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Abstract

We present a simple and powerful generalized alge-
braic semantics for constraint logic programs that is
parameterized with respect to the underlying con-
straint system. “Generalized semantics” abstract
away from standard semantics objects, by foeus-
ing on the general properties of any (possibly non-
standard) semantics definition. In constraint logic
programming, this corresponds to & suitable defi-
nition of the constraint system supporting the se-
mantics definition. An algebraic structure is in-
troduced to formalize the constraint system notion,
thus making applicable classical mathematical re-
sults and both a t.op-{ln-v."rl arnil h-utf.{ml-ull ECITIANL-
tics are considered. Non-standard semanties for CLP
can then be formally specified by means of the same
technigques used to define standard semantics. Dhffer-
ent non-standard semantics for constraint logic lan-
guages can be specified in this framework: eg. ab-
stract interpretation, machine level traces and any
computation based on an instance of the constraint
system.

1 Inmtroduction

Constraint logic programming (CLP) is a generaliza-
tion of the pure logic programming paradigim, hav-
ing sunilar model-theoretic, fixpoint and operationsl
semantics [Jaffar and Lassaz 87]. Since the basic op-
erational step in program execution is a test for solv-
ability of constraints in a given algelraic structure,
CLP has in addition an algebraic semantics. CLP
is then a general paradigim which may be instan-
tiated on various semantic domains, thus achieving
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a good expressive power. One relevant feature is
the distinction between testing for solvability and
computing a solution of a given constraint formula.
In the logic programming case, this corresponds to
the unification process, which tests for solvability by
computing a solution (2 set of equations in solved
form or most general wnifier). In CLP, the com-
putation of a solution of a constraint is left to a
constraint solver, which does not affect the seman
tic definition of the language. This allows different
computational domains, e.g. real arithmetie, to be
considered without requiring complicated encodings
of data objects as first order terms. Since the fun-
damental linguistic aspects of CLP can be sepavated
from the details specific to particular constraint sys-
tems, it seems natural to parameterize the seman-
tics of CLP languages with respect to the underiy-
ing constraint system [Saraswat ef al. 91}, We re-
fer to such a semantics as gencralized semantics, It
burns out that generalized semantics provide a pow-
erful tool for dealing with a variety of applications
relating to the semantics of CLP programs. For ex-
ample, by considering a domain of “abstract con-
straints” instead of the “concrete constraints™ that
are actually manipulated duving program execution,
we abtain for free a formal treatment of abstract in-
terpretation of CLP programs: this provides a foun-
dation for datafiow analysis and program manipula-
tion of CLP programs. In this paper we address the
problem of defining a generalized semantics for con-
straint logic programs. This can also be the base to
specily non-standarcd semantics for other logic-based
languages (c.g. in [Burhuti-ei! iad. 92] Prolog contral
features are expressed in terms of a constraint logic
language). The algebraic approach we take to con-
straint interpretation makes it easy to identify a suit-
able set of operators, which can be instantiated in
different ways to obtain the definition of different
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non-standard semantics. An interesting aspect of
such & development is that non-standard interpre-
tations such as abstract interpretations can be de-
veloped entirely within an algebraie framework: for
example, the notion of “abstraction” can be char-
acterized simply via additional axioms that specify
which terms are to be considered “equal”™ under the
abstract interpretation, and relationships between
different abstract interpretations can be character-
ized in terms of homomorphisms between the corre-
sponding algebras,

In this paper, two kinds of generalized seman-
tics top-down and bottom-up, are considered. Since
computations are always performed in the algebra
of constraints, the two approaches represent just
two ways to perform possibly non-standard compu-
tations. The reader is assumed to be acquainted
with the basic notions of latfice theory and soried
algebras. Full proofs, not included due to space him-
itations, are present in the full version of this paper.

2 Constraint Algebras

As defined in [Jaffar and Lassez 87), the semantics
of constraints is given in- terms-of an algebraic strue-
ture which interprets constraint formulas, while the
sermnantics of a constraint logie program is given in
terms of the well known fixpoint, model-theoretic
and operational characterizations. In this section we
introduce an incremental algebraic specification for
constraint systems.

2.1 Term Systems

In the following we introduce the notion of term sys-
tem as an algebra of terms provided with a binary op-
erator which realizes substitutions [Cirulis 88]. We
are interested in term systems where every term de-
pends only on a finite number of variables!. They
represent the first basic definition in the semantics
construction.

Definition 2.1 A term system T is an algebraic
structure (7,5, V) where we refer to the elements
of T as T-terms (ferms in short); V is a countable
seb of T-vartables (vartables, for short) in T3 Sy is a
countable set of binary operations on T, indexed by
V; and the following conditions hold, for all 2,y € V
and i, & T:

Ty. s.(t,z) =1,
To s (ty) =y, if vy,
Ts. so(t, (1, ")) = sa(y,t') if 2 £y,

LA more gemeral definition that considers sets of arhitrary
cardinalities is given in [Ciralis 88]: for our purposes, it suffices
Lo consider denurmnerable sets.

