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Abstract

In this paper, we explore the Iogical systemn which reflect
the dynamical model. First, we define the "causality™
which requires "time reference”. Then, we map the can-
sation to the specific type of logical implications which
requires the time fragment df > 0 at each step when
causal changes are made. We also propose a set of ax-
ioms, which reflect the feature of state-space and the
relation between time and state-space. With these ax-
ioms and legical implications mapped from the dynam-
ical systems, the dynamical state transition can be de-
duced logically. We also discussed an alternative way of
deducing the dynamical state change using time opera-
tors and state-space operators.

1 Introduction

Although the dynamical systems and logical systems are
considered to be compleiely different systems, there are
several elements in common. We mapped from dynami-
cal systems to logical systems to investigate the following
queskions:

{1) How the fundamental concepts in dynamical sys-
tems such as ohservability, stabililty can be related to
those in logical systems such as completeness, soundness
? (2} In order to attain the dynamical simulation on the
mapped logical systems, what are necessary 7 (3) Can
the qualitative simulation be carried out by deducing
the future state from the current state and some axioms
characterizing time, state-space and their relations 7

We consider it is crucial to discriminate (physical)
causalily explicitly from logical deducibility. We stud-
ied a causality characterized by "the time reference”
other than event dependency for the discussion of phys-
ical causality. The physical causality (or equivalenily
“change" through physical time) is intrinsically embed-
ded in a dynamical model which states the causal relation
between what is changed and what makes the change.

In this paper, we treat the physical causality as specific
type of deduction which always requires the fact of the
lime fragment df > 0 at each step. By mapping the dy-

namical model as well as some meta-rules which reflects
that the state-space of dynamical systems is continuous
to logical rules, the quelitative reasoning on dynamica
systeme can be dane by logical deductions.

Section 2 discusses the causality on the dynamica
model. The causality is defined in terms of physica
time. Then the causation is mapped to the logical im-
plication which requires time fragment (df > 0) at each
slep. Cause-effect sequence is obfained by the deduction
where the new fact di > 0 is required at each step. Sec-
tion 3 discusses the relation hetwean aome concapls on
dynamical models and those on logical systems. Section
4 presents a set of axioms from which state transitions
are deduced logically. Section 5 discusses an alfernative
formalization of logical systems for deducing the dynam-
ical changes.

2 Mapping Causality in Dy-
namical Models to Logical Im-
plications

2.1 Causality referring to time

The causality has the following two requirements, which
seemn intuitively sound for a causality for the discussion
of dynamical change. When we say "the event A caused
the event B”, we must admit

(1) Time Reference : The event A occurred “before”
the event B, (2) Event Dependency: The occurrence o
the event B must be "dependent on™ the occurrence o
the event A.

The "time reference” plays a crucial role to make
clear distinction between "the causality” and logical de-
duction. In the original dynamical model of the form:
dYfdt = X

containg the "buili-in causal” direction from the right
hand side to the left hand side. We restrict ourselves to
interpret the form dY/df = X as follows: X > 0 caused
dt > 0} or is capable of causing the event of Y increase
d¥ > 0). The requirement of the new fact df > 0 should
be claimed to verify the "built-in causality”. Thus the



form will be mapped to the logical form:

2.2 Language for dynamics

In order to logically describe the constraint of dynamical
madel, we use the following First Order Predicate Cal-
cules. We use the 4-place predicates p(x,i), n(xi), =[x/
which should be interpreted as positive, negative, zero of
the variable x at cerlain moment i. p(x,i), for example
is interprated as follows:

(2,4) = {Erue, if % (al time i} > 0
PLEY = false, otherwise.

Since the state must be unique at any moment, these
predicates must satisfy the following uniqueness axioms

LI

U-(1) Vavi(p{z, &) = ([~ nlz,£)) A (~ 2(z,9))
U-(2) ¥a¥i(n(z, 5} = ((~ plz,d)) A [~ 2(z,1))))
U-(3) VaWi(z(z,i) — ([~ nlz,9)) A [~ plz,1))))

We also use the Z-place predicate of inequality >
{z,y). Other than these three predicales, we also use
functions such as dfdt{time derivative), +(addition),
—(substraction), -(multiplication), /(divisien) defined cn
the time varying function x(t) in our language.

