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Abstract

We extend the notions ‘recurrency’ and ‘seceptability’
of a logic program, which were respectively defined in
the work of M. Bezem and the work of K. . Apt and
D. Pedreschi, and which were shown to be equivalent
to respectively termination under an arbitrary computa-
tion rule and termination under the Prolog computation
rule. We show that these equivalences still hold for the
extended definitions. The main idéa is that instead of
measuring ground instances of atoms, all possible calls
are measured (which are not necessarily ground). By
doing s0, a moze practical technique is obtained, in the
sense that "more natural® measures can be used, which
can casily be found antomatically,

1 Introduction

In the last few years, & strong research effort in the field
of logic programming has addressed the issue of termina-
tion. From the more theoretical point of view, the results
obtained by Vasak and Potter [1886], Baudinet [1988],
Begem [1989], Cavedon [1989], Apt and Pedreschi [1990],
and Bossi et al. [1991] have provided several frameworks
and basic techniques to formulate and solve questions
regarding the termination of logic programs in semanti-
cally clear and general terms. Other researchers, such
as Ullman and Van Gelder [1988], Plinter [1990], Wang
and Shyamasundar {1980], Verschaeise and De Schreye
{1991}, and Sohn and Van Gelder [1991) have provided
practical and aulomatable techiniques for proving the ter-
mination of logic programs with respect to certain classes
of queries al compile time.

In this paper, we propose an extension of the leo-
retical frameworks for the characterisation of terminat-
ing programs and queries proposed in [Bezem 1989 and
[Apt and Pedreschi 1880). The framework does not only
provide slightly more general results, but also increases
the practicality of the techniques in view of automation,
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Let us recall some definitions from [Bezem 1989] in
order to explain our motivation and the intuition behind
cur approach.

Definition 1.1 {59! [E!t!m 1939]; Defhinition 2.]] A lewel
mapping for a definite logic program F is a mapping
|.| H E_F — IV,

Drefinition 1.2 {see [Berem 1988); Definition 2.2) A
definite logic programn P is recurrent if tlere exisis a
level mapping |.|,- such that for each ground instance
A—By,..., B, of a clause in P, |4 > |5, for each
i=1,...,m

Definition 1.3 (sec [Bezemn 198%); Definition 2.7) A defi-
nite logic program P is terminatingif all SLD-desivations
for (P, @), where G iz a ground geal, are finite.

Omne of the basic results of [Bezem 1989 is that 2 pro-
gram is recurrent if and only if it is terminating. Al
though this result is very interesting from a theoretical
perspective, it is not a very practical one in terms of au-
tomated detection of terminating programs and queries.
The problem comes from the fact that the definition of
recurrency requires that the level mapping "compares”
the head of each ground instance of a clause with ev-
ery corresponding atom in the body and imposes a de-
crease. Intuitively, what would be preferable is Lo obtain
a well-founding based on a measure function (er level
mapping ), which only decreases on each recursive eall Lo
a same predicate. This corresponds better to our intu-
ition, since nontermination (for pure logic programs) can
only be caused by infinite recursion. '

As we stated above, the problem is not merely related
to our intuilion on the cause of nontermination, but more
importantly to the practicality of level mappings. Con-
sider the following example.

Example 1.4

(-
PUHITYY — o[H|T]), p(T).

al[])-
a([H]|T]) — ofT).
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It is not possible to take as level mapping a function
that maps ground instances p(z) and g{z) to the same
level, namely list-length(z) if = is a ground list, and 0
otherwise. Instead, the definition of recurrency obliges
us to take a level mapping that has a "unnatural” offset
(1 in this case).

p(=)] = list-length(z) + 1
lg(z)] = dist-length(z),

In a naive attemnpt to improve om the results of
[Bezem 1983], one could try to start from an adapted
definition for & recurrent program, in which the relation
|A| = |B;| would enly be required if A and B; are atoms
with the same predicate symbol. However, the equiv-
alence with termination would hmnediately be lost —
even for programs having only direct recursion — as Lhe
following example shows.