{identityy )
{annihilation)

{renarming)

Ty st 5,00 t)) = s (st ") 8) if =2 #£ y and
y ind t' (independent composition)

where a T-term t 15 independent on the T-variable
x, denoted as “z ind 8" if s (1',4) = t for every
t' € T. We say that a variable v eccurs e a term ¢
if =z ind ). 1

Intuitively, s:(t,#') denctes the operation “sub-
stitute ¢ for every occurrence of the variable =z
in #." For notational convenience, we denote
s:(t,#') as [¢/]¢". This notation can be extended
to substitutions on multiple variables, by writing
By (t1y By (F2s - -8, (e t)---)) @5 [Bf2 -.- ffz ]t
Example 2.1 Let £ be a denumerable collection of
function symbols. We denote by (I, V) the set
(:If Imﬁi})l}" n(]n-sl'ﬂu]’lf]. termns dﬂﬁ_ﬂed o1 E. Th&
standard term system Tz vy = (7(Z,V),5ub, V) isa
term system provided that substitutions in Sub per-
form idempotent substitutions. In this case » ind i
iff the variable v does not occcur in £, o

Let TI be & finite collection of predicate symbols.
A (T, ,O)-atom has the form p(iy, ..., 8 ) where p € I1
and t; € T, ¥i = 1,...,n. We denote by W,\W; the
set W where the elements in W5 have been removed.
The powerset of a set 5 is dencted by 2%, and any tu-
ple of syntactic objects (terms, atoms, eic.) o,..., 00
is denoted by {0y, ..., 04).

2.2  An Algebraic Framework

We give now & formal algebraic specification for the
language of constraints on a given term system,

Definition 2.2 A Closed Semiring [Abo et ol 74]
is an algebraic structure (C,@,®,1,0), such that:
(1} (C, &, 0) is a (join- Jidempotent and commutative
monaid; {2) (C,®, 1} is a {meet-)monoid; (3) 0 is an
annibilator for &; (4) if ay,..., ap, . 15 & countable
sequence of elements in C, ay @ ay @B ... B a, B.. exists
and is unigue; {5) associativity, commutativity and
idempotence of @ apply to infinite as well as finite
joins; and (6) & distributes over finite and counahly
infinite joins. ¥

Example 2.2 [[Aho et el T4

Let Ax = (Rt 4+, min,0, +o0) where BT is the
set of non-negative reals including +oo, and A =
(E% U, {e},#) where I is the family of sets of
finite-length strings of symbols from the finite alpha-
bet T {including the empty string ¢) and - denotes
concatenation. Both Ay and Ag are closed semir-
ings. Notice that in Ag - is not commutative. n}



Any semantics definition supports the notion of
ebservable behaviowr for & given program. Modelling
answer constraints in constraint logic programming
corresponds to consider answer constraints as the
observable property for any CLP program. Thus,
the notion of solution for a given answer constraint

has to be restricted (projected) to the variables of -

the corresponding query (output variables). Closed
semirings are too weak to capture the notion of vari-
able projection. We handle this notion by means
of a family of *hiding” operators on the underly-
ing algebra, as in [Saraswat et ol 91). Cylindric al-
gebras [Henkin et al. 83] provide a suitable frame-
work to enhance our algebraic structures, A cylin-
dric algebra is formed by enhancing a Boolean alge-
bra by means of a family of unary operations called
cylindrifications. The intuition here is thal given
a constraint ¢, the cylindrification operation Js(c)
yields the constraint obtained by “projecting out”
information about the variables in § from ¢. They
are necessary here because when we solve a goal in
a constraint logic program, we are interested only
in constraints on the variables that appear in that
goal: thus, any additional constraints that may have
been imposed on other variables during the course
of the computations should be projected away in the
representation of the final answer constraint. This
is accomplished uwsing cylindrification. Technically,
cylindric algebras allow us to make projections on
finite sets of variables. However, since our semantic
formulation iz in terms of infinite unfolding, as dis-
cussed later in the paper, it may also be necessary
to allow projections on infinite sets. The machinery
of cylindric algebras is not quite adequate for this,
but the problem can be handled using polyedie alye-
bras [Henkin et al. 83], which allow possibly count-
ably many cylindrifications,

Diagonal elements [Henkin et al 83] are con-
sidered as a way to provide parameter passing
[Saraswat et al. 91). In constraint logic program-
ming the equality symbol “=" is assumed in any
constraint system to provide term unification. How-
ever, cylindric algebras were introduced to provide
an algebraic formalization~of first-order-logic, actu-
ally oriented to first-order-languages without opera-
tion symbols; thus ignoring all terms but variables.
This framework is not adeguate to provide an alge-
braic semantic framework for constraint logic pro-
grams. We extend diagonal elements to deal with
generic terms, following the approach in [Cirulis 88].
Disgonal elements represent equations on a given
term system 7. This approach results in introdue-
ing “term-unification™ (i.e. equations on terms) as
distinguished elements in the algebra.
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Definition 2.3 A eyplindric closed semiring is an
algebraic structure (O, @, @, 1,0, 34, dep)acvver
where C is a sel called the universe of semiring, V'
is & countable set of variables, T is a term system;
0,1, dy o are distinct elements of C, for each 1,8 € T,
{dal}acy are unary operations on C; @, @ are binary
operations on C; such that the following postulates
are satisfied forany e, FEC; A, T C Vand i ' € T

5. the structure (C, ®,&,1,0) is a closed semiring,

Cy. 340 =0,

Oy e@Ipe=Jae,

5. Jalc @ Jac) = Jae ® Fad',

Ca. Jadec = Jjauwe,

5. Ja distributes over finite and countably infinite
joins,

Dy, diy=1,

Dy dyp = Apy(d - @ ds ) where x ind 8, ¥,

Dy, Aofefaler = HH}I::IEJ- @ de), where z # & oand
a ind ¥, 2 tnd &

Notice that Axiom Dy relates the notion of substi-
tution in the term system T with diagonal elements
of C (which intuitively correspond to the notion of
equality constraints) in the expected way.