With these predicates, the causalily defined from X to
Y can be written by:

p{ X (2), i) A pldt, i) — p(dY/dt,q)
A(X(t), ) A pldt, §) — n{dY/dt, i)

X (), 1) v =(dt, 1) — =(dY/dL, 1)

2.3 Causality in dynamical models

We formalize the "causality” by the propagation of sign
in the dynamical model. In the propagation, time refer-
ence is included, since p(df, i) is always needed to con-
clude the cansation.

Example 2.1,

In arder to compare
the simulation results with those done by other quali-
tative simulation [de Kleer and Brown 1984], we use the
same example of pressure regulator as shown in Fig. 1.

We can identify the cauvsality in the feedback path.
The flow also is cansed by a driving force and by the
available area for the flow. Further, the pressure at a
point is caused by the flow through the point. Reflecting
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these causal path, the following model is obtained.

d§Xsfdt = —a-6Po—d-5Xs
d5Q/dt = b-(§Pi—§Po—c-(2X s QG -Q*6Xs) /X 5*
déPofdt = e- (2Q5Q — f - §P0)

where a, b, c,d, ¢, and f are appropriately chosen pos-
itive constants. & x denotes the variance from the equi-
librium point of x.

A Schematic Diagram of
Pressure Regulator

Fig.1

The first equation of the model, for example, is
mapped to the legical formulae:

n(8po(t), i) A pldt, i) — pldézs/dt, )
plépo(t), &) A p{dt, i) — n{dézs/dt, i)

z(8po(t), 1) v z(dt, i) — z({dbzs/dt, i)

With the set of logical formulae, which are mapped
from the dynamical equalions and the following axioms,
we can obtain a cause-effect sequence by the causal de-
duction on this model.

I-{1)
Ve¥ivi(z(z, ) Ap(de/dl,d) A7 = 1) —

k({5 > k) Ak > §) A plz, 5, k)
-(2)

VeWivi(z(z, ) Anlds/dt, i) A5 > i) —
Fk{(§ = k) adlk = i) Aniz, g, k)

These  are  the  instant  change  rules
[de Kleer and Bobrow 1984], which state that z(z,?) is
a point with measure zero.

Suppose Pi is disturbed p{§Pi,0) when the system
is in a stationary state (all the derivatives are zeros
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then the initial sign vector is (6Pi,8P¢,6Q,6Xs) =
(+,0,0,0). We will use thizs siate-state vector mota-
tion when needed instead of an awkward notation of
p(6Pi,0), 2(5Po, 0), 2(6Q,0), 2(6X s, 0).

By the causal deduction, p(6Q,N1) is first ob-
tained(first step). Including this new state as the fact,
we can then obtain p(§Po, N2) by the causal deduc-
tion again{2nd step). Including this state as the new
results and using third time fragment di > 0, we obtain
n(éXs, N3) by the causal deduction (3rd step).

3 Logical System and Dynami-
cal Systemn

In the previous section, we regarded the causality built-
in the dynamical model as logical implication. Then, the
dynamical state change can be carried out in a similar
manner to deduce the new fact from the logical formulae
corresponding to the dynamical model and the time frag-
ment p(dt, i). In order to use the causal relation in the
dynamical model, the dynamical model must be original
one. That is, the criginal dynamical model must reflect
causal path between two physical entities.

In this section, we consider some correspondence be-
tween the important concepts in dynamical systems and
those in logical systems.

Theorem 3.1{observability and deducibility)

The dynamical system is qualitative ohservable from
a cbserver y iff the non-zero of the observer y can be
deduced in the mapped logical systermn when the fact
that some variables (corresponding to the dynamical sys-
temjare non-gero is given.

This result can be used io save some deduction pro-
cesses when some variables are known Lo be observable
or not. Further, this result can also used to investigate
the qualitative stability which can be known by the ob-
servability of the system [Ishida 1989).

Definition 3.2 {completeness and soundness)

The mapped logical system is called complete (sound)
if all the state which can (net) be attained by the corre-
sponding dynamical system in the finite time can (not)
be deduced in the finite number of steps.

Conjecture 3.3

The mapped logical system is always complete but not
always sound.

This [act is often stated in qualitative reasoning, but
not formally proved yet. Most formal discussion may be
found in [Kuipers 1985 Kuipers 1986), stating that

Each actual behavior of the system is necessar-
ily among those produced by the simmlation.

