PROCEEDINGS OF THE INTERNATIONAL CONFERENCE

OM FIFTH GEMERATION COMPUTER SYSTEMS 1992,
edited by 1COT. ©@ 1COT, 19592

489

Automatic Verification of GHC-Programs:
Termination

Lutz Plimer
Rheinische Friedrich-Wilhelms-Universitit Bonn, Institut fiir Informatk 111
D-5300 Bonn 1, Rémerstr. 164
lutz@uran.informatik.uni-bonn.de

Abstract

We present an efficient technique for the automalic genera-
tion of termination proofs for concurrent logic programs,
taking Guarded Hom Clanses (GHC) as an example. In con-
trast to Prolog's sirict left to right order of evaluation, termi-
nation prools for concurrent languages are complicated by a
more sophisticated mechanism of subgoal selection. We in-
troduce the notion of directed GHC programs and show that
for this class of programs goal reductions can be simulated
by Prolog-like derivations. We give a sufficient criterian for
directedness. Static program analysis techniques developed
for Prolog can thus be applied, albeit with some important
madifications.

1. Introduction
With regard to termination it iz useful to distinguish between
twa types of software systems or programs: transformational
and reactive [HAP85]. A wansformational system reccives
an input at the beginning of its operation and yields an output
ai the end, If the problem at hand is decidable, termination of
the process is surely a desirable property. Reactive systems,
on the other hand, are designed to maintain some interaction
with their environment. Some of them, for instance op-
erating systems and database management systems, ideally
never ierminate and do not yield a final result at all. Bassd on
the process interpretation of Horn claunse logic, concurrent
logic programming systems have been designed for many
different applications including reactive systems and Lrans-
formational parallel systems. While for some of them termi-
nation is not a desirable property, for others it is. In this pa-
per we discuss how aulomatic termination proofs for concur-
rent logic programs can be achieved automatically.
Automatic proof techniques for pure Prolog programs
have been described in several papers including [ULGES]
and [PLU90a). Prolog is characterized by a fixed
computation rule which always selects the leftmost atom.
Delerministic subgoal selection and strict left to right order of
evalyation cannot be assumed for the concurrent languages.

Static program analysis techniques, which are well estab-
lished for sequential Prolog, such as abstract interpretation,

inductive assertions and termination proof techniques, sub-
stantially depend on the strict left to right order of evaluation
in most cases and thus cannot easily be applied to concurrent
languages. Concurrent languages delay subgoeals which are
not sufficiently instantiated. Goals which loop forever when
evaluated by a Prolog interpreter may deadlock in the context
of a concurrent language. These phenomena may Suggest
that termination proofs for concurnent logic programs require
a different approach. This paper, however, shows thal
technigques which have been established for pure Prolog are
still useful in the context of concurrency.

Our siarting point is the-question-under-which-conditions
reductions of a concurrent logic program can be simulated by
Prolog-like derivations, We take Guarded Homn Clauses
{GHC, see [UED#6]) as an cxample, but our resulls can
easily be extended to other concurrent logic programming
languages such as PARLOG, (Flat) Concurrent Prolog or
FCP(:). Our basic assumptions are the restriction of unifica-
tign to input matching, nondeterministic subgoal selection
and resuming of subgoals which are not sufficiently instan-
tiated. Since we consider all possible derivations, the commit
operator does not need special attention,

In general simulation is not possible: if there is a GHC-
derivation of g' from g, g’ cannot necessarily be derived
with Prolog’s computation rule.

One could now try w augment simulation by program
transformation. Let, for instance, F' be derived from P by
including all clause body permutations. Although P may be
exponentially larger than P, there are still derivations which
are not captured.

Example L.1:

Program: p+ qJ. g4 8L I uv.
5, v,

Goal: “—p

This goal can be reduced 10 < tu by nondeterministic
subgoal selection, but not by a Prolog like computation,
even after adding the following clauses:

perg Qe LE T v

The regson is that in order 1o derive +— Lu, the subderiva-
tions of + gand + rhave to be interleaved,

490

The question arises whether there is an interesting sub-
class for which appropriate simulations can be defined, Such
a class of programs will be discussed in Secton 3. The main
idea is to assume that if a subgoal p may produce some
output on which evaluation of another subgoal g depends,
then p is smaller w.r.L. some partial ocdering. Whether a
program maintains such a propery, which we will call di-
recledness, is undecidable, We will then introduce the
stronger noton of well-formedness which can be checked
syntactically. Well-formedness is related to directionalicy,
which is discussed in [GRERT]. Well-formedness is suffi-
cient but not necessary for directedness, and it will turn out
that quile a lot of nontrivial programs (including for instance
sysiolic programs as discussed in [SHAR7a| and most of the
examples given in [TIC91]) fall into this category, In Section
5 we will demonstrate how termination prool techniques
which have been established for pure Prolog can be
gencralized such that they apply to well-formed GHC
Programs.