The notions of “independence™ and “oecurrence”
of variables extends in the obvious way from terms
in T to constraints in €. Let {zy,...,2,} TV, in the
following we will denote 3,.rey/iz,...x.}¢ 1.2 hiding
from all the variables in ¢ except {ay,...,7,}, a8s
El[c}{,.h___r“}. We also denote as d-{t:,.-..tu},{!',,..-.l.’.:l the
element d,, “ @ .. @ dy, e, where Il,.._,tmi‘l, S =
T. Any closed semiring can be extended to a cylin-
dric elosed semiring by letting d,» = 1 for each
£, €T and Jaec = e for each ¢ € C and A C 4.
Following [Henkin et al. 83] we refer to them ns dis-
crele cylindric closed semirings.

In the general theory of eylindric algebras, the
commutative and transitive properties of diagonal el-
cments [”I-ﬂ- dn,:' — dt',:’ and fdi.z‘@d:'.l"}'@du" = dt.:“‘}
are derived by the axioms. Because of the wealkness
of cylindric closed semirings, these properties ave not
derivable from the axioms. However they are not re-
quired in proving the semantic results given helow,
They can be added to provide the theory of equality.

(Given a closed semiring, we can induce a partial
ordering relation Cg on C, such that ¢ Cg e iff
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€1 ¢z = 3. As a consequence, {C, Cg) is a complete

lattice.
2.3 Constraint Systems

In this section we formalize the notion of constreini
system, based on the above algebraic frameworl.

Definition 2.4 A constraint inferpretation struc-
ture is any cylindric closed semiring. Given a con-
straint interpretation structure A4 with universe C,
an A-constraint {constraind for short) is any element

int. n

Idempotence, associativity and commutativity are
the least set of properties [Barbuti et al. 81 ,Debray
and Ramakrishnan 91] which allow @ to model the
set union operation. ® corresponds to the constraint
conjunction and plays the important role of collect-
"lng the infrrmatinn i‘lnlr"‘l'rlE the ronmmbafinn Mia-
tributivity allows to represent constraints as possi-
bly infinite joins of finite meets (also called simple
constraints). Closure on {possibly infinite} count-
able elements in € allows to denote infinite joins of
constraints.

Example 2.3 Let us assume that II = [Ie UTlp and
Iz N Hp = B. We refer to Agn, as the free alge-
bre of formules in the sorted vocabulary (5, E g )
where 5 (sort) is a set of symbols, £ a specified set of
operations with a corresponding signature on § and
Il a set of predicate symbols with a signature on 5;
enhanced with the disjunction symbol Vv, the con-
junction symbol A, the existential quantifier 3, the
identity symbol =, the truth and falsehood symbels
T and F and closed under countably infinite disjune-
tions of formulas in Az ). Equations and possibly
existentially quantified [Tig sy, e J-atoms arve called
atomic constraints,

Let us consider the solution compact many sorted
algebraic structure Ryrp.; [Jaffar and Lassez 87,
defined over the many sorted alphabet (5, E IIz),
consisting of: a collection DR of non-empty sets
denoted {D‘R,]-h where s € 5; an m—:sigj’:nmnt of
a function DR, x .. x DR,, — DR, to each n-
ary function symbol f € B, where (s),...,5,,3) Is
the signature of f; an assignment of a function
DR, = ..= DR, — {true, false} to each n-ary
predicate symbol p € IIz, where (&, ..., 5.} is the
signature of p.

Let us consider a constraint ¢ in Aigqn.). R |
¢, iff there exists a mapping ¢ (the solution of the
constraint ) from each distinet free variable # in ¢ into
DR,, (free variables in a constraint ¢ are denoted
FV¥{c)) where s is the sort associated with o, and of
is R-equivalent to T (R = o).

Let ¢ = ‘I-" ¢ and o3 = "u' ¢ denote possibly

infinite dISJunctmns of mn;unchm:a of atomic con-
straints ¢f and ¢, where 1 ranges over I and I be-
ing sets of pm-bly infinite indexes. Thé equivalence
relation =x on Ajgn,) is defined as follows

ampeif U {0 RE4H=U {J[RE I}

#2p is & congruence relation on the one sorted alge-
bra [fl.{g_nc],ﬂ,‘u", T, Fdx.t = I;}-?"E'r"‘-f-*"ETEE.H}' The
standard constraint mmterpretation structure is then
given by the gquotient algebra, denoted as A4, =
{A'L.[E‘nc}.' AT F Ayt = !'}IQV'.I.I!'ETE!:.VJ-']I”R . Ibs
trivially a meet-idempotent and commutative cylin-
drie closed semiring. 0

Ewawmnls 74 [CI B T:t uz coneider the follow-

ing signature assnmated with the usnal Herbrand
universe definition, ¥ = {a,b,..., f,g,...}. Atomiec
constraints are one sorted equations on the term
system Tizy). The corresponding Herbrand in-
terpretation structure Ay, is the quotient algebra
{Cor, AV, T F 3yt = Vxgviavets v/ seg, modulo
=EQ, where Oy = 1 t = t'| t,i' e ?_[E,'Ir’! } and e
is the equivalence relation induced by the algebraic
structure interpreting diagonal elements as unifica-
tion [Jaffar and Lassez 87]. It is straightforward to
prove that this corresponds to the pure logic pro-
EraImnming case. o

To relate constraint interpretation structures, we
follow the approach to “static semantics correctness”
in [Barbuti and Martelli 83]. Correctness of non-
standard semantics specifications can be handled in
an aelgebraic way through the notion of morphism.
However, the algebraic notion of morphism can he
made less restrictive by assuming that the carriers of
the involved algebras be partially ordered sets, We
introduce a wealker notion of morphism, capturing
the approximation possibly induced by abstract in-
terpretations or any approximate semantics defined
in the framework.