Example 1.5

append((], L, ).
append([#|5], T, [H|V]) +~ append(S,T,U).

pl{HIT) « append(X.Y,Z),p(T).

An "extended” notion of recurrency, where the level
mapping only relates the measure of ground instances of
the recursive calls, would hold with respect to the level
mapping:

[p(z)] lal-length{z)
lappend(z, y, )| list-length{=).

On the other hand, the program is clearly not terminat-
ing — if it would be terminating, then we would have
shown that append/3 terminates for a call with all three
arguments free,

The heart of the problem is that in the definition of
recurrency, the level mapping is used for two guite dis-
tinct purposes at the same time. First, the level mapping
does ensure that on each derivation step, the measure of
a recursive descending call is smaller than the measure of
the ancestor call (or at least: for each ground instance of
such a derivation step). Second, since we are only given
that the top level goal is ground {or, in a more general
version of the theoretn, bounded) — but we have no in-
formation on the instantiation of any of the descending
calls — the level mapping is also used to ensure that we
have some upper limit on the measures for the calls of
the (independent) recursive subcomputation evoked by
the original call, In the current definition, this is done
by imposing that the level also decreases belween a call
and its descendants that are not related through recur-
SI0TH.

The way in which we address the problem here, differs
from the approach in [Bezem 1989] in three ways:

I

1. We first compuie all atoms that can occur as calls
during any SLD-derivation for the top-level goal(s)
under eonsideration.

2. We use an extended notion of level mapping, defined
on all such aloms — not only the ground ones.

3. We have an adapted definition of recurrency, with
as its most important features:

{a) the condition |4| > |B;| is not imposed on
ground instances of a clause, bul instead, on
each instance obtained after unification with a
(possible) call,

(b) the decrease [4| > |B;| is only imposed if 4
and #; are calls to the same predicate symbaol,
{This is for direct recursion — in the contexi of
indireck recursiom, the condition is more com-
plex).

One of the side eifects of taking this approach is
thai there is no more necessity to start the analysis
fer one ground or bounded goal. The technigue works
equally well when we starl from any gemeral set of
atoms. The additional advantage that we gain lere is
that in practice, we are usually interested in the ter
mination properiies of a program with respect to some
call pattern. Such call patterns can always be speci-
fied in terms of abstract properlies of the argumenis in
the goals through mode information, type infarmation
or combined (rigid or integrated) mode and type infor-
mation (see [Janssens and Bruynooghe 15890]). Any such
call pattern corresponds ko a set of atoms in ihe con-
crefe domain, and can therefore be analysed with owus
approach.

The paper is organised as follows. In the next sec-
tion we extend the equivalence theorem of [Bezemn 1989)
in the way described above, In section 3 we take
8 completely similar approach to extend results of
[Apt and Pedreschi 1990] on left termination. In sec-
tion 4, we illustrate the improved practicality of
the new framewark. We also Indicate how some
simple extensions are likely to provide full theoreti-
cal support for the automated technique proposed in
[Verschaetse and Die Schreye 1991).

All procfs have been omitted from the paper. They
can be found in [De Schreye and Verschaetse 1993],

2 Recurrency with respect to a
set of atoms

We first introduce some conventions and recall some
basic terminelogy. Throughout the paper, P will de-
note a definite logic program. The extended Her-
brand Universe, I'#, and the extended Herbrand Base,
BE, associated to a program P, were introduced in



[Falaschi ef al. 1988). They are defined as follows. Lef
Termp and diomp denote the sets of respectively all
terms and all atoms that can be constructed from the
alphabel underlying to P. The variant relalion, de-
noted =, defines an equivalence. UF and BF are re-
spectively the quotient sets Termp/ = and Afoms [ =,
For any term ¢ {or atom A), we denote its class in U'F
{BE) as T (A). There is a natural partial order on UF
{and Bf), defined as: § < f if there exist represen-
tants &' of 7 snd ' of ¥ in Termp and a substitution
@, such that s' = '8, Throughout the paper, § will de-
note a subset of BE, We define its closure under < as:
Sc={deBE|3BesS: A< B).

