PROCEEDIMGS OF THE INTERMATIONAL CONMFERENCE
OM FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by 1COT. @ ICOT, 1992

592

Extended Well-Founded Semantics for Paraconsistent Logic Programs

Chiaki Salkama

ASTEM Resecarch Institute
17 Chudoji Minami-machi, Shimogyo, Kyoto 600 Japan
sakama@astem.or_jp

Abstract

This paper presents a declarative semantics of logic
programs which possibly contain inconsistent informa-
tion, We introduce a multi-valued interpretation of logic
programs and present the extended well-founded seman-
tice for paraconsistent logic programs. In this setting, a
meaningful information is still available in the presence
of an inconsistent information in a program and any fact
which is affected by an inconsistent information is dis-
tinguished from the others. The well-founded semantics
is also extended to disjunctive paraconsistent logic pro-
grams.

1 Introduction

Recent studies have greatly enriched an expressive
power of logic programming as a tool for knowledge rep-
resentation. Handling classical negation as well as nega-
tion by failure in a program is one of such extension. An
extended logic progrem, which is introduced by Gelfond
and Lifschitz [GL90], distinguishes two types of negation
and enables us to deal with explicit negation as well as
defaunlt negation in a program. An extended logic pro-
gram is, however, possibly inconsistent in general, since
it contains negative heads as well as positive ones in pro-
gram clauses. Practically, an inconsistency is likely to
happen when we build a large scale of knowledge base
in such a logic program. A knowledge base may contain
local inconsistencies that would make 2 program contra-
dictory and yet it may have a natural intended global
meaning. However, in an inconsistent program, the an-
swer set semantics proposed in [GLS0] implies every for-
mula from the program. This is also the case for most
of the traditional logies in which a piece of inconsistent
information might spoil the rest of the whole knowledge
base.

To avoid such a sitnation, the so-called paraconsistent
logics have been developed which are not destructive in
the presence of an inconsistent informaticn [Co74]. From
the point of view of logic programming, a possibly in-
consistent logic program is called a paraconsistent logic
program. Blair and Subrahmanian [BS&7) have firstly de-

veloped a fixpoint semantics of such programs by using
Belnap's four-valued Jogic [Be75]. Recent studies such as
[KL89, Fi89, Fi91] have also developed a logic for pos-
sibly inconsistent logic programs and provided a frame-
work for reasoning with inconsistency. However, from
the point of view of logic programming, negation in these
approaches is classical in its nature and the treatment of
default negation as well as classical one in paraconsistent
logic programming is still left open.

In this paper, we present a framework for paracon-
sistent logic programming in which classical and default
negation are distinguished. The rest of this paper is or-
ganized as follows. In section 2, we first present an ap-
plication of Ginsberg's latlice-valued logic to logic pro-
gramming and provide a declarative semantics of para-
consistent legic programs by extending the well-founded
semantics of general logic programs. Then we show how
the extended well-founded semantics isolates an incon-
sistent informatien and distinguishes meaningful infor-
mation from others in a program. In section 3, the well-
founded semantics is also extended to paraccnsistent dis-
junctive logic programs.

2 Well-Founded Semantica for Paraconsistent
Logic Programs

2.1 Multi-valued Logic

To present the semantics of possibly inconsistent logic
programs, multi-valued logies are often used instead of
the traditional two-valued logic. Among them, Bel-
nap's four-valued logic [Be75] is well-known and sev-
eral researchers have employed this logic to give the se-
mantice of paraconsistent logic programs [BS87, KL&S,
Figd, Fi9l]. In Belnap's logic, truth values consist of
{t,f, T,L} in which each element respectively denotes
true, folse, contradictory, and undefined. Each element
makes a complete lattice under a partial ordering defined
over these truth valnes (figure 1).

To represent nonmonotonic aspect of logic program-
ming, however, we need extra truth values which rep-
resent defanlt assumpiion. Such a logic is firstly intro-
duced by Ginsberg [GiB6] in the context of bilattice for

Figure 1. Four-valued logic

default logic. We use this logic to give the semantics of
paraconsistent logic programs.!