Definition 2.5 Let Az and HBg be (many sorted)
algebraic structures over the sorted alphabet (5, E).
Let us assume that for each s € §, (DB,,~<pp,) isa
partially ordered =et. A weak morphism o : A — B
15 a family of functions o, : DA, — DB, for
5 € 5, such that: o.(f4) =ps, fm, for each con-
stant symbal f :—r sin E and a,( fa(ay, ...,e0)) Zpg,
fates (o), ..y os,(aa)), for each operation symhbol
Jis s, = sin D 0



Definition 2.6 Let .4 be a constraint interpretation
structure, A constraint interprefation morphism is
a weak morphism £ from (Agng, A VT F dx, i =
f}xEVHJ'ETEn,V] inA 1

Example 2.5 The standard constreint interpreta-
tion morphism £, 15 a morphism which associates
with any formula in A(gp.), the corresponding
equivalence class modulo =g, a

In general, a constraint system is an interpretation
{in a closed semiring) for constraint formulas.

Definition 2.7 A constraini system is a pair [ =
{A,e) where A is a constraint interpretation struc-
ture and ¢ is a corresponding constraint interpreta-
tion morphism. §

Similar algebraic structures for the definition
of constraint systems have been introduced in
[Saraswat et al. 91 to specify the semantics of the
more complex class of concurrenti constraint lan-
guages characterized by the ask/tell paradigm.

Constraint  systems are specified as sysiems of
pertial information in the style of Scoit's informa-
tion systems [Scott 82, (simple constramnt systema),
which are tuples (C, &, F), where C is an non-empty
sat of “primitive” constraints and FC %° x% C is an
entailment relation such that Yu,v e 2°: (1) u bk A,
{2) u b X whenever X € u and (3) if v F Y for all
Y cuandub X, then v = X, The relation b can
be extended on 2° x 2¢ as follows: Wu,v € 25, uk v
iff u X for every X € w.

Composition of constraints is defined in terms of
set-union, which is a well known commutative and
idempotent operator. Hiding and parameter passing
are handled by cylindrification {only finite-variable
cylindrifications are allowed) and diagonal elements.
The difference is then in the underlying algebraic
structure: while information systems provide an el-
egant framework to develop the (standard) seman-
tics for concurrent constraint languages, we are in-
terested in more appropriate algebraic structures to
generalize standard semantics resulis on CLP. In our
case, the constraint system is parametric with re-
spect to a given term system. This introduces a more
structured approach (two steps) to non-standard
constraint system definition (e.g. abstract interpre-
tation). As for the basic algebraic structure, the
choice of closed semirings results more natural in
the context of the present paper. We are interested
in possibly non-commutative/idempotent composi-
tions (meets) of constrainis (see Ag in Example 2.2).
Moreover (see Prop in Section 4.1 below) standard
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logical and arithmetic operators (e.g. ¥V, A, T and F')
can be specfied more naturally as an instance of a
closed semiring instead of as an instance of an infor-
mation system. Nevertheless, it is easy to associate
an information system with any @-commutative and
idempotent closed semiring. Let {C.&,&,1,0) be
a ®-commutative and idempotent closed semiring.
The corresponding information system (C, &,F) is
defined as follows A = 0 and Yu,v € 2°; u | v iff
vEg u.

The key difference is in the semantics definition.
In [Saraswat ef al. 91] the semantics of constraint
languages is specified as closures on the constraint
system, thus amalgamating the semantics construc-
tionr and data-objects. We follow the standard ap-
proach (see section below) in generalizing the stan-
dard operational and fixpeint semantics character-
izations, alreandy known in logic programming. A
more structured approach to the generalization pro-
cess can be obtained by separating the domain of
constraints with the various techniques to construct
models {e.g. fixpoints of continuous transforma-
tions) for constraint logic programs. The indepen-
dence of the semantics eonstructions from the un-
derying constraint systems focuses the generalization
process on the constraint system definition, thus sim-
plifying the specification of non-standard semantics.

Generalized constraint logic programs are defined
n the usual way. Let 4 be a constraint interpreta-
tion structure on the term system 7. An A-clause
is a formula of the form H :— ¢0OBy,..., B, with
it = 0 where H (the head) and By, ..., B, (the body)
are (T,Ilp)atoms, ¢ is an A-constraint and :—
and *" denote logic implication and conjunction
respectively. An A.geal is & formula ¢05,,..., B,
where ¢ is constraint and each B; is (T,IIp)-atom.
A (generalized) constraint logic program, also called
A-program is a finite set of A-clauses.

3 Generalized Semantics
The mechanism introduced in [Falaschi et al. 89] to

model computed answer substitutions is general-
ized in CLP, by allowing constrained atoms into
the base of interpretations {Gabbrielli and Levi 91).
Each constrained atom p{Z) :— ¢, in fact, repre-
sents the set of instances p(7)d, where & is a solulion
of the constraint c.

Definition 3.1 Let .4 be an interpretation struc-
ture. A constrained efom has the form p(z) :(— ¢
where ¢ is an A-constraint, p(Z) is a (7, Ilp)-atom
and FVic)=%. 8

Definition 3.2 Let 4 be an interpretation struc-
ture and & be the corresponding set of constrained
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atoms. We define a partial order < on 2 such that
ME) 1= ¢ = p(Fa) 1 — cg iff there exisis ' such
that 3{,-,,]{-:1;4‘5, &= C]] Ea cz. 1

The equivalence relation induced by the partial or-
der < is denoted by ~. The 4-bose of interpreigtions
‘B, is §/a.