Definition 2.1 P is terminating with reapect fo 5 if for
any representant A' of any element 4 of 5, every SLD-
tree for (P, —.A") is finile.

Denoting the classical notion of & Herbrand Base {of
ground atoms) over P as Bp, then with the terminology
of [Besem 1289] we have:

Lemma 2.2 P is terminating if and only if it is termi-
nating with respect to Bp.

Lemma 2.3 If all SLD-derivations for (P, —A) are finite,
and & is any substitution, then all SLD-derivations for
(P, «—Af) are finite.

From lemma 2.3 it follows that in order to verify del-
inition 2.1 for a set § C Bf, it suffices to verify the
finiteness of the SLD-trees for (P, —4) for cnly one rep-
resentant of each element in A. It also follows that P is
terminating with respect to a set 5§ C Bf if and only if it
is terminating with respect to 5% In fact, given that P
terminates with respect to 5, it will in general be termi-
nating with respect to a larger set of atoms than those in
5%, It is clear that if ell SLD-trees for [ F, +—A4) are finite,
and f H—By,..., B, is a clause in P, such that 4 and
H unify, then all SLD-tzees for (P, —B#),1=1,...,n,
where § = mgu{A4, H), are finite. We can characterise
the complete set of terminating aloms associated to a
given set 5 as follows.

Definition 2.4 For any T C BE, define T;'(T) =
fB# € Bf | A' is & representant of 4 € T, H
— By,..., B, is a clause in P, § = mgu({d' H) and
1<i<n).

Dencte Hs = {T € 2%% | §° C T}. H; is a complete
lattice with bottom element S°,

Definition 2.5 Rg:Hg— Hyz: Rs{T} =T T;’{T}‘-
Lemma 2.8 R; is continuous,

As a result, the least fix-point for K5 is Rslw.
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Lemma 2.7 P is terminating with respect to 5 if and
ouly il  is terminating with respect to Bslw.

As a result of our construction (in fact: as the very
purpose of it), Rylw containg every call in every SLD-
tree for any atomic geal of 5. Formally:

Proposition 2.8 Let call{ P, 5) dencte the set of all
atoms B, such that B is the subgoal selected by the
computation rule in some goal of some SLD-tree for a
pair (P, —A), with A the representant of an element of
5. Then, call{P, 5) € Rglw.

We now infroduce a variant of the definition of a level
mapping, where the mapping is defined on equivalence

classes of calls,

Deflnition 2.9 (level mapping)

A level mapping with respect to g set 5 C B is a function
|| + Bstew — I, A level mapping |.| is called rigid
i for all 4 € Rsfw and for any substitution 8, || =
|Aﬁ||, L.e. the level of an atom remains invariant under
substitution.

With slight abuse of notation, we will often write |A4l,
where A is a representant of 4 € BE. The associated
notion of recurrency with respect to 5 will not be de-
fined on ground instances of clauses, but instead on all
instances {H—0y,..., B, ) of clauses H+ 8, ... B, of
P, such that § = mgu{ A, ), where A is a representant
of an element of R¢fw. The definition in [Besem 1085
does not explicitly impose a decrease of the level map-
ping at each inference step. The level mapping's values
should only decrease for ground instances of clauses. By
considering more general instances of clauses (as abave),
we can explicilly impose a decrease of the level |napp‘i11.g‘s
value f]uriiug I['l:ctm:si\'i:} inference steps. As a result, tle
adapted level mapping no longer needs to perform dif-
ferent functionalities atl once, and we can concentrate on
the real structure of the recursion.

Now, concerning this recursive structure, there are a
number of different possibilities for a new definition of
recurrency, depending on how we aim to deal with indi-
rect recursion. In order not bo confuse all issues involved,
we firsk provide a definition for programs P, relying only
on direct recursion.