The set VII = {t,f,dt,df,* T, 1} is the space of
truth values in our seven-valued logic. Here, additional
elements dt, df, and *, are read as true by default, false
by defaulf,-and- don't-care by default, respectively. In
VII, sach element makes a complete lattice under the
ordering = such that: ¥x € VIL,x <xand L4 x=<T;
and for x € {t,f}, dx =<+ < x (figure 2).

A program is a (possibly infinite) set of clanses of the
form:

Ae— By i A By hnotCy AL A netCy

where m,m = 0, each A, Bl < i < m) and
C;(1 < j < n} are literals and all the variables are as-
sumed to be universally quantified at the front of the
clause, In a program, two types of negation are distin-
guished; hereafter, — denoies a monotonic classical nega-
tion, while not denotes a nonmonolonic default negation,
A ground clause (vesp. program) is a clause (resp. pro-
gram) in which every variable is instantiated by the el-
ements of the Herbrand universe of a program. Also,
such an instaniiation is called Herbrand instantfation of
a clause (resp. program).

An inferpretation I of a program is 2 function such
that J : Hg — VII where Hp is the Herbrand base of
the program. (Throughout of this paper, Iy denotes the
Herbrand base of a program.)

A formula is defined as usual; (i) any literal L or =L
iz a formula, (i) for any literal L, notl and noi—L are
formulas, and (iii) for any formula F and G, ¥F, 3F,
Fv@, FAG and F «— (7 are all formulas. A formula
is closed if it contains no free variable. Satisfaction of a
formmla is also defined as follows.

IKL20] has alse suggested the extensibility of their logic for has-
dling defanlts by using Ginsberg's lattice-valued logic.

593

dt

Figure 2. The logie VII

Definition 2.1 Let P be a program and [be its
interpretation. Suppose [| F denotes that [satisfies a
formula F, then: .

1. For any atom 4 € Hp,

(a) TE At ZI(A),

(b) I E==Ailf <I(A4),

(c) I EnotAif df < I{A) = =,
(d) I | not=A if dt < J(A) < =

2. For any closed formmla 3F (resp. ¥F), I = 3F (resp.

I YF)if I = F' for some (resp. every) Herbrand
instantiation F' of F.

3. For closed formulas F and G,

(a) IEFVGiIEFoallEG,
(b) IEFAGHI|EFand TG,
() IEF—GifI=FolfkG O

The ordering < on truth values is also defined be-
tween interpretations. For interpretations I and [,
I £ L itVA € Hg, [,(A) < L(A). An interpreta-
tion T is called minimal, if there is no interpretation J
such that J £ [and J < J. An interpretation [is also
called least, if I < J for every interpretation J.

An interpretation [is called a medel of a program
if every clause in a program is satisfied in . Note that
in eur logie, the notion of model is also defined for an
inconsistent set of formulas. For example, a program
{p,—p} has a model I such that [(p) = T. Especially,
an interpretation I of a program is called consisfent if
for every atom A in Mg, J(A)# T. A program is called
consistent if it has a consistent model.

594

2.2 Extended Well-Founded Semantica

The well-founded semantics is known as one of the
most powerful semantics which is defined for every gen-
eral logic program [VRS88, Pr89]. The well-founded se-
mantics has also extended to programs with classical
negation in [Pro0], however, it is not well-defined for in-
consistent programs in which inconsistent models are afl
thrown away. In this section, we reformulate the well-
founded semantics for possibly inconsistent logic pro-
grams.

To compute the well-founded model, we first present
an interpretation of a program by a pair of sets of ground
literals.

Definition 2.2 For a program P, a pair of sets of
ground literals [=< o, § > presents an interpretation of
F in which each literal in [is interpreted as follows:

For a positive literal L,

(i) i L (resp. =L)isin o, L is true (resp. false) in T,

(i) else if L (resp. =L) is in &, L is false by default

(resp. true by defauli) in T,

(iii) otherwise, neither L nor =L is in & nor §, L is

undefined.