Definition 3.3 = € 2% is the collection of sets

of constrained atoms [ such that T & Z iff

IHl = BWI = I, where W is defined as:
P{i_{:l Sl - e Lhul,
Al Iy, { P(E) : = ;6| & = 35,(dzz, ®cj) ]
: and £ ind ¢;

An A-interpretation is any element of Z. |4 is
strongly related to @. As usual we define [; C, I iff
L1l = I such that (=, C) iz a complete lattice,
Each interpretation always consists of a finite set
of constrained atoms, containing at most one con-
strained atom for each program predicate symbol:
pi%) 1= Tjew ¢ € I, where for each j € W, ¢; rep-

resents the set of admissible (i.e. computable in the

program) solutions for the predicate symbol p, on
the variables . As a consequence infinite joins of
constraints are aflowed in constrained atoms. This
is well defined by the closure of C. In the following
we will often omit A in specifying programs, goals,
ete.

3.1 Operational Semantics

Let T' = {A,g) be a constraint system and P be
an A-program. Define ~»pC A-Goals x A-Goals
fan A-derivation step) to be the smallest relation
such that G4 ~p G4 iff GA = cgOpy(f1), ..., pulf);
there exist n {renamed apart) versions of clauses in
P:pf#) :— DGy, i=1.n; Gl=@6,®..®
£,0Gy, ..., G, where for each i = 1.n, § = dz, i @y

An A-derivation from an 4-goal G# is a finite
or infinite sequence of (different) A-goals such that
every A-goal is ebtained frem the previous one by
means of a single A-derivation step. A successful
derivation is a finite sequence whose last element
has an empty body. The operational semantics is
then defined in terms of the successful computations
specified by the transitive closure of the transition
relation on A-goals:

O (P)={p(z) := T 3(c)e| 10p(F) ~p O }.

Goal dependent semantics is defined in terms of a
function § that yields the computed answer con-
straint for any A-goal, such that

G{G'A} = H(C}m-qﬂﬂ.} iff G4 ~p e,

Theorem 3.1 Let G* = ¢oOpy(fh),....pu(Fs) be &
goal. G(G*) = c iff there exist pi(F) :— o €
ONFP), fori=1,.,nandc=Ieo @ ds, 3, ® ci... @
de, in @ En Juar{cA}

3.2 Fixpoint Semantics

In this section we define a fixpoint semanties which is
proved to be equivalent to the operational semantics.

Definition 3.4 Let P be an A-program, the map-
ping T¢' : E — E, is defined as follows TA(I) = |y
QEF

T&l(n whereif C': p(t) :— cOpy I:ﬁL ey pﬁ{t_,,]l then

foreachi=1.m:
pd%): —ael 1
TE) = p(2): =N | ¢} =z, @ _
fmd:r@e®a. @..c J
Eind e, cy,..., &
]

Ty is a continuous function on the complete lat-
tice (%, Cu). Let ifp(f) denote the least fixpoint of
a function f and - FH(P) = ifp(TE) = T¢ @, The
following result states the equivalence between the
operational and the fixpoint semantics, for any con-
straint system I

Theorem 3.2 Let P be a program and I' & con-
straint system. Then F7(P) = OT(P).

4 Abstract Interpretation of CLP

The definition of an abstract constraint system is
performed in two steps: ferm absiraction and con-
straint abstraction. In the first step new syntac-
tic objects are introduced to represent sets of con-
crefe terms. In the second one, constraints on the
abstracted term system are abstracted. Since the
complete lattice of interpretations is induced by the
closed semiring structure, any abstract interpreta-
tion will correspond to a suitable definition of a con-
straint system associated with a particular applica-
tion.

Definition 4.1 Given a constraint system ' =
{4,2), a constraint system I = (A',&'), is correct
with respect to I' iff there exists a weak algebraic
maorphism e, (o, 1 A — .A’} which is a monotonic
mapping of (€,Cp) into (€', Cg'). ¥

Motice that, sinece o, 15 morotonic, it behaves as an
algebraic morphism with respect to the & operator.
Termination has been guaranteed by requiring that
all chains be finite.



Definition 4.2 A constraint interpretation strue-
ture 4 is Noetherian iff (C, Cg) does not contain any
infinite chain. A constraint system (.4,¢) is Noethe-
rian iff A is Noetherian. 1

Given a Noetherian constraint system [, it is easy
to prove that (=, Cy) is Noetherian. An abstract con-
straint system is a Noetherian constraint system I
which is correct with respect to the standard one [',,.
It is strajghtforward to show that in any abstract
constraint system (A" &), ¢! = &, 0 g, Moreover,
by weskness and monotonicity, the composition of
two monetonie weak morphisms is still & monotonic
weak morphism. Let ' be a correct abstract con-
straint system. The mapping o : = — =* such that
all) = {p{z} T— as{c]Tp{:{:) i— el } is con-
tinuous. Abstract interpretations for constraint logic
programs correspond to the definition of an abstract
constraint system together with a program evalu-
ation strategy. The first defines what an ahstract
computation is, while the second one deals with a
specific evaluation strategy to collect abstract in-
formalion. Top-down abstract interpretations corve-
spond to the abstraction of the operational seman-
ties. Bottom-up evaluations instead allow to com-
pute a finite abstract approximation of the fixpeoint
semantics associated with a given constraint logic
program. Goal-independence is an attractive feature
of bottom-up evaluations. Global program analysis,
especially useful in type inference, can then be spec-
ified as a bottom-up evaluation in a suitable con-
straint system.