Definition 2.10 A (directly recursive) program P is re-
eurrent with respect to 5, if there exists a level mapping
.| with respect to 5, such thak:

# lor any A' representant of 4 & Rslw,

e for any clanse He—B8,, ..., B, in P, such that
mgul A’ H} = @ exists,

¢ for auy siom 5,1 < 1 < n, with the same predicate
symbol as H: |A'| = | B4
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Whal is expressed in this definition is that for any two
recursively descending calls with a same predicate sym-
bol in any SLD-tree for (representants of) aloms in 5,
the level mapping's value should decrease. This condi-
tion has the advantage of being perfectly natural and
therefore, of being easy to verify in an automated way.
The only pessible problem in view of automation is that
it requires the computation of Rgfw. But, this problem
Is precisely the type of problem that can easily be solved
{or approximated) through abstract interpretation (see
section &),

In the presence of indirect recursion, we need a more
complex definition, that deals with the problem that a re-
cursive eall with a same predicate symbol as an ancestor
call may only appear after a finite number of inference
steps (instead of in the body of the particular instance
of the applied clause). This can be done in several ways.
We first provide a definition related Lo the concept of a
resultant of a finite (incomplete) derivation. Based on
this definition, we prove the eguivalence with termina-
tion. After that, we provide & more practical condition,
of which definition 2,10 is an ohvious instance for the
case of direct recursion.

First, we need some additional terminelogy.

Definition 2.11 Let A be an atom and (Gy = —A4),
Gy Gayenny Gy (n > 1), a fhnite, incomplete SLD-
derivation for [P,—A4). Let 8,...,0, be the cor-
responding sequence of substitutions, and let # =
Boflg -+, and G, = «H,..., B.. With the ler-
minology of [Lloyd and Shepherdson 1991] we say that
Af—By, ..., B, is the resultani of the derivation.

Definition 2.12 A resultant Af—B,,... B, of a
derivation (Gy = «4),G,,..., G, is a recursive resul-
tant for A if there exists i (1 < i < m), such that B; luas
the same predicate symbol as 4,

Definition 2.13 (recurrency wrt a set of atoms)
A program P is recurrent with respect fo 5, il there exists
a level mapping, |.|, with respect to 5, such that:

» {or any A' representant of 4 £ fzfw,
 for any recursive resultant A'6—B,,..., B,,, for A’

* for any alom B, 1 < ¢ < m, with the same predicate
symbelas A": |4' > | 5]

Proposition 2.14 If P is recurrent with respect to 5,
then P terminates with respect to 5.

Just as in the framework of Bezem, the converse state
ment holds as well.

Theorem 2.15

F is recusrent with respect to 5 if and only if it is ter-
minating with respect to 5.

One of the nice consequences of this result is that we
can now relate the concept of a recurrent program in the
sense of [Begem 1989] Lo recurrency with respeci Lo a set
of (ground) atoms.

Corollary 2.10 P is recurrent if and only if it is recur-
rent wikh respeci to Bp.

It may seem surprising to the reader that two appar-
ently very different notions such as recurrency and recur-
rency with respect to By coincide. It is our experience
from our work in termination of unfolding in the context
of partial deduction ([Bruynooghe ef al. 1991]) that this
is not unusual. The reason is that conditions occurring
in these comtexts require the “emistence” of some well-
founded measure. The specific properties of such mea-
sures can take totally different form without loosing the
termination property. The only real difference kies in the
practicality.

We conclude the section by intreducing a condition
that implies definition 2,13, This condition has the ad-
vantage over definition 2.13 that it does not rely on the
verification of some property for each of a potentially
infinite number of recursive resultants. Instead it only
requires such a verification for a finite number of clauses,
which can be characterised through the minimal, eyelic
collections of P

Definition 2.17 (minimal cyclie collection)
A minimal eyclic collection of P is a finite sequence of
clanses of P:

A] L E;“..,A;,..-,B,L

Ap = Br. . A L. .. B

Mm

such that:

* for each pair (i # j), the heads of the clauses, 4;
and A4;, are atoms with distinct predicate symbals,

o A, and A have the same predicate symbols (1 < 1 <
),

» Al ., has the same predicate symbol as 4,.