But,

There are behaviors predicted by qualitative
simulation which do not correspond to the be-
haviorof any system sarisfying the qualitative
structure description.

We will see the example showing the lack of soundness
of the mapped logical system in the next section. The
lack of soundness is due to the following fact,

Proposition 3.4

Two equivalent dynamical systems may be mapped to
the different logical systems.

That is, two dynamical systems which can be trans
formed to each other, may be mapped lo the different
logical systems. In fact, a dynamical system is usually
mapped to a part of the exact logical system. There-
fore, in order to make the mapped logical system close
to the dynamical model, we must map from the multiple
dynamical models which are equivalent as a dynamica
model, and combine these mapped logical systems. We
have not yel known what kinds of equivalent dynamica
models suffice to make the mapped logical system exact.

4 Reasoning about State by De-
duction

The cansal deduction stated in the previous section can-
not say anything as to changes when some time interva
passed. That is, when many variables approaching o
zero, which one reaches zero firsi. In order to determine
this, meta-rules which are implicit in dynamical models
must be explicitly introduced. The following axioms re-
flect the fact that the state-space of the dynamical mod-
els are continuous. The lack of continuous and dense
space in the logical system is the fundamental peints
which discriminate logical systems from dynamical sys-
{ems,

T-(1)

Ve¥i(p(z, i) A n(dz/dt, i) — ({7 > 1) A2z, 5)))
T-(2)

VaVi(n(z, ) A pldz/dt, §) — 35((j > i) A plz, )

These axioms T-{1),(2) comes from value continuity
rule stated in [de Kleer and Bobrow 1984]. This ax-
iom T does not correctly reflect the world of dynamica
model. Even if = > 0 and dz/df < 0, 2 does not neces-
sarily become gero in the finite or infinite time.



M-(1)
V2V 12 p(x, 11) A nlz, 12} A (72 > 1)) —

353(2(z, 33) A (73 > §1) A (52 > j3)))
M-(2)

VaV¥j1vi2(n(z, j1) Ap(z, i2) A (72 > j1)) =
373(=(x, j3) A (33 > §1) A (52 > §3)))

These axioms M-(1),(2) corregponds to the well-known
intermediate value theorem, which reflects the continuity
of the function x. Axioms T and M states the continuity
of the state-space and that of the function from time to
state-space. Other than axioms U,LM,T, we need the
following assumptions. That is, the state remains to be
the same as the nearest past state unless otherwise de-
duced. We call this no change assumption. We could
not formalize this assumption by a logical formula of cur
language so far. This seems to be a common problem
to any formalization for reasoning about such dynamic
concepis as state change, actions, and event. The situ-
ation calculus [McCarthy and Hayes 1969], for example,
uses the Frame Azioms' to avoid this problem.

Example 4.1.

Let us consider the mass-spring system with friction
[de Kleer and Bobrow 1984] (Fig. 2) whose model is of
the form:

(41) defdt = v

(42) dufdt = —kz — fuv where k and f are positive
constants, '

(4-2) is the original form containing the built-in causal-
ity whereas (4-1) is the definition of v,

Fig.2 A Schematic Diagram of
Mape-Spring System with Friction

As for the initial sign patterns of (z,v,du/dl), we
consider only three cases; (+, —, —), (+,+, =), (. = +)-
Let (4, denote the set of logical formulae correspond-
ing to the dynamical model, and Gy these correspond-
ing to the axioms U,I,T,M. The sign pattern (+, 4+, +)
and its opposite pattern (—, —, —) are are inconsistent,

1Frarne axioms are collection of statements that do not change
when an action is performed.
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since (p{z,0) A p(v, 0)) U G — nidv/dt,0). This re-
sult nf{duv/dt,0) is inconsistent with the initial pattern
pldu/dt, 0) under the uniqueness axiom U.

We do not consider the initial sign pattern which con-
tains zero for any variables, since the pattern will change
immediately to the sign pattern with only non zero pat-
terns by axiom I. Thus these three patterns cover all the
possible sign combinations.