Especially, if both £ and L are in o (resp. §), L is
contradictory (resp. don't-care by defaulf)in 7. 0O

Intuitively, & presents proven facts while § presents
default facts, and an interpretation of a fact is defined
by the least upper bound of its truth values in the pair.

Heow we extend the constructive definition of the well-
founded semantics for general logic programs [Pr89] to
paraconsistent logie programs.

Definition 2.3 Let P be a program and [=< ;6 =
be an interpretation of P. For sets T and F of ground
literals, the mapping ®; and T; are defined as follows:

$y(T) = {A | there is a ground clanse 4 «— By A... A
B, AnotCy A A netC, from P st ¥B; (1 <i<m)
B, €oUT and YC; (1< j <n) C; €6},

¥i(F}) = {A | for every ground clause 4 ~— By A... A
By, AnotCy A ... AnaiCy, from P, either 3B; (1 < i < m)
st. BESUFor3C;(1<j<n)st. Cj€v}. O

Definition 2.4 Let I be an interpretation. Then,

T;10=0 and F;|0= HgU~Hg (where ~Hp =
{~A| A€ Hp});

Trin+l=@(T Trn) and Fyln+1=0(F |
nk;

Ir=UpeTrtn and Fr={lae Frln O

As in [P189), Ty and F; are the least fixpoints of the
menolonic operators $; and ¥, respectively.

Definition 2.5 For every interpretation J, an oper-
ator @ is defined by:

a(l) = U < Ty; Fr >;

TTo=<i;d>;

I'fn+1=0(I1n)
Mp=lUpeu I' T 1. =
Lemma 2.1 Mp is the least fixpoint of the monotonic

' operator © and also a model of P. O

By definition, Mp is uniquely defined for every para-
consistent logic program. We call such an AMp the er
tended well- founded model of a program and the meaning
of a program represented by such a model is called the
extended well-founded semantics of a program.

Nate that the original fixpoint definition of the well-
founded semantics in [Pr89] is three-valued and defined
for general logic programs, while our extended well-
founded semantics is seven-valued and defined for ex-
tended logic programs. Compared with the three-valued
well-founded semantics, the extended well-founded se-
mantics handles positive and negative literals symmet-
rically during the computation of the fixpoint. Further,
the extended well-founded model is the least fixpoint of
a program under the ordering <, while the three-valued
well-founded model is the least fixpoint with respect to
l..h: ordering f < L < t, which is basically different from
it

Example 2.1 (barber’s paradox) Consider the fol-
lowing program:

shave(b, X) — not shave(X, X)

Then shave(b, b) is
undefined under the three-valued well-founded seman-
tics, while Mp =< @; {=shave(b,b}} > then shave(b,b)
is true by default under the extended well-founded se-
mantics. In another words, the extended well-founded
semantics assumes the fact 'the barber shaves himself*
without conflicting the sentence in the program. O

Also it should be noted that the extended well-
founded model is the least fixpoint of a program, but not
necessarily the least model of the program in general.

Example 2.2 Let P = {-p « nolp, =g «~
~p, ¢ +~}. Then Mp =< {-p,q,~¢};{p} > and the
truth value of each predicate is {p — f,q — T}. While,
the least model assigns truth values such as {p — L, g —
t}. O

In fact, the above least model is not the fixpaint of
the program. In this sense, our extended well-founded se-
mantics is different from the least fixpoint model seman-
tics of [BS8T7] (even for a program without nonmeonetenie
negation). The difference is due to the fact that in their
least fixpoint model semaniics each fact which cannot be
proved in a program is assumed to be undefined, while
it possibly has a default value under the extended well-

This point is also remarked in [Pr8S, Pr80). In terms of the
bilattice valued logic [GiB8, Fig1), the ordering < Is called a fruth
ordering, while the ordering = in called o knowledge erdering.

founded semantics. The above example also suggests the
fact that for a consistent program P, Mp is not always
consistent.