Only afinite number of minimal cyelic colleciions exists.
They can easily be characterised and computed from the
predicate dependency graph for P,

Proposition 2.18
Let S C BE aud |.| a rigid level mapping with respect to
5, such that for any minimal cyclic collection of P (afier
standardizsing apart),

A, — B,... A,..., B!

Ay +— -H;“b"'l'lq-:rp{-i!'-"!ﬂm

T



and for any A,,...,A. € Refw, with AV, AL as

their respective representants, and #;, = mgul4;, 47),
(1< 1< m), the following condition holds:

|46 = |43

[ Abm-a] = AL
4

| 45| > | ALy Oon
Then, P is recurrent with respect to 5.

The conditions in proposition 2.18 seem rather unnat-
ural at first sight and need some clarification. First, ob-
serve that in the case of direct recursion — except for the
rigidity of the level mapping — the conditions coineide
with those of definition 2.10.

For the case of indirect recursion, the conditions that
one would intuitively expect, are that for each minimal
cvelic collection

A~ Bl...,Ay,... B

Am — By Amgriee By
and each A7 representant of A4, c RsTw, such that # =
mgulAY, 4;) and §; = mgu[ 4!, 4,), 1 < i < m, exist and
are consistent, we have

|A;‘| = |A:“Hﬂ'ﬁ"1 T -ﬂ',,,|.

The problem is that such a condition is not correct. Con-
sider the clauses:

pla,[[JX]) ~ p(b, X). {ell)

F{b: X) — q(a, [‘-I-x_”' {‘EE’]

g(b, X)  — pla,[|X]). (eI3)

gla,[-]X]) ~— g8 X). (ci4)
There are 4 asscciated minimal collections:
(cl2,cl3), (cl3,cl2) and (cl4). Consider for instance
the derivation '_F{uT [—I -]}1 *_P{bl [-]}I "_‘T{u': [-h—]}!
1—-;[&, [—]]r —pla, [—r -J]'

The problem is caused by resultants associated to
derivations that start with a clause from one minimal
cyclic collection-— say (cl2} in the collection (cl2,c13) —
then shift to applying another collection, (cl4), and only
after this resume the first collection and apply clause
(el3). The head of the third clause, g(b, X), does not
unify with g{a,[-]X']), and therefore, the condition on
the cycle {¢12,cl3} can not be applied.

So, we have to impose the condition in propesition
2.18, It states that, even if the next call in the traversal
of a minimal collection (A]') is not really related — as
an instance — to a call we obtained ecarlier (A6}, but
if — through the intermediate computation in another
minimal collection — the level between these two las
decreased anyway, then the final conclusion between the
original call to the collection and the indirectly depend-
ing one must still hold. We will not discuss the condition
any further here, but we will return to its practicality in
section 4,

fell},
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3 Acceptability with respect to
a set of atoms

All definitions and propesitions from the previous sec-
tion can be specialised for the Prolog computation rule.
Following [Apt and Pedreschi 1980), we call an SLD-
derivation thait uses Prolog's left-to-right computation
rule, an [D-derivation.

Definition 3.1 (left termination wrt 5) Let 5 be
a subsel of BE. A program F is lefi-terminating with
respect to 5 if for any representant A of any element of
5, every LD-derivation is finite.

Recall definitions 2.4 and 2.5, The motivation behind
these definilions was finding an overestimation of all calls
that are possible in any SLD-derivation using an arbi-
trary computation rule. The fact that ne fixed compu-
tation rule is used, forces us to take the closure under all
possible instantiations in definition 2.5, and hence Rsw
contains in general a lot more calls than can really occur
when a particular computation rule is chosen,

In this section, we focus our analysis on compulations
that use Prolog’s left-to-right computation rule, There-
fore, adapted definitions of the 77! and R s functions are
needed.