Proposition 4.1 Given o program P and an ab-
stract constraint system [¥ = (AR &%), there exists
a finite positive k such that FT'(P) =TA' 1 k.

The correctness of the analysis is reduced to the
correciness of the constraint system.

Theorem 4.2 Let P and [ be & program and
an abstract comsiraint sysiem respectively. Then

o(OT(P)) CL O7'(P) and o FT(P)) Cu FT'(P).

Example 4.1 The closed semiring As developed in
Example 2.2 can be used to define a simple com-
plexity analysis tool for constraint logic programs
on reals, CLP(R) [Jaffar and Lassex 87). Let ||, :
{Z,V) = AN be a mapping associating a “weight”
with any term, where A is the set of natural num-
bers. Let us consider a morphism & such that for
each constraint e: #; < tp, £(e) = [t]: + [ta+.
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The interpretation structure (N, +, min,0, +o00),
where cylindrifications are defined as in the dis-
erete case and diagonal elements are natural num-
bers dy, i, = 1]+ + [t2|s. 15 trivially Noetherian. A
lower-bound complexity analysis can be performed
returning a lower bound estimation of the costs in
arithmetic computations, as in the following exam-
ple for a simple integration routine:

int(4, B,z) :— 0<B—-A<e
z={B—A)= flA+ (B — A)/2)0 E{e).
int{A,B,z) :— B-—A>¢

M=A+(B-A)2 z=x)+z2;
O int( A4, M, ), int(M, B, 21}, E(€).
E{z) :— z = 1/n0ON(n).
MN(n') :— »n'=n+ 10N(n).
H[n':l — n' =10,

Let, for instance, o4, e, and ¢; be the costs of
addition, multiplication/division and f respectively.
Variables and constants have a zero cost, Thus, de-
noting I'; such constraint system:

int{A4,B,z) :— dey +3e. + ¢y,
Fre(P) =l E(n') :— e, }
N(n') 1= 0

o

A space of approximate constraints can be spec-
ified by defining an auto-weak morphism p which
is an upper closure operator (e an idempotent,
monotonic and extensive operator) on (£, Cg). As
shown in [Cousot and Cousot 79)] the approximation
process essentially consists in partitioning the space
of constraints so that no distinction is made between
equivalent constraints, all approximated by a repre-
sentant of their equivalence class. The equivalence
relation is induced by an upper closure operator p:
ey =, o3 iff pley) = plez). In [Cousot and Cousot 79
different equivalent methods for specifying abstract
demains (i.e. upper closure operators) are presented.
However, there are standard techniques in algebraic
specifications that allow the definition of abstract
constraint systems. For example, cylindrifications
can be interpreted as abstractions on the algebra of
constraints.

Proposition 4.3 Let & C V; J4 15 an eude-weak
morphizm and upper closure operator on (C,Cg).

Existential quantification is then a way to define
abstract domains. The space of approximate con-
straints can also be specified by adding axioms to
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the underlying constraint system 4. These addi-
tional axioms extend the meaning of the diagonal el-
ements dy o of the algebra, in effect specilying which
ohjects are to be considered “eguivalent” from the
perspective of the analysis. This is illustrated by the
following example:

Example 4.2 Consider the logic program P

p(0).
p(s(z)) :— qlz).
q(s(z)) :— p(x).

and a simple type {parity) analysis for P. Interpret-
ing P as a constraint logic program on the Herbrand
constraint system Ay, the type analysis can be spee-
ified by extending the axioms specifying the con-
straint system with the additional axiom: s{s{z)) =
z. The resulting constraint system, denoted by A,
:i.‘i. I.l_i‘i"i.l‘!.l].}' Nﬁ:thtﬂ.’iﬂll. T].LE E-L':].lil [I.[.JI.EE L'lf P ;El A'H iS-

{plz) :— = =10 Yoa= s 0) glx) = ugl r =

s™=1{0)}; whereas the interpretation in A} returns
{plz) 1= 2 =0; g{z) := 2 = s(1)}. The meaning
of P in A5 captures the type of the predicate p and
g, computing even and odd numbers respectively. O

A& wery useful analysis on the relationships among
variables of a program can be specified in our frame-
work [Cousot and Halbwachs 78]. The automatic
derivation technique in [Verschaetse and De Schr-
eye 91] for linear size relations among variables in
logic programs can be suitably specified as a con-
straint computation. A constraint system of offine
relationships (i.e. linear equalities of the form ¢o =
e Xy =+ e = r:,,X,,_:I can be defined by specifying inter-
section, disjunction and cylindrification {restriction)
as given in [Verschaetse and De Schreye 91). Gener-
alizations considering Hnear inequalities, as proposed
in [Cousot and Halbwachs 78], can still be defined
in our framework, thus making explicit the strong
connection between automatic detection of linear re-
lationships among variables and CLP(R} computa-
tions. Applications of this analysis are: compile time
overflow, mutual exclusion, constraint propagation,
termination ete. [Jorgensen et al 91).

4.1 Generalized Rigidity Analysis

There exists a wide class of abstract interpreta-
tion techniques for the analysis of ground depen-
dences (also named covering) of pure logic programs
[Barbuti et al. 91,Cortesi et al. 91]. In this section
we extend the ground dependence notion by means
of the notion of rigidity.

