, debated and modified[Hintilka 1962, Griffiths
1967, Konclige 1986). These include properties such as
Bi{lﬂ o)A B:(,;' 2 B:u!-' (the ‘K" axiom), 314,9 »] F'EL-;:
(the ‘I axiom), B:w ] E.:B:Ln,p and "B:',ﬂ ] B:—-B::p (the
4" and ‘5" axioms)[Chellas 1980], and others. In addi-
tion, although these have been less well studied, further
constraint may be imposed on the change in belief over
time.

We will briefly return to these properties in the next
section, but they are not the focus of this paper. Instead,
we concentrate on algorithmic issues. Consider first Lhe
purely temporal case, without an explicit notion of be-
lief. In principle, capturing the truth of facts over time



should pose no problem; we can use standard data base
technigues to capture the fact true at a single point in
time, and repeat it for all point. In practice, though, it
is impossible, and we will need to use some shortcuts.
The representational aspect of the problem appears in
the form of the well-known frame problem [McCarthy and
Hayes 1969): when you buy a red bicycle, how you con-
clude that a vear later it will still be red, regardless of
what happens in the meanwhile — the bike is ridden, the
tire is fixed, elections are held — unless it is painted. An
axiom stating explicitly that the color does not change
after each action is called a frame aziom; the problem is
to capture the persistence of facts without including the
numerous possible frame axioms.

The frame problem and related problems have been
investigated in detail from the logical point of view
(cf. [Shoham 1992]), and most solulions proposed have
rmade use of nopmonotonic logie, Adding belief yields a
qualitative increase in difficulty, since beliefs (and lack
thereof) tend to persist as well: once you learn some-
thing, you will keep it in mind until you forget it or learn
incompatible facts. The formal details of the persistence
of mental stafe have not yet been studied as deeply; an
initial treatment of it appears in [Lin and Shoham 1992].

As was said, we are interested in the algoirthmic as-
pects of the problem. Computational complexity aof
knowledge and beliel without time was discussed by
[Halpern and Moses 1985]. In the purely temporal case,
the question is how to efficiently implement the follow-
ing persistence principle (throughout this article we will
assume discrete time, but the discussion can be adapted
to the continuous case as well; we also assume proposi-
tional facts, with no variables):

7" holds iff either an event which causes p
occurred at time ¢, or else p' holds and no event

which cavses —p occurred at fime £,

Straightforward embodiment of this rule in backward
chaining is too inefficient. In order to determine the

truth value of p*, you do not want to have to check 7,

p'~%, and so on until you discover that p" ***" is true.

Both time maps [McDermott 1982, Dean and MeDer-
mott 1987] and event calculus [Kowalski and Sergot 1986]
provide better alternatives. In particular, time maps rely
on keeping track of oaly the points at which the truth

value of the proposition changes, which are sufficient Lo
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Figure 2: Clipping a persistence

determine the truth value of all other points. Each event
gives rise to a defaull persistence, which ends at the first
future point about which a contradictory fact is believed.
For example, if an event which causes p oceurs at time 11l
{the superscript in | Videntifies 2 given time point}, and
no other information about pis yet present ir the time
snap, then the two points " and oo are associated with
7, with a default persistence of p from the first to the
second. This may be depicted graphically by Figure 1.

If it is subseguently added that at time (P1(> ") an
event happened that causes —p, i is associated in ad-
ditton with p; a default persistence of —p is assumed be-
tween 11 and oo, and the persistence of p starting at ¢l
is “clipped” at i (Figure 2).

This iz a crude description of the operation of time
maps, but it suffices fo explain the transition to tempo-
ral belief maps (TBM’s), which incorporate an explicit
notion of belief.