Definition 3.2 For any T € BE, define: P;YT) =
{Bifio, oy € BE | A' is & representant of A € T,
H o+~ By,...,B,lsaclause in P, # = mgu{d" H), 1=
i=n, oy, ..oy, such that ¥i=1,...,i-1: o; is an
answer for (P, —Bifoy -0}

The answer substitutions ¢; are computed using LD-
resolution. Let H%™" denote {T € 287 | 5 C T).

Definition 3.3 R[.," t ‘Hr,"' — :r-frs"" : R'E"{T} =TI

PHT)

In a completely analogous way as in the previous sec-
tiom, we find that R is continuwous. Hence, the least fix
point RS Tw contains all atoms that can possibly oceur
as & call when P is execuled under the Prolog computa-
tion rule, and when a representant of an element from 3§
15 Used as flLlE‘I'}’.

Level mappings are now defined on B, Recursive re-
sultants are constructed using the left-to-right computa.
tion rule. This allows us to consider only recursive regul-
tants of the form play, ..., 2. )e=plt, ..., 1.0, Bay ..oy B
The analogue of recurrency with respect to a set 5 of
atoms, is acceptabilify with respect fo 5.

Definition 3.4 (acceptability wrt a set of atoms)
A program P ois  acceplable with reapect fo S,
if there exists a level mapping || with respect
te 5, such that for any pla,,.... s}, represen-
tant of an element in R;-"Tu, and for any recur-
sive resultant play, ..., 3,)0=plty, . . t0), Bay .o, Bt

lp(srs-vi8adi > |p(t1so o s tall.
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Theorem 3.5
P is acceptable with respect to 5§ if and only if it is left-
tecminating with respect to 5.

As in section 2, we provide a more practical, sufficient
condition. The result is completely analogous to propo-
sition 2.18.

Proposition 3.0

Let 5 C BE and || a level mapping with respect to 5,
such that for any minimal cyclic collection of P (after
standardising apart ),

A| e 3%11--1-3,!.-41;!“-13,’"

Am = BP...., BT AL, B™

and for any 4,,...,4, € H';'Tn.l, with 4f,..., 4"
8s their respective representants, and with g =
mgu(d;, AY} (1 < § < m) and ¢} is a computed an-
swer substitution for (P, —Bi#;o} - -0} _ ) (1 < k <4;),
the following condition holds:

| 43610} - o 2 |43
Rt B V.

[AL] = AL s B - o |,

Then, F is acceptable with respect to §.

4 Practicality and automation

A fully autemated technique needs to address the follow-
ing issues:

* safe approximations of Rsfw and R Tw must be
compubed,

* precise and natural level mappings are needed, and

* the conditions in propesitions 2.18 and 3.6 must be
automatically verifiable.

For left termination, there is one extra issue:

= some properties of the answer substitutions for the
atoms in Ry Tw are needed; in particular, after ap-
plication of a compuied answer substitution we want
an estimation of the relationship between the sizes
of the arguments of the atoms in R Tw.

Concerning the first issue, observe that in practice, the
sets of atoms 5 in the framework are likely to be specified
in terms of call patterns over some abstract domain. The
framework contains no implicit restriction on the kind of
absiractions that are used for this purpase. They could
be either expressing mode or type information, or even
combined mode and type information — as in the rigid

ot integrated types of [Janssens and Bruynooghe 1990).
Abstract interpretation can be applied to automati-
cally infer a safe approximation of Rsfw or Ry Tw (see
[Janssens and Bruynooghe 1990]).

Automated techniques for preving termination use
various types of norms. A nermis amapping||.|| : UF —
I¥. Several examples of norms can be found in the lit-
erature. When dealing with lists, it is often appropriate
to use list-length, which gives the depth of the rightmost
branch in the tree representation of the term. A more
general norm s ferm-size, which counts the number of
function symbols in a term. Another frequently used
norm is ferm-depth, which gives the maxivnmn depth of
{the tree Tepresentation of) a term.