The extended well-founded semantics is also different
from Fitting’s bilattice-valued semantics [Fi89, Fiol].

Example 2.3 Let P = {p = q, p +~ =g, ¢ —
}. Then, as is pointed out in [Su90], p is un=xpectedly
contradictory under Fitting's semantics, while Mp =<
{p.q}; {-p, ¢} > then both p and g are true under the
extended well-founded semantics. O

MNow we examine the behavior of the extended well-
founded semantics more carefully in the presence of an
inconsistent information,

Example 2.4 Let P be the following program:
innocent «— —~wuilty
—guilty — charged A not guilly
charged —

Then Mp is < {charged, innocent, ~guilty};
{guilty, =innocent, =charged} >, Then the truth values
of charged and innocent are true, while guilty is false.
0

In the above example, when we consider the program
Pt = PU{~innocent +}, the truth value of innocent
turns contradictory, while truth values of charged and
quilly are unchanged. That is, & meaningful information
is still available from the inconsistent program.

On the ether hand, when we consider the program
P" = P U {~charged +—, man +}, the truth value of
charged is now contradictory, while man, innecent are
true and guilty is false. Carefully observing this result,
however, the truth of innocent is now less credible than
the truth of man, since innocent is derived from the fact
—guilty which is now supported by the inconsistent fact
charged in the program.

Such a situation also happens in Blair and Subrah-
manian’s fixpoint semantics [BS&7)], in which a truth fact
is not distinguished even if it is supported by an incon-
sistent fact in a program. In the next section, we refine
the extended well-founded semaniics to distinguish such
suspicious truth facts from others,

2.3 Reasoning with Inconsistency

When a program coniains an inconsistent informa-
tion, it is important to detect a fact affected by such an
information and distingnish it from other meaningful in-
formation in a program. In this section, we present such
skeptical reasening under the extended weil-founded se-
mantics.

First we introduce one addilional notatien. For a
program P and each literal L from Hp, LT is called a
sufficed literal where [is a collection of sets of ground
literals (possibly preceded by not). Informally speaking,

595

each element in T' presents a set of facts which are used
to derive L in P (it is defined more precisely below). An
interpretation of such a suffixed literal ITis supposed to
be the same with the interpretation of L.

Definition 2.6 Let P be a program and [=< ;6 >
be an interpretation in which o (resp. 4) is a set of
suffixed literals (resp. a sei of ground literals). For a set
T {resp. F} of suffixed literals (resp. ground literals),
the mapping 7 and ¥} are defined as follows:

$3(T}) = { A" | there are & ground clauses 4 «— By A
...hﬁhﬁmﬂuﬁ---ﬁﬂﬂilﬂm [] ‘-'_: EE -*:} fmm FPat. ‘#’B‘h
(1<i<m)BliecUTand¥C;; (1<j<n)C, €8
and I' = U{{ B, .., B, notCyy, .., not O F Uy UL Uy |
i € T}

${F) = {A| for every ground clause A «— By A A
B AnobCy A AnetCy from Py either 38; (1 < ¢ < m)
st. B;€fUFor3C;(1<j<n)st G’ €g}. D

The least fixpoint Mp of a program is similarly de-
fined by using the mapping &} and ¥ instead of $; and
Wy, respectively in the previous section. Clearly, M} is
also a model of P and we call such M} the suspicious
well-founded model

Example 2.5 Lei P =

“r, g = & ar = a8 =}

{p — gAnotr, p —
Then, M =<
{F{h ot v) -]} I-:]-{IJ]]- _,f-{!]- {l}} {=p, ~q, 7, s} =,
a

Definition 2.7 Let P be a program and M§ be ils
suspicious well-founded model. For a suffixed literal LT
in Mz, il every set in [contains a literal L' or —L' such
that L' is contradictory in M3, L is called suspicious.
]

We consider a proven fact to be suspicious if every
proof of the fact includes an inconsistent information. In
another words, if there is at least one proof of a fact which
contains no inconsistent information, we do not consider
such a fact to be suspicicus. A proven fact which is not
suspicious is called sure.