The rest of this paper is organized as follows. Section 2
provides basic notions. Section 3 introduces the notion of di-
rected programs and shows. that this property. is undecidable,
It provides the notion of well-formedness and shows that it
iz sufficient for directedness. Section 4 discusses oriented
and data driven computation and shows that afier some sim-
ple program transformation derivations with directed GHC-
programs can be simulated by Prolog-like derivations.
Using the notion of 5-models inroduced in [FLPEY], Sec-
liong 5 and 6 show how ermination proofs can be achicved
automatically.

2. Basic Notions
We usz standard notation and eminology of Lloyd [L1o87]
or Apt [APT90). Following [APP20] we will say LD-reso-
tution (LD-derivation, LD-refutation LD-tree) for SLD-reso-
lution (SLD-derivation, SLD-refutation SLD-tree) with the
lefimost selection rule characteristic for Prolog,

Mext we define GHC programs following [UEDE7] and
[UEDEE].

A GHC program is a set of guarded Hom clauses of the
following form;

H« Gp....Gp | Bjue;Bp. (m>0,n>0)

where H, Gy,....Gy and By,... By, are atomic formulas. H
is called a clause head, the Gy's arc called guard goals and
the By's are called body goals. The part of a clause before
is called a goard, and the part after 1" is called a body. One
predicate, namely '=', iz predefined by the langeage. It uni-
fies (wo terms,

Declaratively, the commitment operator 1 denotes con-
junction, and the above guarded Horn clause is read as "H is

implied by Gy,...,Gp and By,...,By". The operational se-

mantics of GHC is given by parallel input resolution re-

stricied by the following two rules;

Rule of Suspension:

+ Unification invoked directly or indirectly in the goard of a
clanse C called by a goal G (i.e. unification of G with the
head of C and any unification invoked by solving the
guard goals of C) cannot instantiaie the goal G.

= Unification invoked directly or indirectly in the body ol a
clanse C called by a goal G cannot instantiate the guard of
C or G until C is selected for commitment.

Rule of Commitmeni;

+ When some clause C callad by a goal G succeads in
solving (sae below) its guard, the clause C tries to be se-
lected for subsequent execution (Le., proof) of G. To be
selecied, C must first confirm that no other clauses in the
program have been selecied for G. If confirmed, C is se-
lected indivizibly, and the execution of G is said o be
committed o the clause C.

An important conscquence is that any unification intended
lorexport bindings oy the calling goal most be specified in the
clause body and use the predefined predicate '=".

‘The operational semantics of GHC is a sound - albeit not
complete - proof procedure for Hom clause programs: if
i B succeeds with answer substitution &, then V(B@) is a
legical consequence of the program.

Subsequently, we may find it convenient to denote a poal
g by the pair <G;0>, ie g=0G0. A single derivation step
reducing the i-th atom of G using clause C and applying mgu
8" is denoted by <G;8> — .o <G',00'>. Subseripls may
be omitted,

3. Directed Programs

An annotation dp for an n-ary predicate symbol p is a func-
tion from {1,...,n} 0 (+,-) where +' stands for input and
' for output, We will write p(+,+,-) in order w0 state that
the first two arguments of p are input and the last is cutpul.

A goal atom A generates {consumes) a variable v if v oe-
curs at an output (input) position of A, A ir generator for B,
if some variable v occurs al an outpul position of A and at an
input position of B; in this case, B is consumer of A.

Let {' denote a wple of terms. A derivation <p(f);e> =~
<(3:8> respects the input annotation of p if v@ = v for every
variable v occurring at an input position of p(f).

A goal i3 directed if there is a linear ordering among its
atoms such that if A, is generator for Aj then A; precedes A;
in that ordering. A program is directed, if all its derivations
respect directedness, 1.¢., all goals derived from a directed
goal are directed, Note that direciedness of a goal is a static

property which can be checked syntactically, Direcledness of
a program, however, is a dynamic property,

Theorem 3.1: It is undecidable, whether a program is di-
recied.

Proof: Let t,,(X) be a directed GHC simulation of a Turing
machine M for a language L which binds X to halt if and
only if M applied to the empty tape halts. Such a simulation
is _mr instance described in [PLU90b). Next consider the
following procedures py, and q:

PuX,Y) & 1,(A), A(AXY).
q(halt,X X).

and the (directed) goal
(X Y), s(Y.Z), py(X.Z).

The following annotations are given:

I'M{'}- q(+|'|')-]]M{-l'}' r{+r'}~ S[+.'}.