A norm is a function weighting terms. Let us recall

some basie concepts about norms. For a mare acen-
rate treatment on this suhjﬂ:t B0 [Bmal—‘.i el al Qﬂ]

Definition 4.3 Let T ba a term system. A norm
on T is a funetion |..l; :+ T —= N, mapping any
term ¢ € T into & natural number. 1

Example 4.3 The following weighting map is a
norm on the Herbrand term system: |[#,.. = 0 if § is
avariable or t = [}, [taize = 1+|tail|size if ¢ = [Afazl].
(|

In order to extend the notion of groundness and
ground dependences [Barbuti et al. 91, Cortes: e
al. 91] to deal with a more refined one, able to take
into account only the relevant subterms of a given
(possibly non-ground) term ¢, we address the notion
of rigidity as introduced in [Bossi et af. 90].

Definition 4.4 Let |..); be a norm on the term sys-
tem T. A term t € T is rigid with respect to |..|; iff
for any substitution of variables o |ot|; = [t 1

The rigidity of terms furns out to be important in
simplifying termination proofs. If a term is rigid, its
weight will not be modified by further substitutions.
Rigidity is then strongly related to groundness. Any
ground term can not change its weight by instanti-
ation, thus it is always rigid. This notion allows to
identify those subterms which are relevant for the
analysis purposes. Notice that given a norm |.|g,
and a non-rigid term ¢ € T, there must exist some
variable in ¢ whose instantiation affects the weight of
t. In the Herbrand case, resultz in [Bossi et al. 90]
allow to restrict our attention to a particular class
of norms: semilinear norme on Herbrand.

Definition 4.5 A norm on Ty, v} is semilinear iff it
may be defined according to the following structure:
[t]; = 0if ¢ is a variable; |t|¢ = e + |t ¢ + -+ imle
if t = f(t;,....,ts), where co = 0 and {i1,...,in} C
{1,....n}. 1

Note that the position of the subterms which allow
the principal term to change its weight by instantia-
tion depends on the outermost term constructor only
{i.e. f). These subterms are then relevent from the
analysis viewpoint. All the non-relevant subterms
are discarded by the analysis. Semilinear norms al-
low to reduce the rigidity notion to a syntactical
property of terms. Let

Vrel((t)={ v € V| 3 o such that |atl¢ # jtl }.

As shown in [Bossi ef al. 90], given a semilinear
norm |..|¢, a term ¢ € Tipv) is rigid iff Vreelc(2) = 0.
The notion of semilinear norms can be generalized to



arbitrary term systems in a straightforward way, as
follows: given a term system T, we define a funetion
w: T — A for each ¢ € T, an associated Anite
set of functions F, : # — T; and an associative and
commutative function M N 2 N — N,

Intuitively, for any term ¢, the value of w(#) is the
“initial weight” of the term i, the set of functions
F, correspond to the set of selectors for the “rele-
vant” subterms, and M indicates how the sizes of the
subterms of a term are to be combined. Then, gen-
erglized semilinear norms can be defined as follows:

[t] = wit)+ Myer, | f(2)].

Example 4.4 The "usual” notion of semilinear
norms for Herbrand constraint systems can now be
generalized as follows, let cp € A w(t) =0iftisa
vanable, g otherwise; if ¢ is a variable then Fy = §;
otherwise F; consists of selectors for the relevant po-
sitions of ¢; M 15 summation.

The “depth norm”, which could not be ex-
pressed as a semilinear norm in the development of
[Bossi et al. 90], can be defined as follows: w(f) =0
if ¢+ is a wvariable, 1 otherwize; if ¢ is a wvariable
then F, = §; otherwise if t = f{#;,...,4.) then
F, = {fill =i < n}, where fi(t) = t;, 1ie. fiis
the selector for the subterm at the i position; and
M iz max. o

Let us consider the set C{1) of finite conjunctions
of variables in ¥ (the empty conjunction is denoted
£) and a term abstraction map a7 : T — C(V) such
that, given a semilinear norm |..|; and ¢ € T, (i) =
{ Ty A A Ey | Vrel(t) = {z1,.... Zm} } Let T;
be the corresponding sbstract term system where
substitutions are performed as wsual.  Marriott
and Sgndergaard have proposed an elegant domain,
named Prop, further studied in [Cortesi et al 91),
to represent ground dependences among arguments
in atoms. In [Codognet and Fil2 91] an interesting
application is introduced. Prop is formalized as a
constraint system, and both groundness and defi-
niteness analysis are speaified by executing programs
in CLP{Beol). The corresponding constraint sys-
temn does not allow disjunctions of varables, without
fully exploiting the expressive power of Prop. The
general notion of ground dependence corresponding
with any Prop formula (including disjunctions) can-
not be specified.

Let A, = (Prope, V. AT, F, gt = lxcvaser
be the algebra of possibly existentially quantified for-
mulas defined on the term system T;; including the
set of connectives V, A, <. Intuitively, the formula
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Ay Az + whv represents an equation ¢ = ' where
Vrele(t) = {z,y,2} and Vrelg(t') = {w.,v}; = Ay
represents a term whose rigidity depends upon vari-
ables r and y; while £ V y represents a set of terms
whose rigidity depends upon variables r or y. Lo-
cal variahles are hidden by existential quantification,
projecting away non-global variables in the compu-
tation [Codognet and File 91].

Let Bool be a boolean algebraic structure; ¢ Rigo.
¢ iff Bool |= ¢ v+ . It is easy to prove that A /s, .
is an abstract constraint system.