(Mote that we have discussed only persisience into the
future. Most of the liteeature in Al does that, and we too
will in this paper. However, persistence into the past can
make as much sense, especially when one adds an explicit
notion of belief. For example, if you find & book on a
desk, vou will believe that the book was on the desk a few
minutes ago. Most researchers manage to avoid this is-
sue by limiting the form of temporal information. In par-
ticular, both time maps and the event calculus embody
a certain cansality principle: the only way new temporal
information is added is by 2 preceding event which causes
it. Since an explicit cause is known, there is no reason to
posit backward persistence, past the cause. For example,
we cannot repregent the simple fact that the book was
on the table; we must represent a specific evenl or ae-
tion that resulted in that state (such as placing the book
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there). The closest one gets to backward persistence is
through abductive reasoning, “what would have to be the
case previously in order for this fact to hold,” positing
previous events. In applications such as planning[Allen
et al. 1891], this is a reasonable assumption, as in those
one is constrzcting a map of the future based on spe-
cific planned events. However, if one is trying to use the
mechanism to piece together a map of time on the ba-
sis of spolty data, this may prove inappropriate. For ex-
ample in & framework such as Agent Oriented Program-
ming [Shoham 1900], a major source of new ternporal in-
formation are INFORM messages from other agents. As
a result of these messages, the agent may possess a rich
sample of what is true and false over time, but ne causal
knowledge of the precipitating events. Nevertheless, we
will ignore backward persistence in most of the paper.
Unless we explicitly state otherwise, we will use the term
persistence to mean forward persistence. |
Suppose we now wish to represent the evolution of

Let us first infroduce the notion of
fearning, which will play a role that is analogous to that
of an event in time maps. Given this notion, beliefs too
will be subject to a persistence rule:

“The agent believes a fact at time § 4+ 1 iff he

learned 1t at time £, or else at time ¢ he believed

the fact and did not at that time Jearn that it

became false.”

an agent’s beliefs.

(This rule embodies the assumption that agents have
perfect memory.) I, in addition, the “fact” iteelf is tem-
poral, we end up with persistence along two orthogonal
dimensions: the time of belief and the time of the prop-
erty. This is the simple case of a 2-dimensional TBM.
The extension to higher-dimensional TBM's is natural.
Such TBM's are obtained by nested belief statements,
such as as “John believes today that yesterday he did
and “John belisves today that tomor-
)i both of these example state-
ments induce a 3-dimensional TBM. It turns out that
resolving contradictions in a multi-dimensional TBM is

not believe ... "

row Mary will believe ...

somewhal more subtle than in standard time maps, as
the following sections will describe.

Here then is the problem we will address. Let us use
the notation L'y to mean that agent a learned ¢ at ¢
{actually formalizing this notion is tricky, but that is nof
the concern of this paper; we use the notation merely

as shorthand for the English sentence). The input fo
our problem is naﬂumed 10 he a collection of data points
of the form 1.tjll L‘*a L"'-lp Y and L*ﬂL‘g" ‘uﬂ-- 'm
In other wnrds, the sequences of agent mdn:as a.re ;d.m—
tical in all the input data, but the time indices are un-
constrained [we will see in section 3 why assuming a
fixed sequence of agent indices iz not limiting). We also
agsume that I:h-: dala i :a cona:stenf that is, it do&s not
contain both L"- el Pﬁ and Li . L:';I-‘I—' for
any k. The pmb]f:m is to define the rules of persis-
temce in this n-dimensional space, that is, to define for
any (f,,t,,...,t, ) in the apace and each fact p, which (if
either) of B} B2 ---Bi-ip™ and B B2 ... Bin-top are
supported by f.he data. (In zll of the above, both the
agent indices and the time indices may contain repeti-
tions.) Furthermore, we will want our definition to sup-
port an efficient mechanism for answering such a query
about any point in the space,

Mote that both the input form and query form are
qguite conatrained. For example, the input form precludes
facts such as “John learned that Mary did not believe @,*
(L johm ~Bygary?) Without making the stronger statement
“John learned that Mary learned ~g." (L, Lygor, %)

Similarly, a query “Does John believe that Mary does
not believe 7" [BMEHBMHT(,:JT} are disallowed, cnly
the stronger query about Mary's believing the negated
fact (By,Byury ~#7). A positive answer to the second
{BlnhnE‘MuT_"P]' would entail a positive one to the first
(Bt "Bhpay?): but a negative answer (=B, By, )
would shed no light on the first query (By, By, 7).

These are extensions we plan to look at in the future.