If M halts on the empty tape, t[A) will bind A to ‘hall’,
Pry(.Y) will identify X and Y and thus the given goal can
be reduced to the undirected goal + r(Y), (Y, X).
Decidability of program directedness would thus imply solv-
ability of the halting problem: contradiction. m

Mext we introduce the notion of well-formedness of a
program w.r.L a given annotation and show that this prop-
erty is sufficient for direciedness.

A goal is well-formed if it is directed, generators precede
consumers in its textual ordering, and its output is unre-
stricted. Ouiput of a goal is unrestricred if all its output ar-
guments are distinct vanables which do not occur (1) at an
oulpul position of another goal atom and (ii) at an input po-
sition of the same awom.

A program P is well-formed if the following conditions
are zatisfied by each clause H & Gy,...,.Gg| By,....Bg in P:
+ &« By,....B; is well-formed
+ the input variables of H do not occur at oulput positions

of body atoms.

The predicale =" has the annotation - = -". It is conwve-
nignt to have two related primitives: '==" (lest) and "=
(matching) which have the same declarative reading as '='
but different annotations, namely '+ == +' and - &= +',

Mote that the goal « (X, Y).8(Y.Z), py(X.Z} is not
well-formed because its output is restricted: Z has two gutput
QCCUITENCES.

The next example is taken from [UEDSS):

Example 1: Generating primes

primes{Mar,P’s) & muel
gen(2 Max Ns),5ift(Ns,Ps).
gen{N Max,Ns} +« N=MaxiNl<=N«+1,

gen(Ni Max,Nsl), N5 «[N/Nsi].

gen(N Maz, N5} + N> MaxINs =[]

491

sillfP/Xs],Z8) « filter(P,X5,Ys),sift(¥s,Zs1),
Zs &= [P|Zsl].
sifi([].Zs) « Zse={].

filter(P [X{X5],Y8) + X mod P == 0| filter(P . Xz5,Y5).
filter(P [X/X5].¥8) « X mod P 201 flier(P X5, ¥s1),
Ys & [X(¥sl].

filter(P [],Ys) « Yse |
primes{+,-). gen{+,+,-). sift{+,-).

The call primes(Max Ps) returns through Ps a stream of
primes up to Max, The stream of primes is generated from a
stream of integers by fillering out the multiples of primes.
For each prime P, a filter goal filter(P, X5,Ys) is generaled
which filters out the multiples of P from the stream Xs,
yielding ¥'s.

Im this example all input terms are italic and all output
terms are bold. It can easily be seen that this program is
well-formed.

Another example for a well-formed program is quicksort,
The call gsort{[HIL],S) returns through $ an ordered version
of the list [HIL]. To sort [HIL] L is split into two lists L, and
L, which are itself sorted by recursive calls 1o qsort.
Example 2: Quicksort
qi: qsort(/],L)

Q2 gsort(fH(L].8)

filter(+,+,-}.

— Lef].
« split(L,H A,B),
gsort{d, A i) qsori(B,Bq),
append(A ;.[H[B].5).
sp- split({],X Ly, La) — Ly =l Ly= (]
g0 split(/X/{Xs] ¥ Ly'sLy) — X =¥
spllt{Xs,l’J_.l,sz,

Ly'e= [X[L,].

syt spli(fX/Xs] ¥ Ly, Ly') « X > ¥ | split{Xs,¥ Ly, Lo},
Ly' &= [X[L,].

ag: uppend[H,LJ,[.z} — Lz =L,

ap: append({H|L;] Lz L3} < append(L;LzL3"),
Ly <= [HLy .
split(+,4,--). gsori(+,-). append(+,+,-).

Theorem 3.2: Let P be a well-formed program, g a well-
formed goal and g -* g a GHC-derivation. Then g' is
well-formed.

Proof: See [PLUY2].

Well-formed programs respect input annotabons:
Theorem 3,3: Let <p(l).&= —* <G8 be a derivation and v
an input variable of p(f). Then v =v.

Preof: Goal variables can only be bound by transitions ap-
plying '=' or '<", since in the other cases maiching substi-
tutions are applied. Since both arguments of '=" are output,
and "<=" also binds only output variables, input variables
cannot be bound. m

492

4. Oriented and Data Driven Computations

Cur nexl aim is o show that derivations of direcled pro-
grams can be simulated by derivations which are similar 1o
LD-derivations. In this context we find it convenient 1o usc
the notational framework of SLD-resolution and 1o regard
GHC-derivations as a special case.