Note that we do not consider any fact derived from
true and [alse by default information Lo be suspicious,
since such & don't-care information just presents that
both positive and negative facts are failed to prove in a2
program and does not present any inconsistency by itself.

The following lemma presents thal a fact which is
derived using & suspicious fact is also suspicious.

Lemma 2.2 Let P be a program and LT be a suffixed
literal in A%, If each set in I contains a suspicious fact,
then the truth value of L is also suspicions,

Proof Suppose that each set 4 in [contains a suspi-
cicus fact A. Then A has its own derivation histories T
such that each +' in I contains a literal which is contra-
dictory in Mi. By definition, 4 C - then « also contains

596

the contradictory literal. O

Neow reasoning under the suspreious well-founded se-

mantics is defined as follows.

Definition 2.8 Let P be a program and M} be its
suspicious well-founded model. Then, for each atom 4
such that AT (resp. —A") is in M3, A is called true
with suspect (resp. false with suspect) if A (resp. =A) is
suspicious and —A (resp. A) is not sure in M3,

On the contrary, if A (resp. —A) is suspicious but
=4 (resp. A) is sure in M}, then A is false (resp. troe)
in M} without suspect. O

Especially, if A is both true and false with suspect,
A is contradictory with suspect.

Example 2.6 Let P be the following program:
innocend «— sguilty
—guilly — charged A nod quilty
charged —
=charged —
an +—

where M3 is < {charged®, ~charged!®, man®,

inmm{{—-nﬂh.ﬂﬂrgzd.ml nuifl.]-}, ﬂguﬂty{{"’“’”‘d"“ gui'lt;p}l}i

{guiliy, ~innocent, —=man} >. Then, man is true,
charged is contradictory, while innocent and guilly are
true with suspect and false with suspect, respectively.
)

In the above example, if a new fact guilly is added
to P, this fact now holds for sure then guiliy becomes
true without suspect.

2.4 Related Work

Alternative approaches fo paraconsistent logic pro-
gramming based upon the stable model semantics [GL&S]
are recently propesed in [PR91, (G592a). These ap-
proaches have improved the result of [GL90] in the sense
that stable models are well-defined in inconsistent pro-
grams. However, these semantics still inherit the prob-
lem of the stable model semantics and there exists a
program which has no stable model and wet it con-
tains a meaningful information. For example, a program
{p+~, g+ not g} has no stable model, while it has an
(extended) well-founded model in which p is true. Wag-
ner [Wa91] has also introduced a logic for possibly incon-
sistent logic programs with two kinds of negation. His
logic is paraconsistent and not destructive in the presence
of an inconsistent information, but it is still restricted
and different from our lattice valued logic.

Several studies have also been done from the stand-
point of confradiction removal in extended logie pro-
grams. Kowalsli and Sadri [K590] have extended the
answer sel semantics of [GL90] in an inconsistent pro-
gram by giving higher priorities to negative conclusions

in a program. This solution is rather ad-hoc and also
easily simulated in our framework by giving higher prior-
ities to negative facts in a program. Another approaches
such as [PAA91] and [DR91] consider removing contra-
diction brought about by default assumptions. For in-
stance, consider a program {p +— notg, -p — r, r}.
This program has an inconsistent well-founded model,
however, it often seems legal to prefer the fact —p to
p, since p is derived by the defanlt assumption not g,
while its negative counterpart —p is derived by the
proven fact . Then they present program transforma-
tions for taking back such a default assumption to gen-
erate a consistent well-founded model. In our frame-
work, such a distinction is also achieved as follows, Con-
sider a suspicious well-founded model of the program
< {plinet 4t pllel} (8} 49 g =r} > where a fact p
has a default fact in its derivation history while =p does
not, then we can prefer the fact —p as a more reliable
one. These approaches [PAA91, DRI1] further discuss
contradiction removal in the context of belief revision or
abductive framework, but from the point of view of para-
consistent logic programming, they provide no solution
for an inconsistent program such as {p, —p,g}. Ancther
approaches-in this direction -are-[In81, GS92b]-in which
the meaning of an inconsistent program is assumed to
be a collection of maximally consistent subseis of the

Program.

