FROCEEDIMGE OF THE INTERNATIONAL CONFERENCE
OM FIFTH GEMERATION COMPUTER SYSTEMS 1992,
edited by ICOT, £ ICOT, 1992

977

Performance Evaluation of the Multiple Root Node Approach
to the Rete Pattern Matcher for Production Systemst

Andrew Sohn
Department of Computer and Information Sciencs
New Jersey Institute of Technology
Newark, NI 07102, sohnf@cis.njit.edu

Abstract- Much effort has been expanded on special archi-
tectures and algorithms dedicated w efficient ﬁﬂcessing of the
patiem malching step of production systems. In this paper, we
investigate the possible improvement on the Rete pattem match-
er for production syslems, ficiencies in the Rete match algo-
rithm have been idemtified, based on which we introduce a pat-
tem matcher with multiple roof rodes. A complete implementa-
tion of the multiple root node-based production system
interpreter is ﬂtmm to investigate ils relative algoritfimic be-
havior over the Rete-based Ops5 production systemn interpreter.
Benchmark production system programs are exceuted {mof sim-
ulated) on a sequential machine Sun 4/420 by using both inter-
preters and varous experimental results are presented. Owr in-
vestigation indicates that the multiple root node-based produc-
tion system interpreter would give 2 maximum of up to 6-fold
improvement over the Lisp implementation of the Rete-based
Ops5 for the match step,

1 Introduction

The importance of production systems in artificial intelli-
gence (AQ) has been repeatedly demonstrated by a large
number of expert systems. As the number and size of ex-
pert systems grow, there has however been an emerging
obstacle in the processing of such an important Al applica-
tion: the large mawch time. In rule-based production
systems, for example, it is often the case that the rules and
the knowledge base needed to represent a particular pro-
duction system would be on the order of hundreds to
thousands. It is thus known that applying a sirople match-
ing algorithm to production systems would yield
intolerable delays. The need for faster execution of produc-
tion systems has spurred research in both the software
[2,3,7,8] and hardware domains [6,11].

In the software domain, the Rete state-saving match al-
gorithm has been developed for fast patemn marching in
production systemns [2]. The motivarion behind developing
the Rete algorithm was based on the observation, called
temporal redundancy, which states that there is litte
change in database between cycles. By storing the previous
match results and using them at later time, matching time
can be reduced [1].

Inefficiencies in the state-saving Rete algorithm were
identified, based on which the non-state-saving Treat
match algorithemn was developed [10]. The motivation be-
hind developing the Treat algorithm was MeDermott's
conjectare, stating that the retesting cost will be less than
¥ This work is supponed i part by the NSF under gramt Mo, CCR-S013965.

Jean-Luc Gaudiot
Depariment of Elecirical Engineering-Sysiems
University of Southem Califomia
Los Angeles, CA 90089-2563, gaundiotiuse.edo

the cost of maintaining the network of sufficient tests [9).

In this paper, we further identify the inefficiencies of
the Rete algorithm, based on which we introduce a pattern
matcher with Multiple Root Nodes (MRN). Section 2 gives
a brief inroduction ro production systems and the Rete
match algorithm. Section 3 explicates the inefficiencies of
the Rete matcher. A Lisp implementation of the MRN-
based production system inierpreter is then presented
along with the distinctive features of its implementation,

Section 4 presents benchmark production system pro-
grams and experimental results on both the Rete-based
OPS5 interpreter and the MEIN-based interpreter. Various
statistics gathered both at compile time and runtime are
presented as well. Performance evaluation on the two in-
terpreters are made in Section 5 in terms of number of
comparison operations and execution dme. The last sec-
ton concludes this paper.

2 Background
2.1 Production systems

A production system as shown in Figure 1 consists of a
production memory (PM), a working memory (WM}, and
an inference engine (IE). PM (or rulebase) is composed en-
tirely of conditional staternents cafled productions {or
rules). These productions perform some predefined actions
when all the necessary conditions are satisfied. The lefi-
hand side (LHS) is the condition part of a production rule,
while the right-hand side (RHS) is the action part. LHS
consists of one o many elements, called condition ele-
ments (CEs) while RHS consists of one to many actions.

Praduction
Memory

Awm: change in warking memory

Figuire 1: An architeclure of production spsiems

978

The productions operate on WM which is a database of
assertions called working memory elements (wmes). Both
condition clements and wmes have a list of clements,
called anribute-value pairs (avps). The value w an ar-
tribute can be either constant or variable for CEs and can
be constant only for wmes. A simple production system
with one rule is shown in Figure 2. The inference engine
executes an inference cycle which consists of the follow-
ing three steps:

Q Pattern Matching: The LHSs of all the production
rules are matched against the current wmes o deter-
mine the set of satisfied productions.