We say that an SLD-derivation is data driven, if for each
resolution siep with selected alom A, applied clanse € and
mgu @ either C is the unit clause (X = X + trve} or Cis
B ¢« By,....B; and A = BB, Data driven derivations are the
same a3 GHC derivations of programs with emply guards.
The assumption that guards are empty is without loss of
generality in this context

Mext we consider oriented computation rules, Oriented
computation rules are similar 1o LD-resolution in the sense
that geal reduction strictly proceeds from lefi o rght. They
are more general since the selected alom is not necessarily
the leftmost one, However, if the selected atom is not
lefimost, ils lefi neighbors will not be selected in any future
derivation step,

More formally, we define: A computation rule R is
orignted, il every derivation <Gpe>— <G 8>— ... via
R satisfies the following property: If in G; an atom Ay is
selected, and A;{j < k), is an aiom on the left of Ay, no
further instantiated version of Aj will be selected in any
luture derivation siep.

Ohur next aim 15 to show that, for directed programs, any
data driven derivation can be simulated by an equivalent data
driven derivation which is oriented. To prove the following
theorem, we need a slightly generalized version of the
swilching lemma given in [LLOB7]. Here g —3.c g' de-
notes a single derivation siep where the i-th atom of g is re-
solved with clayse C using mgu 8.

Lemma 4.1: Let gyyz be derived from g via

Bk i;Cis1:8s1 B+l 5:Cheazifiaz Bk+2 - Then there is a
derivation gk —j:Cy, 281" Bk1" —2i;Cpy1i0e2’ Eka2’ Such
that gge3' is a variant of ggyg and Ciyqe, Cpppr are variants
of Cyaz and Ciap.

Proof: [LLO87] The difference between this and Lloyds
version is that the latier refers to SLD-refutations, while ours
refers to (possibly partial) derivations, His proof, however,
also applies 1o our version, W

Theorem 4.2: Let P be a directed program and <Gye> a
directed goal. Let D = <Gpie>—...<Gy;8,> be a data driven
derivation using the clanse sequence C),...,Cy. Then there is
another data driven derivation D" <Gpie>—...<Gy50, ">
using a clause sequence C,'.....Cy,' . where <i;,...i>isa
permutation of <I....k>, each C; is a variant of C; and
G0, is a variant of Gy, and D' is oriented,

Proof: Let B; be the first goal in D where orientation is vio-
lated, i.e. there is the following sitation:
Bi+ {Blr N - N ;Ui}

E_i {Bhnvr .--".--.--.-.-.-..ﬂ,}

R’ is selected in g; and R is sclected in g;- Now we
switch subgoal selection in 8j.q and g; and get a new
derivation D*, In D* we look again for the first goal
wiolating the orientation. After a finite number of ilerations,
we arrive at a derivation D' which is oriented. It remains to
be shown that D* {and thus D) is sull data driven.

Note that up 1o g, both derivations arc identical. Above,
the switching lemma implies that, from g, on, the goals of
D are variants of those of D.

MNow Jet Q be the selecied goal of Gy.. Since orientation
is violated for the first time in Gy, Q is 1o the right of R. {if
i=j-1then Q@ = R, and otherwise j-1 would have the first
violation of orientation.) Since g; ; = <Gj.1:8j.1> is directed,
Q6.1 is not a generator of RE, ; and thus R6;.1 and R; are
variants. Let H be the head of the elause applied to resolve R
in <G;;0j>. Since D is data driven, R8, ; = Ho for some o,
and so BB; = Ho' for some ¢'. Thus IV is data driven. m

Corollary 4.3: Let P be a directed program and g a di-
rected goal. Then g has an infinite data driven derivation if
and only if it has an infinite data driven derivation which i
orienied, '

According to Corollary 4.3, in our context it is sufficient
to consider data driven derivations which are oriented. Such
derivations are still not always LD-derivations since the se-
leeted atom is not necessarily leftmost. If it is not, however,
its left neighbors will never be reactivated in future deriva-
tion steps; thus w.r.t termination they can simply be
ignored. The same effect can be achieved by a simple
program transformation proposed in [FALBS]:

Prg(F) = {p(i}en | p is an n-ary predicate appearing
in the body or the head of some clause of P
and X is an n- -tuple of distinct variables)

Parig(F) = P U Prg(F)

Simulation Lemma 4.4; Let D=G; —...Gj = G; be
an oriented SLD-derivation of G and P where

Gi.1 =+ By....Bj....Bpand

Gl = {Bit +E4 1_11':: ‘BJ+1' Bn}ﬁi

G is the body of the C; applied to resolve By. Then there iz
an LD-derivation

o = Gp ...—...Gg.1"—=Gy" with Parlq(P), where
Gg-1' =+ By...Bpand

G =+ [Ci+,Ej+|...,Bn_}'ﬂ| .

Proof: Whenever an atom B is sclected in D which is not
the leftmost one, first the atoms to the left of B are resolved

away in D' with clauses in Prg(P), and then D' resolves B in
the same way as D.m

An immediate implicatdon is the following:
Theorem 4.5: If ¢ has a non-terminating data driven ori-
ented derivation with P, then it has a nonterminating LD-
derivation with Partg(P).