Example 4.5 Let us consider the semilinear norm
“aize” and the following constraint logic program on
the Herbrand constraint system

o= | Ay = 3y,
1 = [hjy] A =3 = [hjz]
Cappend(y, ¢z, z).

append(zy, 73, 7a) -
append(r;,®3,T3) -

The corresponding abstract model is:
{append(zy, 29, 73) 1=~ &1 &= € ATy — T3}, gen-
eralizing the standard ground behavior (where
Vrel(t) = wvar(t): and the abstract model is
{append(zy, 2q,25) 1= 23 &= 2y A 22}) ve.  size
rigidity behaviot: “the second argument list-size can
change iff the third argument does™. o

5 Machine-level Traces

In this section, we consider an example non-standard
semantics for constraint logic programs, that of
machine-level traces (for a discussion of similar non-
standard semantics in a denotational contexi, see
[Stey T7]). Such a semantics is essential, for exam-
ple, if we wish to reason formally about the correct-
ness of a compiler {e.g. see [Hanus 88]} or the behav-
ior of & debugger or profiler. In this section, we show
how the semantics described in earlier sections may
be instantiated to describe such low-level behaviors.
Instead of constrained atoms where each atom is as-
sociated with a constraint, this semantics will asso-
ciate each atom with a set of machine states (equiva-
lently, instruction sequences) that may be generated
on an execution of that atom.

The code generated by a compiler for a constraint
language must necessarily depend on both the con-
straint system and the target machine under consid-
eration. Suppose that each “primitive” constraint
opity,... 1y} in the language under consideration
corresponds to (an instance of) a (virtual) machine
instruction op(t;,. .., 1.2 For example, correspond-

*In an actual implementation, each such virtual machine
instruction may, of course, *macro-expand™ to a sequence of
lower-tewel machine instructions.
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ing to a constraint ‘X = ¥ 4 5 in the language un-
der consideration, we might have a virtual machine
instruction ‘eq(X,V + 5)". Each such machine in-
struction defines a transformation on machine states,
representing the changes that are performed to the
heap, stack, registers, etc, of the machine by the ex-
ecution of that instruction (e.g., see {Hanus 83] for a
discussion of the WAM along these lines). In other
words, let § be the set of all possible states of the
machine under consideration, then an instruction [
denotes & function [ : § — S U {fail}, where fail
denotes a state where execution has failed,

Given a set §, let 5% denote the set of finite
and infinite sequences of 5. Infuitively, with each
execution we want to associate a set of finite and
infinite sequences of machine states, that might be
generated by an OR-parallel interpreter. Thus, we
want the universe of our algebra to be 257, the
set of sets of finite and infinite sequences of ma-
One subtlety, however, iz that in-
structions may “fail” at runtime because some con-
straints may be unsatisfiable. To model this, it
iz necessary to handle failure explicitly, since “for-
ward” execution cannot continue on failure, To
deal with this, we define the notion of concate-
nation of sequences of machine states as follows:
given any two sequences s; and sy of states in & U
{fail}, their concatenation s, @ sg is given by s, (0 s,
= if 5 contains fail then s else concai(s;,s;),
where concat(s,,s;) denotes the “usual” notion of
concatenation of finite and countably infinite se-
quences. Thus, the eylindric closed semiring in
this case is (C, & , & ,1,0,da, die)acvy rer where:
€ = 20MIN™ 5¢ the set of finite and infinite se-
quences of machine states; for any 5, 5; € C,
5185 ={n0sn|snef,ncshh o=
1 = {e}, where £ is the empty sequence; 0 = 0;
i corresponds to the function that, given any ma-
chine state S, yields the machine state obtained by
discarding all information about the variables in A;
and for any t,i' € T, d, p corresponds to the function
that, given any machine state 5, vields the machine
state resulting from constraining t and # to be equal,
and fail if this is not possible.

chine states.

A simple variation on this semantics is one where
failed execution sequences are discarded silently. To
obtain such a semantics, it suffices to redefine the
operation @ as follows:

5 $53={.51 s €5 US5; Afail iz not in s }

6 Related Work

A related framework is considered in {Codognet and
Filé 91] where an algebraic definition of constraint
systems is given. Program analysis based on ab-

stract interpretation techniques are considered, like
groundness analysis and definiteness analysis for
CLP programs. Ounly ®-composition is considered.
The notion of “computation system” is introduced
but it is neither formalized as a specific algebraje
structure nor extended with the join-operator. In
particular, because of the underlying semantics con-
struction, mainly based on a generalization of the
top-down SLD semantics, a loop-checker consisting
in a “tabled”-interpreter is introduced. The use of
tabled interpreters allows to keep separate the notion
of abstraction from the finiteness required by any
static analysis. As a consequence, static analysis can
be performed by “running” the program in the stan-
dard CLT interpreter with tabulaticn. In our frame-
work, no tabulation is considered. This makes the
semantics construction more general, Finitenessisa
specific property of the constraint system (expressed
in terms of @-chaing), thus allowing to specify non-
standard computations as standard CLP computa-
tions over an appropriate non-standard constraint
system. Both the traditional top-down and bottom-
up semantics can then be specified in the standard
way thus allowing the definition of goal-independent
static analysis as an abstract fixpoint computation,
without loop-checking, If the constraint system
15 not Noetherian, a widening/narrowing technique
[Cousot and Cousot 91] can be applied in the fix-
point computation to get a finite approximation of
the T# fixpoint.

In & related paper, Marriott and Sendergaard
consider abstract interpretation of CLP. A meta-
language is defined to specify, in a denotational style,
the semanties of logie languages. Abstract interpre-
tation is performed by abstracting such & seman-
ties [Marriott and Sendergaard 90). In this frame-
work, both standard and non-standard semantics are
viewed as an instance of the meta language specifi-
cation.
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