Q Conflice Resolution: I the set of satisfied productions
is non-empty, one rule is selected. Otherwise, the exe-
cution cycle simply halts,

O Rule Firing: The actions specified in the RHS of the se-
lected production are performed.

The above three steps are also known as Match-Recog-
nize-Act, or MRA. The inference engine will halt the
production system either when there are no satisfied pro-
duoctions or a user stops.

2.2 The Rete match algorithm

The Rete match algorithm is a highly efficient approach
used in the marching of objects in production systems [2].
The simplest possible matching algorithm would consist in
going through all the rules and wmes one by one o find
match(es). The Rete algorithm, however, does not iterate
over the wmes 1o match all the rules. Instead, it constructs
a condition dependency network like shown in Figure 2,
saves in the network results from previous eycles, and uii-
lizes them at a later time.

Production Memory Working Memory
Rulel: wmel: [{p 1) (g 2) {r+)]
e X)(d ¥ JCE] wmeZ: [{r=){d +]]
[k ¥ iCE2 wmed: [l «)(d +)]
[pUig2yirX)] CEI wmed: [{b3)]

wmes: [(b+)]

-
[Remove (b Y)] sAction 1 wmeh: [ip 1) 4g 33 (r 7

Rulel i instantiated.

Figure 2: A Rele network for Rule 1,

Given a set of rules a network is built which contains
information extracted from the LHSs of the rules. Figure 2
depicts a nerwork for Rule 1, with the following nodes:

Q Root Node (RN) distributes incoming 1okens {or wmes)
to sequences of children nodes, called one-input nodes.

O Onre-Inpue Nodes (OIN) test intra-element features
contained in a condition element, i.e., compare the val-
ue of the incoming wmes 10 some preset values in the
condition element. For example, CE1 of Rulel con-
tains 2 inira-element features and therefore 2 OINs are
needed to test them, The test result of the one-input
nodes are propagated to nodes, called two-input nodes.

O Two-fapur Nodes (TIN) are designed to west inter-con-
dition features contained in two or more condition
elements. The variable X, which appeared in both CE1
and CE3, must be bound to the same value for rule in-
stantiation. Attached to the TINg are left- and right
memories in which wmes matched through OINs are
saved, The result from two-input nodes, when success-
ful, are passed o nodes, called terminal nodes.

O Terminal Nodes (TN) represent instantiations of rules
Conflict resolution strategies are invoked to select and
fire a mle.

There are other variations to the nodes listed above.
Given the above network, the Rete algorithm performs pat-
tern matching and we shall not go into detail. See [1,2.5]
for more detadls.

3 The MRN Matcher and Its Implementation

The multiple root node based interpreter is presented along
with its Lisp implementation.

3.1 The MRN Matcher

The Rete algorithm described earlier presents two apparent
bottlenecks: one in the root node and the other in two-input
nodes, as illustrated in Figure 3. Tokens coming into the
root node will pile up on the input arc of the root node since
there is one and only one root node which can distribute -
kens one at a time to all CEs. For the network shown in

Figure 3: Two bottlenecks of the Rete. (1) piling up of wmes on an
arc of the root node, resulting in a sequential distribution of wmes 1o
all CEs one at a Gme. (2) O0r) or O{m) comparisans in TINs.

Figure 3 where there are a conditon elements, the root
node will have 1w make nx distributions to the network
when x wmes are present on the input zre of the root node.

The second ineflciency can also be seen on Figure 3.
Assuming that m tokens are stored in the left memory of
the two-input node and a token is matched on the right in-
put. The arrival of this last wken will irigger the invocation
of m comparisons with the wmes received and stored in the
left memory. Shoeld the situation have been reversed and
n tokens be in the right memory, a token on the efl side
would provoke n comparisons. The internal workings of
this two-input node are therefore purely sequential, In or-
der to avoid wasting time in searching the entire memory,
an effective allocation of two-input nodes and one-input
nodes should be devised, In this paper, we will limit our-
selves to the first bouleneck. Discussions on the second
bottleneck can be found inf4,5].