We only show the deduction for the simulation of the
case 1 when p{z,0), n{v,0), n{dv/dt, 0) are given as the
initial pattern. Other cases can be deduced in a similar
rmanner to this case 1 from the initial sign pattern, the
et of logical formulae Gy, and ;. By the axiom T,

p(z,0) An(v,0) = INI((N1 > 0) A z(z, N1

By the no change assumption, other variables are as-
sumed to remain the nearest past signs; that is

niv, N1), n{dv/dt, N 1).

However,

(n{v, N1) A z(z, N1))U Gy — plz, N1).
Thus, we have

z(z, N1), nfv, N1}, pldu/di, N1).

Then by the axiom M,

(N1 > 0)An(de/dt,0) A plde/di, N1) — IN2((N2 >
D) A(NL > N2) A (=(dv/dt, N2))

By the no change assumption, other variables at time
N2 are assumed to remain the nearest past signs; that
is p{z, N2), n{o, N2). Since n(v, N2) A z(dv/dt, NZ) U
G — pld®vfdi®, NT)

and by the axiom I,

p(d?u/di?, N2) A z(dv/dt,N2) A (N1 > N2) —
IN3((N1> N3) A (N3 > N2) A p(dv/dt, N3)).

Again by the no change assumption,
plz, N3),n(v, N3).

By applying the axiom I to the state at N1,

n(v, N1) As(z, N1) — IN4((N4 > N1) A p(z, N4)).

n(v, N4) and p{dvu/dt, N4) are obiained by the no
chenge gssumption. By applying the axiom T to the
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state N4,

n(v, N4) A p(dufdt,N4) — INS((N5 > N4) A
(z(v, N5)).

Again signs of other variables at N5 remain to be the
same as those at N4. By applying the axiom I to the
state N5, we have

2(v, N5) A pldufdt, N5) — 3N6((N6 > N5) A
plu, N6))

In summary we have deduced, the set of the staile
at different time p(z, N2), afv, N2), =z(dv/dt, N2),
plz, N3), n(v, N3), p(dv/di, N3), z(z, N1), n(v, N1),
pldv/dt, N1),
nlz, N4), n(v, N4), pldv/di, N4), n(z, N5), z(v, N5),
pldvfdt, N5), n(z, N6), n(v, N6), p(dv/di, N6) and the
order of time (0 < N2 < N3 < N1 < N4 < N5 < N6).
Tables 1 show the slale transitions starting the initial
patierns case 1, case2 and cased,

Tables 1 State Transition by Legical Deduction

c
dx/dt | d%z/dt?

t i x

o + - -
14 + - 0
20+ - +
340 - +
4 - - +
HE 0 +
G - + =+

At step 6, the opposite pattern of the

initial pattern comes.

LM
[t ] x [dx/dt [ d%=/at?
0f+| + =
Ij+] © -
s+ - 5

At step 2, the same pattern as the initial
pattern of case 1 comes.

[
dx/dt | d*z/di
- T
- +
- +

b [ et | | =
L =1

At step 2, the opposite pattern of the
initial pattern of case 2 comes.

In the logical system mapper from the dynamical
model (4-1) and (4-2), it is impossible to deduce the
state which corresponds to the convergence to the peint

(=, dz/dt, Pz fdt*) = (0,0, 0) which is attained when in-
finite time passed in the dynamical model. In fact, we
only have periodic states as shown in Tables 1. How-
ever, the infinite sequences of deduction similar to this
convergence can be found. When the initial sign pattern
is (z,dz/dt, *z /di®,...) = (+, -, +,...), apply the axiom
T to n{dsc/dt, 0) then we have

ANI(NT = 0) A =(dz/dt, N1)).
Then applying the axiom M to this result, we will have
INA(N1 > N2) A z(d*z fdt?, N2)).

This application of the axiom M progressively to any
higer order time derivative of x. That is we have

AN+ 1(Ni > Ni+ 1) A z{d 2 fdt™, Ni 4+ 1)).

This is an interesting corresponding between the dy-
namical model and the mapped logical systems. It may
suggest to introduce some operations in the logical sys-
tem (other than deduction) which corresponds to the op-
eration limy. z(t). _

We will shew this convergence can be deduced even
in the finite step using the logical implications mapped
from a different (but equivalent) dynamical model. The
dynamical model (4-1), (4-2) is equivalent to the dynam-
ical model:

(4-3) B = 2* 4 1/k = (dz fdt)?
(4-4) dEfdt = — f(dz/dt)?