The converse, however, is not true. Consider, for
instance, the gquicksort example from above, extended by the
following claunses

go: qsort{_,_).
Sy split_._._._)-
4y append(_._._).

While the LD-tree for «— gsort{[2,1],X) is finite in the
contexl of the standard definition of gsor, it is no longer tue
for the extended program, Consider the following infinite
LD-derivation:

« gsort([2,1].X)
by gz « split[1},2,A,B), geort{A,Aq),
gsort(B,B1), append(Aq.[HIB,].8).
bygr o« splin_,_, .) ..
by sg: +— qeort_,_)....

This derivation, however, is not data driven: resolving
gsort{A,A,) in the third goal with q3 yields an mgu which is
not a matching substitution,

For data driven LD-derivations we get a stronger resull:

by s

Theorem 4.6: There is a nonierminating data driven ori-
ented derivation for g with P if and only if there is a non-
terminating data driven LD-derivation for g with Partg(P).
Proof: The only-if part is implied by the simulation lemma.
For the if-part, consider a nonterminating, data driven LD-
derivation D. By removing all applications of clauses in
Prc(P), one gets another derivation D'. D' is a nonterminat-
ing data driven oriented derivation. m

Restriction to LD-derivations which are data-driven
enlarges the class of goal/program pairs which do not loop
forever. In the general case, termination of quicksort
requires that the first argument is a list. Termination of
append requires that the first or the third argument is a list.
Restriction to data-driven LD-derivation implies that no
queries of quicksont or append {and many other procedures
which have finite LD-derivations only for certain modes)
loop forever. However, goals like « append(X,Y.Z) or +
quicksori(A,B) deadlock immediately.

5. Termination Proofs

In this section, we will give a sufficient condition for termi-
nating data driven LD-derivations. We will conceniralz on
programs without mutual recursion. In [PLUS0b] we have

493

demonstrated how mutual recursion can be ransformed into
direct recursion. We need some further notions.

For a set T of terms, a norm 15 a mapping 1...: T = N,
The mapping Il...lI: A — N is an input norm on (annotated)
atoms, if for all B = p(ty,...,ta), 1 B Il =3, 1t], where I
is a subset of the input arguments of B,

Let P be a well-formed program without mutual recur-
sion. P is safe, if there is an input norm on atoms such that
for all clauses ¢ = By « By,....By,....B, the following
holds: If B; is a recursive literal (Byp and B; have the same
predicate symbol), @ a substittion the domain of which is a
sabset of the input variables of By and @ is a compuied
answer for «+— (By,....Bi.)0, then IBqo@ll = IB;odil.

We can now stale the following theorem:

Theorem 5.1: If P is a zafe program and G = + A is well-
formed, then all data driven LD-derivations for G are finite.

PROOF: By contradiction. Assume that there is an infinite
data driven LD-derivation I, Then there is an infinite subse-
quence D' of D containing all elements of D starting with the
same predicate symbol p. Let dj and dj4] be two consecutive
elements of O and

dj = L ST S
dis1 = & Pyl
and Ci =

P(S1,ee 1 8c) = By Br.pls'],... .8 heon
be the clanse applied to resolve the first literal of dj, 8; the
corresponding mgu, Then there is a computed answer
substitation @' for « (B1,...,Bi)9; such that pt'y,....t') =
P8 140,808 .

Since D is data driven, §; is a matching substitution, i.e.
Pty eeols) = PE1 e oeads)85 Since P is well-formed, Theorem
3.3 further implies pty,....to) = plty,... 180" We also
have pitj,...,)88 = p(sy,... 5.)8;0".

Since P is a safe program
ip(s1,...,500880 = lip(s,...,s7)8;6" and thas
MpiEy,. .. ole) B8 = Np(L'y,.. . U800, Since the range of
I...Il is a well-founded set, D' cannot be infinite.
Contradiction. |

The next question is how termination proofs for data
driven LD-derivations can be automated. In [PLUS0b] and
[PLUS1], a technique for automatic termination proofs for
Prolog programs is described. It uses an approximation of
the program’s semantics to reason about its operational
behavior, The key concept are predicate incqualitics which
relate the argument sizes of the atoms in the minimal
Herbrand model of the program. Mow in any program
Parig(P) fior every predicate symbol p occurring in P there is
aunit clause p(X). Thus the minimal Herbrand model Mp of
P cquals the Herbrand base Bp of P, a scmantics which is

494

not helpful, To overcome this difficulty, we will consider 5-
models which have been proposed in [FLPAY] in order to
model the operational behaviour of logic programs more
closely. The S-model of a logic program P can be character-
ized as the least fixpoint of an operator Ty which is defined
as follows: '
Ti(l}) = [B1 3 Bp + By,...
3 & = mgui(By,...
and B = Bgd].