The first bottlencck described above can be resolved
by introducing muliiple root nodes (MRN) in the network,
as depicted in Figure 4. This introduction of multiple root
nede is based on the obzervation that a wme that has a
AVPs never matches a CE that has m AVPs where n<m.
For example, 2 wme, [(a 1) (b 2)], cannot mawch a CE, [(a
K) (b Y) (e Z)], where X, Y, Z are variable, since the wme
iz missing the third AVP (¢ Z). However, 2 wme [(a 1} (b
2) (¢ 3) (d 4)] can match the CE. One should note here that
the above observation is based on algorithmic behavior,
nat Ops5 syntactic behavior,

Figure 4: An MEN network, BNn distrbwes wines 1o CEs under
RMN1 through BNn, A wme (i) refers o & wme with § AVPs,
where j signifies is arrival order. The MREN network also desmon-
strates a parallel distribution of wmes, where n RNs can simulia-
neously distribute » different wenes 10 the natwork.

Constructing an MEN network is siraightforward. All
LHSs are split into condition elements (CEs). All CEs are
grouped based on the number of AVPs in 2 CE, ie, a CE
with n AVPs belongs to 2 group a. Associated with each
group is 2 rool node which distributes a set of wmes o a
particular group of CEs of the MRN network. For example,
RN2 of Figure 4 distributes wmes with 2 AVPs to those
CEs, where each CE has not more than 2 AVPs,

Suppose that the network has n groups, each of which
has equally m CEs, i.e., the total mamber of CEs is nm. As-
suming that the number of wmes generated in each
preduction cycle is constant, i.e, &, then the original Rete
network will need nmik dismribution. Assuming that & wimes
are equally distributed over the n groups, i.e., &/n wmes per

979

each group, the MRN network will only need
(142+...+nymkfn dismributions. For an even distribution of
wmes over groups, the MEN maicher is guaranmeed to
vield 2-fold improvement over the Rete network, Next sec-
tion will substantiate our prediction, In the mean time, we
shall present the Lisp implementation of the MEN-based
matcher.

3.2 Characteristics of the MRN implementation

The MRN-based production system has been completely

implemented in Common Lisp from scraich. A complete

listing of Lisp codes can be found in [12]. Its functionality
is 100% up to the Rete-based OPS5. The main features of
the MRN implementation are;

O Free of global variables, except a single one which
traces the number of wmes generated during the life-
time of a particular production system program,

O Owver ¥% of the functions written in tail-recursion, and

O A simple data structure using defstuct of Lisp.

A major reason to avoid vsing global variables is in
that the program should be easily ported o variows multi-
processor environments without having to change much of
its source codes. By not using global variables, the poten-
tal communication and synchronization overhead
berween processes would be reduced when ported to a
multiprocessor environment. Furthermore, encapsulating
the scope of variables within & function would allow us to
analyze the data dependency, if any, between functions,
thereby resulting in easy program partitioning. The ul-
mate goal of parallel processing, extracting and exploiting
maore podential paralielism from given codes, would then
become within a reachable distance. To substantiate this
claim, the MRN-based production system interpreter has
been implemented in a daa-flow language SISAL
{Streams and [teration in a Single Assignment Language)
and is currently being pored o multiprocessors, including
shared memory multiprocessors such as Cray!

Much effort has been spent on writing the program in
tail recursion. One reason to do so was also due partly o
the portability to varous mueliprocessor environments.
When functions are wrinen in wail recursion, it can be much
easier to understand its behavior since the program racing
is automatic. This easiness in understanding of the behav-
ior of a program will directly translate into an easy
conversion to iterations. Those vectorizing compilers or
parallelizing compilers can be readily vsed to convert the
Lisp programs into a language suitable for vector or muii-
PrOCESSOTS,

The third feature, a simple data stocture defsimuct,
would not necessarily be considered a good feature. The
main reason employing defstruct is that it will simplify the
implementation process due to its structuredness. This
structured approach will shield the data dependency be-
tween data, i.e., dynamically changing memories in the
network. However, this dynamic data structure consumes
more memory space than other data sructures such as lists,
There is certainly a trade-ofl berween the runtime memory

980

space and the easiness in programming and debugging.
Due 1o the space constraints, we shall not illustrate imple-
mentation details. Complete implementation details can be
found in [12].

4 Experimental Results

Benchmark production system programs are presented
along with the surface characteristics measured at compile
time. Both the Rete-based OPS5 and MEN-based inter-
preters were executed on Sun 4/490 to measure their
algorithmic performance. Statistics coliected at runtime
are: the execution time of a match step, the number of com-
parison operations for one-input nodes, and the
dismibution of wmes, All the measurements are done
against production cycle numbers.