In the remainder of this paper we will elaborate on this
picture. We will explicate the assumptions made about
agents, and discuss the mulli-dimensional persistence in
mere detail. The organization is as follows. In section 2
we state the assumptions we make about agents' beliefs,
both at single points in time and over periods of time. In
section 3 we look clesely at persistence in a TBM's with
In section 4 we look at TBM's
In section 5 we discuss the
extension to data with multiple sequences of agent in-
dices. In section 6 we briefly mention the complexity of

a single datum point.
with multiple data points.

the query answering, and in section 7 we briefly mention
implementation efforts. We conclude with discussion of
related and future work.



2 Assumptions about Belief

We mentioned before that various idealizing assumptions
about belief have been made and debated by other re-
searchers, and that the focus of this paper is different
from them. Monetheless a few basic assumptions are es-
sential, and we discuss them here. In the spirit of this pa-
per, we discuss these properties in commonsense terms,
rather than in a formal logic.

We have already listed some of the more common re-
striction on belief: closure of beliefs under tautological
implication (as captured by the "K' axiom), consistency
{as captured by the ‘D" axiom), and positive and nega-
tive introspection {as captured by the "4 and °5" axioms).
Since among objective properties (those without a be-
lief operator) we will consider only literals (atomic prop-
erties and their negations), the closure property will be
irrelevant. Positive and negative introspection will also
turn out to impact our results only minimally, as will
be discussed in section 5. Howewer, consistency will lie
at the heart of the TBM mechanism, and is our first as-
sumption.

Assumption 1 (Consistency) Bly and B~ cannot
both hold.

This is the only assumption we will make about a belief
at an instance of time.

In addition we have constraints on how belisfs change
aver time. We first assume that agents do not come to
believe facts without explicitly learning them, but that
once they learn them, they do nol forget them.
Assumption 2 (Causality and Memory) Ifati agent
a does not learn —p, then Bi 'y holds iff By holds.

Our next assumption is that agents are extremely re-

ceptive to new information[Gardenfors 1988).
Assumption 3 (Gullibility) If at fime t agent a
learns ¢, then B 'y holds.
(Of course, in an environemnent in which agents are sup-
plied with unreliable or dishonest information, this last
assumption would be unacceptable, and we would need
a more sophistiated criterion to determine which of the
two contradictory facts, the previously believed one and
the newly learned one, should deminate.)

Chr last assumption is that all these properties are

‘common knowledge'

697

T

| B

AN

>
7

AL Veliet 7

AR

T,r belief

Figure 3: Default region (left) and causal cegion (right)

Assumption 4 {Common knowledge) Fvery agent
believes that every agent believes the above properlies,
that every agent believes that every agent belicves them,
and s0 on,

3 Multi-Dimensional Persistence
of a Single Datum

In this section, we consider TBM's induced by a single
datum point. We start by considering the non-nesfed
case, in which the datum has the form L:;ELIP"Ilj~1 (at time
tlln agent o learns that at time ﬂfl propecty p was (is,
will be) true). This induces a 20 TBM, in which the
persistences along both axes are uninterrupted and thus
do not terminate at all. This situation is represented
graphically in Figure 3.

The hatched quarter plane in the left picture, rooted in
the point (£, 1), is called the default region of (¢}, ¢).
The meaning of this region is that, given only the datum
point L:[L“pf’l - E‘;‘f‘ holds by default iff (t,,£,] lies in that
region (i.e., iff i1 < t, and 8 < 1,).

Similarly, if we focus on an affected point (#), all data
points affecting it by their forward persistence are dis-
tributed in the opposite quarter plane. This s the dual
concept of the default region and is called a cousal re-
gion of the affected point. It is depicted graphically in
the right picture of the above figure. In this paper we
will be concerned mostly default regions.