We need some notions defined in [BCF90] and [PLU91].

Let A be a mapping from a set of function symbols F o N
which is not zero everywhere. A norm | ... | for T is said 1o
be: semi-lingar if it can be defined by the following scheme:

et = 0 if t is a variable

Il = A +¥061 ift=fy, .0,
where I < [1,...,n} and I depends on £.

A subterm G is called selected if i e 1.

Aterm tis rigid wort anorm [, il lel = 1 81 for all
substitutions 8. Let t[vw:—s] denode the term derived from ¢
by replacing the i-th occurrence of v by 5. An occurrence Vi)
of a variable v in a term t is relevan: wri ... |if
| l[v[i}{—sjl # | t | for some s, Variable occurrences which
are not relevant are called irrelevant. A variahle is relevant if
it has a relevant occurrence. Rvars(th denotes the multiset of
relevant variahle occurrences in the teom L.

Proposition 5.2: Lett be a term, t6 be a rigid term and V
be the multiset of relevant variable occurrences in 1. Then for
a semi-linear norm |...| we have 8=+ 3, . vel
Corollary 5.3: i | = (i
Proof: [PLU91]
For an n-ary predicale p in a program P, a finear predicaie
inequaliry Llp has the form Fieypi+ ¢ 2 Ejq) pj where I
and I are disjoint sets of arguments of p, and ¢, the offset of
Llp, is either a natural number or = or a special symbol like
Y. L and J are called input resp. output positions of p (w.r.L
LI

Let Mg be the S-model of P. LI, iscalled valid (for a
linear norm L...1) if p(ly,....ta) € Mg implies T;oplil+ ¢ 2
Ij-:l .il-

A = PlLyye.ly). With the notations from above we

further deline:

By inP3 By,..B e I,
Beh(B....Bg'),

+ FlALl) = Zjgrlil- Zjesl+ec.
* Vi{ALIp) = wrvars(y)

* Vou(ALL) = wrvars(y)

+ FinlALly) = Ejerhil

= FouflALlp) = Eieglyl

F{A,Llp) is called the offset of A w.r.t. L.

Theorem 5.4: Let ¥, pi+c 2 X.je 1 pjbe a valid lincar
predicate inequality, G = < p(L,... 40 & well-formed goal,
V and W the multisets of relevant inpul resp. output variable
occurrences of plty,....1.) and 8 a computed answer for G.
Then the following holds:

i) Yipluobl+c= 3, iyool

ii) Lvevl vo8 | +F(plth,....tn) Lip 2

2 wewlwonl,

Proof: According to [FLPB9], p(t,....tlx)00 is an instance
of an atom p{8y,...,5,) in the S-model Mg of P. Since the
output of G is unrestricted, 4o® = s; for all je J. Proposition
5.2 implies o8l = Il for all ie 1. Thus
Dicplio®izY, Isiland ¥ obl= ¥, sl
which proves the first part of the 'I'hemdpatus
implied by Prop. 5.2. =

Theorem 5.4 gives a valid inequality relating variables oc-
curring in a single literal goal. Next we give an algorithm fior
the derivation of a valid inequality relating variables in a
compound goal.

Algorithm 5.5 goal inequalitwG LI, U, W.Ab)

Input: A well-formed goal G= « By,....By, aset L1
with one inequality for cach predicate in G, and
two muoltisets U and W of variable occurrences.
Output: A boolean variable b which will be true if a valid
inequality relating U and W could be derived, and
an integer A which is the offset of that inequality.
begin
M=W;A=0V=0U;
Fori=nitoldo:
IFM Vgyi(Bi,LIp) = @ then
M = M\ Voui(B; LIp)) w (Vin(BiLIp) \ V)
V= VA Vin(Bi.Lip);
A=A+ F(By,LIp). i
Ir'M = @ ihen b:= true else b= false fi
end,
Next we show that the algorithm is correct:
Theorem 5.6: Assume that the inequalities in LI are valid
and b is true, @ is an arbitrary substittion such that Ga is
well-formed and @ is a computed answer substitution for
GO.Then Y, _ IvoBl+ A= Y, _ . Iwa8l holds.
Proof: See [PLU9Z).
Algorithm 5.5 takes time O(m) where m is the length of G.
[PLU0Ob] gives an algorithm for the automatic derivation
of inequalities for compound goals based on and/or-dataflow
graphs which has exponential runtime in the worst case.
Algorithm 5.5 makes substantial use of the fact that G is
well-formed: each variable has at most one generator; which
makes the derivation of inequalities deterministic,

6. Derivation of inequalities for S-models

In Aection 5 it has been assumed that linear inequalities are
given for the predicates of a program P. We now show how
these inequalities can be derived automatically, We assume
that P is well-formed and free of mutual recursion. Let p<xq
if p# qand p occurs in one of the clauses defining q.
Absence of mubhml recursion in P implies that <p defines a
partial order which can be embedded into a linear order,
Thus there is an enumeration (py,....px] of the predicates of
p such that p; < p; implies i < j. We will process the predi-
cates of P in that order, thus in apalyzing p we can assume
that for all predicates on which the definition of p depends
valid inequalities have already been derived. Note that a
trivial inequality with offset = always holds.