3 Extension to Disjunctive Programs

The semantics of logic programs is recently extended
to disjunctive logic programs which contain incomplete
information in a program. The well-founded sernantics
is also extended io disjunctive logic programs by several
authors [Ro8d, BLM90, Pro0]. In paraconsistent logic
programming, [Sud0] has also extended the fixpoint se-
mantics of [BS87) to paraconsistent disjunctive logic pro-
grams. In this section, we present the extended well-
founded semantics for paraconsistent disjunctive logic
programs.

A disjunctive program is a (possibly infinite) set of
the clauses of the form:

AV VA — By A A B AnstCy A o A nolCy

where [> 0, m,n > 0, each A;, B; and C; are lit-
erals and all the variables are assumed to be universally
quantified at the fromt of the clause. The notion of a
ground clause {program) is also defined in the same way
as in the previous section. Hereafier, we use the term
normal program to distinguish a program which contains
no disjunctive clause.

As in [SaB8], we consider the meaning of a disjunctive
program by a set of its split programs.

Definition 3.1 Let P be a disjunctive program and

G be a ground clause from P of the form:

A3V oV Ay # By A . A B A 1otCy A ... A natCy
(tz2)

Then G is splif into 2 — 1 sets of clanses Gy, .., Ga_,y
such that for each non-empty subset S; of {A;, ., 4 };

G ={A; — BiA..ABaAnotCi A AnotC, | A; €
S.'}..

A split program of P is a ground normal program
which is obtained from P by replacing each disjunctive
clause 7 with its split clanses G;. O

Example 3.1 Let P = {pV =g + notr, 5 «—
p, & + —g}. Then there are three split programs of
F;
Po={p+—mnotr, s+p, se=-g}
PB={-g+nolr, s+p, 8 — =g},
Po={pe—mnotr, sq+—notr, s+~ p, s+ g}
(I}

Intuitively, each split program presents a possible
world of the original program in which each disjunction
is interpreted in either exclusive or inclusive way. The
following lemma holds from the definition.

Lemma 3.1 Lel P be a disjunctive program and F
be its split program. H I is a model of B, T is also a
model of . O

The extended well-founded models of a disjunctive
program are defined by those of its splil programs.

Definition 3.2 Let P be a disjunciive program.
Then Mp is called the extended well-founded model of P
if Mp is the extended well-founded model of some split
programof P, O

Clealy, the above definition reduces to the extended
well-founded model of a normal program in the absence
of disjunciive clauses in a program.

A disjunctive program has multiple extended well-
founded models in general and each atem possibly has
different truth value in each model. In classical twe-
valued logic programming, & ground atom is usually as-
siwmed to be true (resp. false) if it is true (resp. false) in
every minimal model of a program. In our multi-valued
setting, we define an interpretation of an atom under the
extended well-founded semantics as follows.

Definition 3.3 Let P be a disjunctive program,
M}, ., M} be its extended well-founded models and
Mu(A)(i = 1,..,n) be the truth value of an atom A in
M. Then an atom A in P has a truth value y under
the extended well-founded semantics if M3(A) = ... =
Mi(A)=p. D

Example 3.2 For the program P in example
3.1, there are three extended well-founded models
such that ML =< {[ps}:{=p.q,~g,r,—r s} >,

597

M} =< {-gs}i{p,~pq,r,or, s} > and M} =<
{p,~q,8}; {-p,q,r,—r,—s} >. Then 5 is true and r
is don't-care by default in P under the extended well-
founded semantics, while truth values of p and ¢ are not
uniquely determined. O

When a program has inconsistent models as well as
consistent ones, however, it seems natural to prefer con-
sistent models and consider trath values in such models.