However, we restrict ourselves to semi-linear NOTIS,
which were defined in [Bossi ef al, 1991).

Definition 4.1 (semi-linear norm)
A norm ||.|| is semi-linear if it satisfies the folowing con-
ditions:

* ||V]j = 0if V is a variable, and

o Ity ta)ll = e+t |1+ - +[tia]] where e € IV,
lin < <ig < nandeiy. .. 4, depend only
on f/n.

Examples of semi-linear morms are list-length and
term-size.

As was pointed out in [Bossi et al. 1991], proving ter-
mination is significantly [acilitated if the norm of a term
remains invariant under substitution. Such terms are
called rigid.

Definition 4.2 (rigid term; see [Bossi f al. 1991])
Let ||.|| be & (semi-linear) norm. A term ¢ is rigid with
respect to ||| if for any substitution o, |[ta]] = |lt]].

Rigidity is a generalisation of groundness; by using this
concept it is possible to avoid resiricting the definition of
a norm to ground terms only, a restriction that is often
found in the literature.

Given a semi-linear norm and a set of atoms §, a very
natural level mapping with respect to 5 can be associated
te them,

Definition 4.3 (natural level mapping)

Given is & semi-linear norm ||.|| and a set of atoms 5.
|-l gt the natural level mapping induced by S, is defined
as follows: Wp(t,,...,1.) € Relw:
Zierlitlly, HI#0
1] otherwise,

1L CPURP 49 I

with J= {1 | ¥p(wy, ..., u,) € Relw : u; is vigid}.

Let us illustrate the practicality of such mappings —
and of the framework itsell — with some examples.



Example 4.4

Reconsider example 1.4 from the introduction. Asswme
that § = {p(z) | z is & nil-terminated list}. Let ||.]|; be
the list-length norm. The argument peositions of all atoms
in Rsfw are rigid under this norm, So, [p(z)i,, = ||oll;
aud |q(z)| .., = |[z]];» The program is direcily recursive,
so that it suffices to verify the conditions of definition
2.10.

For the clause p([H|T])—q([H|T]),p{T) and for each
call p(e) € Rslw, with # = mgu(z,[H|T]), we have
|ple),.. = |P(T)9],,- By the same argument, the con-
dition on the clause g{[H|T])g(T) holds as well. Thus,
the program is recurrent with respect to 5 under the
natural, list-length level mapping with respect to 5.

As a second example, we take 2 program with indirect
recursion, It defines some form of well-formed expres-
sions built from integers and the function symbols +/2,
*/2 and —/1. .

Example 4.5
X +Y) — f(X)eY) (1)
e{X) — fX). (el2)
flX=Y) — g(X)A(Y) (cl3)
fX) — g(X). (eld)
g(—(X)) — (X} (ci5)

g( X)) — integer{ X ). (clf)

The obvious choice for a level mapping for this program is
term-size. However, the program is not recurrent in the
sense of [Begem 1989] with respect to this norm. Sinee it
is clearly terminating, a lavel mapping exists. The most
natural mapping (in the sense of [Berem 1989]) we were
able to come up with is:

le{z)] = 3 x term-size{z)+ 2
|f(2)] = 3 x term-size(z)+ 1
lglz)| = 3 x term-size(z).

In the context of our framework, consider the set 5§ =
{e(z) | = is ground}. Through abstract interpretation,
we can find that RsTw C Bp.

Let ||.||, be the term-size norm. Again, the argument
positions of all atems in RsTw are rigid (even ground) un-
der this norm. Thus, |e{r]tqgl = |I3”11 IJﬂ:a]lmﬂ = |I=l,
and Jo(z)|,., = ||zil,- The program contains essentially’
B minimal, eyclic collections: {cl1), (<13}, {cl1, <13, cl5 ),
(cl1, cl4, <5 }, {cl2, <13, cl5 ), {cl2, <14, cl5 ).