Let in{A) and out{A) denote the sets of input resp. output
variables of an atom or a set of atoms according to the anno-
tation of the given programs.

Algorithm 6.1: predicate_inequalities(P,L1):
Input: A well-formed program P defining pry...Pn
Output: A set L1 of valid inequalities for the predicaies of P,

begin
LI := E‘
Fori:= 1 ton do:
begin
Let e4,....0m be the clauses defining p;.
Let M, N be the inpot resp. output arguments of ps.
RPN A EL T3 Y N
by ;= wrue.
For j:= 1 to m de:
begin
;-#1 1 H’ Bﬂ - EI.T"'"""FBk'
goal_inequality({+ By,...,.By},
LIu{li},Vin(Bao), ¥ourBa), Aby)
ci= A + Fout(Bo,li) - Fin{Bg,li).
Dy =y
If ¢ contains "e=' then @ := dy ~ false
(*} elseif c is an integer then & =Dy A (Y2 c)
(**} elseif c=y+da d<0 then &y := Oy » true
elseif c=7y+dad>0then @ = Dy A [alse
{(***} elseif c=k*y+na k=1,
then @ =@ A {7 < n/(1-k).
end
If d; is satisfiable then let 3; be the smallest valoe for
4 which satsfies &y
else Jel §; be e,
Replace v in 1i by &j.
LI=LIw {li}
end
end

Theorem 6.2: The incqualitics derived by the algorithm
are valid.

Proof: By induction on the number of predicates n in P,
The case n = 0 is immediate. For the inductive case, assume
that the derived inequalities for the predicates py,...,Pn 21¢

493

valid. Let Iy be the minimal S-model of P restricted to the
predicates py,...,ps-1- In the context of the program which
conzists of the definition of p, only, st 'If- lpand T, =

.T.{T:n'l}. [ts limes equals the minimal S-model of P

restricied to the predicates py,...,Pa. Now we have to show
that the inequality li derived for p, is valid w.r.L T} . The
proof is now by induction on m. The case m = 0 is implied
by the induction assumption on n. Assume that the theorsm
holds for n - 1. We have to show that the inequality for py,
holds for the elements of T} Now lett B & T} and
By« Bj,...,Bg be the clause applied to derive B. We have
B = B8, where 8 is a computed answer substitution for
4+ By,...,By, which is a well-formed goal. Let V = in(B,)
and W = out(By). Let L1 be the set of inequalitics derived by
Algorithm 6.1, and A be the result of calling
goal_inequality((« By,....B) LLV,W, A, by). Theorem 5.6
and the induction assumption imply
B X vBI+AZ YWl
Since B = Byf, we have Fip(B.li) = Fin(Bo.li) + 2.\ vél
and Foy (B li) = Foyg(Boi) + 2, ¢ wiwOl Let @ be the
offset of li. We have to show
(#3) Fip(B.li) + & 2 Fppy(B,li).
IF by is false or A is ==, we are done since in that case 065 e,
Three more cases remain, (*) and (**) immediately imply
{m) ez A+ Fﬂu[fﬂ'n-ru) = mens]jjq
(***) implics @ = n/{1-k) and thus o = n + k*o for some n
such that n + k*a = A + Fy,(Bo li) - Fj(Bg,li). Again
{§if) follows. (1) and ($11) together now imply (1£). =
Note that Algorithm 6.1 again has run-time complexity
O{n), where n is the length of the given program P.
Algorithm 6.1 is not yet able to derive py 2 pz for a unit
clause like p(X,Y) with mode(p(+,-)). This inequality, how-
ever, holds since in a well-formed goal the output argument
of p will always be unbound. To overcome this difficulty,
we assume that before calling predicate_inequalities(P.LI), P
will be transformed to P' in the following way:
Define freevars(Bg « By,...,By) =
{oul{Bg) out(By,....Bp)) W in(By,....Ba} \ in(Bg)).
MNow for the clause ¢ = By « Bi,....By in P let freevars(c)
=[{Y1,....). Réplace ¢ by Bo+ (YYem).B1,....Ba
where a new predicate q is defined by the unit clause
q(X),....Xm) with mode(g(+....,+)). Note that, afier that
iransformation, P' is well-formed if P is well-formed, and if
an inequality is valid for P* it is valid for P as well. In the
example mentioned above, input for Algorithm 6.1 will be
the program P = {g(X). , p(X.Y) + q(Y)] and the output
will be (0 2 g4, p1 2 p2].
Another improvement can be made by considering subsets of
the input arguments in order to achieve stronger inequalities.
This, however, makes the algorithm less efficient.