Example 3.3 Let P = {p —, —pV g —}. Then
the extended well-founded models of P are M} =<
{p,—pki{a,~q} > M} =< {p.g}i{-p,~g} > and
M} =< {p,=p,9}; {~g} > where only M} is consistent.
O

In the above example, a rational reasoner seems to
prefer the consistent model M3 to M} and M3, and
interprets both p and ¢ to be true. The extended well-
founded semantics for such a reasoner is defined bellow.

Definition 3.4 Let P be a disjunetive program such
that M3, .., M} (n 2 0) are its consislent extended well-
founded models. Then an atom A in P has a truth valne
i under the rafional extended well-founded semantics if
M}_‘r{.ﬂl:l =..=MiA)=p O

Lemma 3.2 Let P be a disjunctive program such
that it has at least one consistent extended well-founded
model. If an atom A has a truth value g under the
extended well-founded semantics, then A has also the
truth value g under the rational extended well-founded
semantics, but not vice versa. O

The suspicious well-founded semantics presented in
section 2.3 is also extensible to disjuonciive programs in
a similar way.

4 Concluding Remarks

In this paper, we have presented the extended well-
founded semantics for paraconsistent logic programs.
Under the extended well-founded semantics, a contra-
dictory information is localized and a meaningful in-
formation is still available in an inconsistent program.
Moreover, a suspicious fact which is affected by an in-
consistent information can be distinguished from others
by the skeptical well-founded reasoning. The extended
well-founded semantics proposed in this paper is a natu-
ral extension of the three-valued well-founded semantics
and it is well-defined for every possibly inconsistent ex-
tended logic program. Compared with other paraconsis-
tent logics, it can treat both classical and defaull nega-
tion in & uniform way and aleo simply be extended to
disjunctive paraconsistent logic programs.

This paper has centered on a declarative semantics

598

of paraconsistent logic programs, but a proof proce-
dure of the extended well-founded semantics is achieved
in a straightforward way as an extension of the SLS-
procedure [Pr88]. That is, each fact which is true/false in
a program have a successful SL5-derivation in a program,
while a default fact in a program has a failed derivation.
A fact which is inconsistent in a program has a successful
derivation from its positive and negative goals. The proof
procedure for the suspicious well-founded semantics is
also achieved by checking consistency of each literal ap-
pearing in a successfol derivation. These procedures are
sound and complete with respect to the extended well-
founded semantics and also computationally feasible.

Acknowledgments I would like to thank V. S.
Subrahmanian and John Grant for useful correspondence
on the subject of this paper,

References

[Be75] Belnap, N. D., A Useful Four-Valued Logic, in
Medern Uses of Multiple- Valued Logic, 1. M. Dunn
and G. Epstein (eds.), Reidel Publishing, 8-37, 1975.

[BLM30] Baral, C., Lebo, J. and Minker, J., General-
ized Disjunctive Well-Founded Semantics for Logic
Programs, CS-TR-2436, Univ. of Maryland, 1990

[BS87) Blair, H. A. and Subrahmanian, V. S., Para-
consistent Logic Programming, Proc. Conf. on
Foundations of Software Technology and Theoreti-
cal Computer Science [LNCS 287), 340-360, 1987,

[CoTd] Costa, N. C. A. da, On the Theory of Inconsistent

Formal Systems, Noére Dame J. of Formal Logie 185,
-'19?—511]1 1974.