Finally, although it is only the 2-dimensicnal case that
is so amenable to graphical representation, these con-
cepts extend naturally to the multi-dimensional case.
Specifically, given only the datum .L;E:i - .Lﬂap'w, we
have that BY - - B==% p* holds iff it is the case that f, >
I R
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4 Mutiple Data with Incompat-
ible Beliefs

We have so far considered only TBM's induced by a sin-
gle datum, We now look at the general case in which we
have mutiple data. We still assume that all data have the

[ [ [l A1 ] [
£ G, phaml i IR (=R
form L} -+ L7t p* or LL o Lot =p, for some fixed
C ITRERNT - {again, see section 5 in this connection ), but

nothing beyond that,

If for any p, the collection does not contain more than
one occurrence of p, (whether preceded by — or net), the
situation is simple: the persistence of each fact s inde-
pendent of the others, and so0 we construct an indepen-
dent TBM for each one.

The situation in which multiple occurrence of a p, ex-
ist, but all with the same polarity (that is, either in all
data containing p, the p, is preceded by -, or in none},
the sitnation is also simple: the default region is simply
the union of the individual regions for each datum con-
taning p, .

It is the presence of contradictory data that makes the
story more interesting. Our assumption of consistency
dictates that persistences of contradictory beliels may
not overlap, Without the strong limitations on the form
of input data and queries, we would have two problems
-— to determine which sets of persistences are contra-
dictory, and to resolve the contradiction. For example,
we would have to notice that the three sentences B (p V
7], B:Hp and B:-q are jointly inconsistent, even though
all pairs are. consistent. Chur restrictions remowve this
first problem. Since we only consider facts of the form
B:'-I a0 E:::t p;" and E:"I cas E:::‘l —-p;", the only fact contra-
dicting B;f1 e Hi::l. i will be B:i; P -E:':-_il_ —p}*, and vice
versa. When in future work we relax the restrictions on
input and queries, we will need a new criterion for deter-
mining incompatibility.

Qur restrictions do not only render the problem of de-
termining incompatibility trivial, they also simplify the
task of resolving it. Since we always have exactly two
beliefs confradicting one another, our task reduces to re-
maving one of them; the question is which.®

'Of course, removing both would also restore consistency, but
that would vislate our assumption about cansality and memary,
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Figure 4: Overlapping default regions {tEﬂ # E[LEIT t!;' #
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Figure 5: Consistent defauli regions (£l 1 4lF) = )

4.1 The 2D Case

The rule for resolving contradictory beliefs in the two
dimensional case js derived in a straightforward fashion
from the assumptions stafed in section 2, and is anala-
gous to the clipping of persistences in simple time maps.
We will discuss the case of two data points, but the dis-
cussion extends easily to multiple points.

Consider the input data consisting of the two points

I B ,
e:L1 p? ando :L:1 -p* . Without loss of generality,
assume that 1',?] = Eiﬂ holds. We consider the two cases
e i.Lzl = t[;] and igi] < tE'] — and assume for now that
neither E.E’] = fE'] nor i!!f] = t;ll hold, The default regions
of the two points in both cases are shown in the feft and
right portions of Figure 4, respectively.

In both cases the default regions overlap, which iz for-
bidden, and one of them must be trimmed. Io deciding
which, we recall the assumption of gullibifity: right af-
ter learning a fact, the agent must believe it. Further-
more, the assumption of memory and causalily dictales
that the agent must continue to believe it until the newxt
paint about which he leamns that the fact is false there.
This produces the consistent default regions in Figure 5.

Example. If John learns on Monday that on

Thursday his house will be painted white (o)

and on Tuesday he learns that on Fridey it will



be painted blue (@), then from Monday until
Tuesday John will believe that his house will be
white from Thursday until the end of time, and
from Tuesday on he will believe that his house
will be white from Thursday until Friday (445"
shading), and blue afterwards (—45° shading)
(the lefl picture). (Of course, on Thursday he
will learn that the painter had a wedding in
Chicago and couldn’t come.)

On the other hand (the right picture), if
John learns on Monday that on Thursday hia
house will be painted white (#) and on Tuesday
he learns that on Wednesday it will be painted
blue (e}, then from Monday until Tuesday John
will still believe that his house will be white
from Thursday until the end of time (+45"
shading), but from Tuesday he will believe that
his house will bhe blue from Wednesday until
Thursday (—45" shading), and leave unaltered
his belief that it will be white afterwards (+45"
shading). (That will change when the painter,
back from Chicago a week later, paints John's
house turquoise, since neither white nor blue
really go well with olive tree in the yard.)