496

7. Example

We finally discuss how, with the techniques given so far, it
can be shown that the GHC program for guicksort specificd
in Section 3 terminates for arbitrary goals.

Corollary 4.3 and Theorem 4.5 imply that is sulfices 1o
consider data-driven LD-derivations of the extended program
for qsort including the clauses sp, ag and gp. According to
Theorem 5.1 we only have to show that the three predicates
of the program are safe. This is easy to show for split and
append. In fact these procedures are structural recursive, It
is more difficult to prove of gsort because in gp both
recursive calls contain the local variables A and B. For this
reason we need a linear predicate inequality for split which
has the form splity + v = splity + splity. After the
transforamtion mentioned at the end of the last paragraph sg
will have the following form:

S sphi(LyLolq L) & g(ly,Ly)

MNow sp and 5 give ¥2 0 (case * in Algorithm 6.1), while 53
and s3 give true’ (case **). Thus we get splity + 0 = splits +
splity. In order to prove safety of gsort, we only have to
consider qz. Using this inequality Algorithm 5.5
immediately shows lgsori(]HIL],$)8Il > llqsori(A,A)8!l and
Hgsort([HIL],5)81 > llgsort(B,B;)8ll for all answer
substitutions 0 for split(H,L,A,B). Thus gsort is safe,

Acknowledgment

Part of this work was performed whilc I was visiting CW1.
K. R. Apt stimulated my interest in concurrent logic pro-
Eramiming.

References

[AFPPS0] Apt, K, R., Pedreschi, D., Swdies in pure

Prolog: Termination, Technical Report C5-
R9048, Centre for Mathematics and
Computer Science, Amsterdam, 1990,

Apt, K, R, Introduction to logic
programming, in Lecuwen (ed.), The
Handbaok of Theoretical Computer Science,
North Holland 1990,

Bossi, A., Cocco, N., Fabris, M., Proving
Termination of Logic Programs by Exploiting
Term Properties, Technical Report Dip., di
Matematica Pura e Applicata, Universita di
Padova, 19%(.

Falaschi, M., Levi, G., Finite faitures and
partial computations in concurrent logic

[APT90]

{BCF20]

[FALEE]

[FLP89)

[GRERT]

[HAPS3]

[LLOZ7)

[PLU90a)

[PLU30b]

[PLUS1]

[PLLI9Z]

[SHAST]

[SHABTz]

(TIC91]

[UEDSE]

[UED&6]

[ULGSE]

languages, Proc. of the Int. Conf. of Fifth
Gen, Comp, Systems, ICOT 1988,

Falaschi, M., Levi, G., Palamidessi, C.,
Martelli, M., Declarative Modeling of the
Operational Behavior of Logic Languages,
Theoretical Computer Science 69, 1989,

Gregory, 5., Parallel Logic Programming in
PARLOG, Addison Wesley, 1987,

Harel, D, Pnueli, A., On the development of
reactive systems, in Apt, K. R. (ed.) Logics

and Models of Concurrent Systems, Springer
1985,

Lloyd, 1., Foundations of Logic

Programming, Springer Verlag, Beclin,
second edition, 1987,

Pliimer, L., Termination proofs for logic
programs based on predicate inequalities, in
Warren, DLH.D., Szeredi, P. (eds.),
Proceedings of the Seventh International
Conference on Logic Programming, MIT

Press 1990,

Plilmer, L., Termination Proofs for Logic
Programs, Springer Lecture Notes in
Anificial Intelligence 446, Berlin 1990,

Plitmer, L., Termination proofs for Prolog
programs operating on nonground lerms,
1991 International Logic Programming
Symposium, San Diego, California, 1991,

Plitmer, L., Automatic Verification of GHC-
Universittit Bonn, 1992,

Shapiro, E., Concurrent Prolog, Collected
Papers, MIT Press 1987,

Shapiro, E., Systolic Programming: A
paradigm of parallel processing, in [SHAST].

Tick, E., Parallel Logic Programming, MIT
Press 1991,

Ueda, K., Guarded Hom Clauses: A Parallel
Logic Programming Language with the
Concept of a Guard, in Nivat, M., Fuchi, K.
(eds.), Pragramming of Futire Generation
Computers, North-Holland 1985,

Ueda, K., Guarded Horn Clauses, in
[SHAET].

Ullman, J. D., van Gelder, A., Efficient
Tesis for Top-Down Termination quu;iml
Rules, Journal of the ACM 35, 2, 1988,