This states that E and hence x will eventually become
zero as long as f > 0, Table 2 shows the state transition
of the mapped logical system. This convergence of the
dynamical system is attained in the infinite time, and
hence need not be deduced in the mapped logical sys-
tem. Since the current logical system does not have the
concepts of convergence and infinite step, these concepts
are out of scope of the mapped logical systems.

The results show that the logical system mapped from
the dynamical model (4-3){4-4) is quite differet from that
mapped from the dynamical model (4-1)(4-2), althogh
these dynamical models are equivalent, Therefore, this
example shows the correctness of Proposition 3.3. This
point is also fundamental difference between dynamica
systems and logical systems.

Table 2 State Transition of Mase-Spring
System(Energy Model)

[T [ = dx/at [E [de/ar
[Of*[ * [+ -
10 0 (0] ©

* denotes any sign +, - 0,



5 Discussions

We first discuss the temporal lagic with the lemporal
operators F,P [Rescher and Urquhart 1971), where FA
(PA) means A will{was) be true at some(past) future
time. With the axiom schemata, the feature of these
temporal operators, and even the {eatures of time {e.g.
whether it is transitive, dense, continuity ) can be char-
acterized, However, since the logic does not tell anything
about the feature of the state-space and the relation be-
tween the state-space and time, it is not possible to infer
the change in the state-space. In fact, the axioms [, T, M
given &t section ? characterize the feature of the stale-
space. An alternative to our approach is to define the
space operators similar Lo the time operators. One way
of defining space operator follows:

F_, P, where F, A(P,A) means that A is true at some
point where x is larger(smaller) than the current value,
With this definition, the previous {ime operator can be
written as Fy, F.

With these space operators, the axioms 1T, M may be
written as:

I-{1) 2(x) — G:(p(<))
I-(2) 2(x) — Ha(n(z})
T-(1) p(x) — Pe(a(z))
T-(2) n(x) — Fu(2(2))
M-(1) plx} AFe(n(z)) — Fo(Fs(2(2)))
M-(2) n(x) AF.(p(2)) — Fe(F(2(z)))

Since these axiom schemata [T M characterize the fea-
ture of only state-space itzelf, we need the following ax-
ioms TS which characterize the monotonic relation be-
tween time and state-space.

TS-(1) p(dx/dt) — ((FA = F.A) A (PA — P,A))
TS-(2) n(dx/dt) — ((PA — F.A) A{FA —~ P.A))

where God o~ Fo ~ A Ho A e B AL

Here, the time operators are used instead of the time
index for the sign predicates p,n,s. The good point of this
space operalor approach is that it can be discussed as a
natural extension of temporal logic with temperal oper-
ators. Heowever, ils critical point is that although these
space/time operators can tell the temporal precedence of
the event but it cannot describe that the different event
A, B occurred at the same time. In the approach taken
in section 4, it is described by putting the same time
tags.

When compared with the qualitative reasoning
[de Kleer and Bobrow 1984], our way of qualitative rea-
soning is different from theirs in the following two points:
{1) In reasoning; we defined another causality which

refers to time strictly. Causal reasoning is carded out
by mapping causality in dynamical models to the deduc-
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tion under the condition of df > 0. Time independent
relations are mapped to only deductions. Then cansa
reasoning is done by requiring the facts di > 0 in every
step. This logical reasoning can be implemented on the
the logical reasoning system such as prolog by providing
axioms so far proposed and the mapped dynamical mod-
els. (2) In modeling; since we use the causality built in
the dynamical model, we skip qualitative modeling pro-
cess. That is, we use the dynamical model as qualitative
model. However, the dynamical models must be care-
fully selected to insure the causal path in the dynamica
madels can be reflected on the mapped logical systems.

6 Conclusion

We discussed a mapping from dynamical systems to log-
ical systems to see the correspondence of the fundamen-
tal concepts in these two domains, to implement the
causal reasoning system on a logical deduction system.
To clearly separate the physical cansality from the usua
deduction, we defined causality in physical system by
making lime explicit,

Many fundamental problems remains such as; whether
or not the complete and sound logical system for a dy-
namical system exists 7 If yes, how the complete and
sound logical system can be attained?
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