[DR31] Dung, P. M. and Ruamviboonsuk, P., Well-
Founded Heasoning with Classical Negation, Proc.
et Int. Workshop on Lagic Programming and Non-
meonotonic Reagoning, 120-132, 1991,

(Fig9) Fitting, M., Negation as Refutalion, Proc. jth
Annual Symp. on Logic in Compuler Science, 63-
69, 1988,

[Fi91] Fitting, M., Bilattices and the Semantics of Logic
Programming, J. of Logic Programming 11, 91-116,
1991,

[Gig6] Ginsberg, M. L., Multivalued Logics, Proe. of
AAAI'S5, 243247, 1986.

[GL38] Gelfond, M. and Lifschitz, V., The Stable Madel
Semantics for Logic Programming, Proe. 5th Int.
Conf. on Logic Programming, 1070-1080, 1988.

[GL90] Gelfond, M. and Lifschitz, V., Logic Programs
with Classical Negation, Proc. 7th Int. Conf on
Logic Programming, 579-597, 1990.

[GS92a] Grant, J. and Subrahmanian, V. 8., Reasoning
in Inconsistent Knowledge Bases, draft manuscript,
1952,

[GS92b] Grant, J. and Subrahmanian, V. S., The Op-
timistic and Cautious Semantics for Inconsistent
Knowledge Bases, draft manuscript, 1992,

[In91] Inoue, K., Extended Logic Programs with Default
Assumptions, Proe. 8th Int. Conf. on Logic Pro-
gramming, 490-504, 1991,

[KL89] Kifer, M. and Lozinskii, E. L., RI: A Logic for
Reasoning with Inconsistency, Proc. fth Annual-
Symp. on Logic in Computer Science, 253-262,
1989,

[KS90] Kowalski, R. A. and Sadri, F., Logic Programs
with Exception, Proc. Tth Int. Conf. on Logic Pro-
gramming, 598-613, 1990,

[PAA91] Pereira, L. M., Alferes, J. J. and Aparicio,
K., Contradiction Removal within Well-Founded Se-
mantics, Proc. fsl Int. Workshop on Logic Pro-
gramming and Nonmonotonic Rensoming, 105-119,
1991,

[Pré9] Przymusinski, T. C., Every Logic Program has a
Natural Stratification and an Iterated Least Fixed
Point Model, Proc. 8th ACM Symp. on Principle
of Database Sysfems, 11-21, 1989,

[Pr90] Przymusinski, T. C., Extended Stable Semantics
for Normal and Disjunctive Logic Programs, Proc.
Tth Int. Conf. on Logic Programming, 459-477,
1990,)

[FR91] Pimentel, 5. G. and Rodi, W. L., Belief Revi-
sion and Paraconsistency in a Logic Programming
Framework, Proc. Ist Inf. Workshop en Logic Pro-
gramming and Nonmonotenic Reasoning, 228-242,
1981,

[Ro89] Ress, K., The Well-Founded Semantics for Dis-
junctive Logic Programs, Proc. Ist Int. Conf. on
Deductive and Object Oriented Databases, 352-369,
1989.

[SaBY] Sakama, C., Possible Model Semantics for Dis-
junctive Dalabases, Proc. 1st Int. Conf. on Deduc-
tive and Object Oriented Datobases, 337-351, 1989,

[5u90] Subrahmanian, V. S., Paraconsistent Disjunctive
Deductive Databases, Proc. 20th Int. Symp. on
Multiple-valued Logic, 339-345, 1990.

[5u90] Subrahmanian, V. 8., Y-Logic: A Framework for
Reasoning abeut Chameleonic Programs with In-
consistent Completions, Fundaments Informaticae
XITT, 465-483, 1990,

399

[VRS88]) Van Gelder, A., Ross, K. and Schlipd, J. 5., Un-
founded Sets and Well-Founded Semantics for Gen-
eral Logic Programs, Proc. 7th ACM Symp. on
Principle of Database Systemns, 221-230, 1988,

[Wa91] Wagner, G., A Database Needs Two kinds of
Negation, Proc. Srd Symp. on Mathematical Funda-
mentals of Database and Knowledge Base Systems
(LNCS 495), 357-371, 1991.