Let us consider, as an example, the third collection:

(X +Y) — f(X)e(Y)
fIXT YY) = g(X7), F(Y).
g(—(X")) — <(X").

15ince collections ure sequences of clansee, eyelie permutations
should be considered ns well.
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Assume that (z), fly) and g(z) are any atoms with
ground kerms =, y snd 2, and that:

8 = mgule(a), e X + 1))
By = mgu{ f(y), (X'« Y'))
By = mgu(g(z), g(—(X")).

Also assume that |f(X)8,] = [f(y)} and |g(X")fa| =
ls()]. We then have |e(z)| > |f(X)0.] = |fly)] >
9(X] 2 lo(z)l > [e(X")6sl, so that |e(z)]

|e( X")85|, and the conditions of proposition 2.18 {for the
third cyele) are fulfilled. All other cycles can be verified
in a similar way. The conclusion is that the program is
recurrent with respect to § and the very natural ferm-

size level mapping.

In the context of left terminaiion, definifion 4.3 can be
adapted to produce equally natural level mappings with
respect to a sel 5. Obviously, RsTw should be replaced
by R!;"Tur. In the context of lelt termination there is
an extra issue, namely, {an approximation of) the set of
possible answer substitutions for an atom is needed. The
next example illusirates how this is handled.

Example 4.8

(0, [)-
#([H|T), [GIS])

d(H, [H|T], T).
dG,[H|T),[H|U]) — d(G,T,0).

— d(G,[H[T},U),p(U,5).

Assume that § = {p(z,y) | = is a nil-terminated list and
y is free}. Notice that ByTw contains the set {p(z,y} | =
and y are free variables}, We are not able to define a level
mapping on Ksie that can be used to prove recurrency
with respect to 5. This is not surprising, since P is not
terminaling with respect to 5.

However, program P is lefi terminating with respect
te 5. We prove this by showing that P is accept-
able with respect to §. The set Ry lw is the union
of {plz,¥) | = is a vil-terminated list and y is free}
and {d{z,y,2) | © and z are free variables and y is a
nil-terminated list}. This can be found by using ab-
stract interpretation. Since there is only direct recur-
sion in program P, it suffices to show that: (1) for
any ple,y) € R5'Tw, lpfz,a)l > [p(0, S)dol, whee

= mgu(p(z, y), p([H|T},[G]|5]}) and ¢ is a computed
answer substilution for (P, — d(GF, [HlT].H:IQL and (2)
for any d{z, v, 2) € Ry Tw, ld(z,y,2)| > |[d{G, T, U,
where 8 = mou(d{z,y, z), d G, [H|T],[H]T])).

Mow, in practice, the statement "o is a computed an-
swer substitution for (P, — d(G,[H|T],U)#)" can be
replaced by "[|[#|T)éo]|, = {jU6clj, + 1. This latter
statemenl is a so-called linear size relation, which ex-
presses a relation between the norms of the arguinenis
of the atoms i the success set of the program. Allerna-
tively, it can also be interpreled as a {non-Herbrand)
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model of the program. For more delails we refer to
[Verschaetse and De Schreye 1992), where we describe
an sutomated technique for deriving linear sise relations.

By taking this information inte account, and by taking
[#(z, )| = ||=||; for any p(=, ¥) € RS fw — notice that «
is rigid with respect to ||.||, — we find: |p(=, )| = ||z]|,
LA (T0ll, = (I[HIToll, = ([U6all, + 1 > ||D6o]),
|p{ U, 8)6e|.

The second inequality, |d(z,y,2)| > |d(G,T,U)9|, is
more easy to prove. This time, the list-length of the
second argument can be taken as level mapping. Since
both inequalities hold, we can conclude that the program
is acceptable with respect to the set of atoms that is
considered,

Automatic verification of the conditions for recurrency
and acceplability is handled by reformmulating them into
a problem of checking the solvability of & lncar system of
inequalities. This part of the work is deseribed in more
detail in [De Schreye and Verschaetse 1993].
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