Mote that in either case, the beliefs from
Tuesday cnwards would not change even if the
the two pieces of information were acquired in
the opposite order. This is no accident; this
Church-Rosser property is true in general of our
Eystam.

We now turn to the limiting cases, in which either
tizl = tlll] holds or iE] = tE_.'] holds. Mote that from our
assumption about the consistency of the jnput, al maest
one of them can hold. Therefore, if #* = ! holds, we
may assume without loss of generality that a‘.m illl
This means that at time lm[ tm] the agent learned that
p first became true {#) and later became false (o), The
agent will therefore believe at time £'1(= ¢) that p will
be true from the first point until the second, and false
afterwards. There will be nothing later to change that
belief, and thus the default region of p forms an infinite
horizontal strip, and the default region of —p occupies
the quadrant above it (Figure 6).

The case in which tEﬂ = 11211 holds is more interesting,
since it provides insight into the higher dimensional case.
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In this case the agent first learned that p became true
at some point, and later learned that p became false af
that very point. Mow in principle we could imagine guita
sophisticated criteria to decide which evidence should
be given greater credence. Howewer, our assumption of
gullibility forces a “recent is better” policy, leading us
to accept the later information and abandon the older
one. The resulting default regions are shown in the right
figure.

4.2 The General Case

We now extend the previous discussion to higher TBM's.

We will unfortunately have to do so without the aid of

graphics; instead, we will use the following example.
Example. At tg'] you learn that at time !y]
your son learned that your son's teacher moved

[1] 1 0l
to Japan at time ¢ (L% & p? ). At time

youLson
t?] vou learn that at time i[:' your son learned
that his teacher moved to the US at time !gﬂ
{Lﬂl.ﬁ-p'?l] where i‘:lf] = t':;l.

Let #, > max(f, ), ¢, > max(elll, ),
and ¢, > ![3""{::- EE,_']]. Then at ¢, you believe
that at ¢, your son believes that his teacher is
living in the US at 2.
of the relationship between T.El! and 1?], ar the
relationship between i.[.:] and i[:].

This is trie n:ga.rd]l:as

MNow consider the same seenario, exeept that
f[ﬂ tm This means that you believe that
your son learmed two contradictory facts. How-
ever, from the assumption that rules of belief
change are commen knowledge”, you know that
your gon will adopt the latest information {as

illustrated in the previous figure). Therefore

"Wote that this is our first use of the common knowledge
assurmptlion!
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your beliefs about your son’s beliefs will de-
pend on the relationship between tLI] and tE];
if tgs] = t!;] then you will believe that your son
believes that the teacher Kves in the US; other-
wise you will believe that your son believes that
the teacher lives in Japan,

Finally, what will you believe if ¢ = ¢!
and EE] = !:.[j]? In this case, you will need to
break the tie by comparing !!1] and i?], Note
that they cannot also be equal, as that would
violate the assumption that the input data is
congistent,

The lesson from this example is clear. To determine
whether a point in the hyper-space lies in a particular
default region, you should compare the associated time
vectors. This ordering is a reverse lezicographical order-
ing, the innermost time being the most significant and
the outermost time the least significant.

5 Multiple Sequences of Agent
Indices

We have all along assumed one fixed sequence of agent
indices in the data: a,,---,a _ . However, relaxing this
limitation is quite simple. Consider data points with
multiple sequences of agents indices. Unless we male
further assumptions about belief, data with different in-
dex sequences will simply not inferact. For example, the
truth of BY'8%'s%" is completely independent from the
truth of any statement that is not of the form nfﬂ B';Lﬂ;,
where £ is an objective sentence [containing no heljizf op-
erator); in particular, it is consistent with B} B3 —p" .
Thus we may simply construct separate TBM's for thess
different sentences, each obeying our restriction.

However, if wa do make further assumptions about
belief, we must take greater care. We consider here four
possible further assumptions about belief. The first two
are the familiar assumptions of introspective capability:
Assumption 5 (Pesitive introspection) By holds iff
BBl holds.
Assumption 6 (Negative introspection) =By holds
iff H; —-Hitp holds,

The other two have to do with beliefs of the agent at
different points in time. The first is that not only do
agents have memory (which we have already assumed),

but they also have perfect memory of past beliefs:
Assumption 7 (Introspection about past beliefs)

BB To=8"p if =0

The last assumption states that agents do not expect

"theic belies to change:

Assumption 8 (Belief about stability of beliefs)

BB, "p =By if  r=0

(-}

(Notice that assumptions 5, 7, and & can be unified into

B:‘E:f:p = E:‘i"'“"h]‘w.}

We are not arguing on behalf of these assumptions. We
list them merely as examples of plausible assumptions
one might want to make. The reason we mention them at
all is that they violate the property that nested temporal
beliefs with different agent indices are independent of
one another. For example, under assumption 8, E:Bipa
is eontradiclory with B:—-;va.

Fortunately, these four assumptions allow an easy so-
lution.  We simply keep simplifying the sentences by
substitution, unfil no further simplifications are poas-
ble. It turns out that no matter what subset of these
four we choose, the result of this substitution process is
unique (the Church-Rosser property again). More gen-
erally, whenever our assumptions allow us to derive a
unique canonical form, we convert the query and the in-
put data to this canonical form, and then revert to our
usual procedure. We have not yet investigated the more
complex case in which the canonical form is hard to de-

tive or nonexistent.

6 Complexity

Our definition of default regions was constructive, and
allows efficient query answering. We briefly discuss the
complexity here. If we assume that comparison of a pair
of one-dimensional time points is done in one operation,
then comparing two n-dimensional time points requires
at most n operations. In ordinary applications, n will be
a very small integer. Ordinary people will not think of
n =5 cases in their everyday life.

If we have N data points, we can get a sorted list
of the data points by the pricrity based on the reverse
lexicographical ordering, as explained. This requires only
O(n - Nlog, N) = O(Nlog N) operations. Since each
agent learns informations gradually, it is useful to use a



heap, a well known balanced tree data structure which
can be easily modified to keep ordering.

If we need to identify only the dominant data peint in
the causal region, even a naive implementation gives it
in ({nN) =~ O(N) operations.

7 Implementation

Our frameworl can be easily implemented by logic pro-
grammming languages such as Prolog as well as ordinary
procedural languages such as C. We implemented various
versione of this framework in both languages. Backward
reagoning mechanism implemented in Prolog employed
simplified versions of Kowalski/Sergot's Event Caleulus,
Forward reasening mechanism implemented in C em-
ployed sorting of an array. As we described before, our al-
gorithm is very fast in simple cases. We intend to imple-
ment more complex cases and evaluate their complexity.
As for 2D cases, we have a program which draw a map
from a set of data points whose time stamps are given in
hour/minutes or minutes/seconds or year/month /day.
Finally, this work has been carried out as part of the
research on Agent Oriented Programming. The current
simple interpreter, AGENTO[Shoham 1990], only has a sim-
ple version of standard time maps. We have implemented
an experimental agent interpreter which incorporates the
ideas of this paper, and hope to report on it in the future.

8 Related Work and Conclu-
sions

The only closely related work of which we are aware,
other than the work on time maps and event calculus
which we have discussed at length, is Sripada’s [Sripada
1991], which was independently developed. Both sys-
tems can deal with nested temporal beliefs. Sripada rep-
resents a nested temporal belief by a Cartesian product
of time intervals, and like us assumes that nested tem-
poral beliefs are consistent. However, he does not con-
sider the notion of default persistence, and therefore not
with the resolution of competing default persistences. It
would seern that the result of our system could serve as
input to his, but we would like to understand his work
better before making stronger claims about the relation-
ship to his work.

As should be clear, much more needs to be done. We
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made it clear that in this work we did not undertake
a logical treatment of time, belief and nonmonotonic-
ity. We were also explicit about the limitations of our
framework. We hope to do both in the future, as well as
demonstrate the pratical utility of this work,
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