4.1 Surface characteristics of benchmark programs

The five programs chosen for performance analysis are

commonly used ones, as seen from Table 1. Mote that the

size of production systems is not central to its performance

evaluation. Indeed, Gupta has commented that (1) we

should not expect smaller production systems (in terms of

number of productions) to run faster than larger ones, and

(2} there is no reason to expect that larger production 5ys-

tems will necessarily exhibit more speedup from

parallelism [5]. The programs used in this study are:

O Brick Sorting, to pick a brick from a pool and place
them in ascending or descending order,

O Monkey and Banana (MAB), for a monkey to grab a
banana hanging from the ceiling,

O N Monkeys and M Bananas (NMAB), the MAR with n
monkeys and m bananas,

O Walz Labeling, a labeling algorithm developed in
computer vision, and

3 N-Queen, a classical problem which places n queens on
nxn board,

Ps a b ¢ d ¢ [g B i
Brick T 16 15 2336 2 4 4 20 60
MAB 25 70 43 B409 59 5 14 16 58
SMAB 23 60 43 45195 39 5 12 113 278
Wil 4% 198 100 174891 90 5 40 245 297
8-Crueen 19 68 71 151935 36 6 11 1044 3866

4.2 Measurements on grouping

Grouping the condition elements (CEs) based on the num-
ber of Auribute Value Pairs (AVPs) is central to the MEN
approach. This would allow us to partition the production
systems into many pisces each of which can be processed
independent of the incoming newly generated wmes, Mea-
suring the distribution of condition elements over groups at
compile fime, we can predict the potential parallelism in
the given production systems. Figure 5 depicts the distoibu-
tion curve, where the x-axis shows group numbers and the
y-axis the percentage of each group in a particular produc-
tion system program.

In the Brick Sorting problem, there are four different
groups, where a group-n contgins condition elements, each
of which has n Atribute-value Pairs. For example, Group2
occupies slightly above 30% whereas Group 5 does 6% of
the totzl number of CEs. Condition elements of Monkey
and Banana are relatively equally distributed over four
groups, compared to that of Waltz Labeling where one
group is dominant over other groups. This dominance of a
group over another is not desirable and does not yield a
good performance. We shall come back to this analysis
shortly.

e
Distribution of Condition Elaments

B0 E Group 2 N
R
b Geeupd

= L] amups 7] b
H coupe

40 b 4

Percentage (%)
DI

o

Brick MAB N'

Table 1: Charactenistics of benchmark prodoction systems, where
PS=production system program, a=Mo of rules, b=Mo of CEs, c=No
af acts, d=0MMNs execuled, e= No of TINs, f=No of groups, g=Avg
CEs/gmup, h=Rule firings, i=WMEs generated,

The information collected from the above five produc-
tion system programs characterize various aspects of the
benchmark programs. Our purpose is to measure the rela-
tive performance of the MEN approach in terms of
execution time along production cycles. What is important
in our performance evaluation is the information on groups
of a production system program. Indeed, we find that even
a small size production system program such as Brick Sort-
ing problem would suffice.

Waltz
o T T T T T T
Distribution of Condition Elemeanis
o e B . ’
g WAR

s —o— HMAD

Percentage (%)
")

o 1 Z

Figure 5: Distribution of CEs over groups measured at compile time.

3
Group N

4]

4.3 Execution time on one-input nodes

Figure 6 shows the execution time of matching onc-input
nodes measured at each production cycle, There are sever-
al points at which execotion time run off the boundary.
Several points running off the boundary are unimportant
since our purpose is to show the relative performance.

an T .

T ————

Brick Sorfing

28F —o— e A
——— e
= ‘
g 15F
18- 1
nir 1
PP L B R S
Eal T T T T | T
wk Mankey and Banana

5
M
RFY

|

w2 T T Y — T
Wallz Labsaling

—a— MR
—=—= QPSS

T T T L L T L] I_*
M Monkeys & M Bananas

—_—— LN
=== 0OPFss

. T N |

a -] 4 L] L] id 4 94 9B 18 20
Preduction Cycls Number
Figure &: Execution time profile of matching one-input nodes.

981

For Brick Sorting and Waltz, it appears that both the
MREN and OPSS5 show a rather regular behavior while they
mainiain a reasonably constant distance between the two
curves along the x-axis. For example, in the Walte, the dif-
ferences betwesn two execution time curves for the cycle
numbers 5 to 10 are relatively constant, except at the cycle
numbers 3, 4, and 17. A similar behavior is also observed
in Brick. This kind of proportional distance between two
curves is important in predicting the possible outcome of
the MEN approach.

The MAB and NMAR, however, exhibit a slighiy dif-
ferent behavior compared to Brick and Waltz. For
example, the MRN curve in MAB gives an amplification
factor higher than the one for Brick or Waltz. This irregular
behavior is due partly to the memory management policy,
garbage collection, in Lisp which contributes to inaccurae
performance measurements. We shall give a more accurate
measurement shortly. Over all, it is obvious that the MRN
outperforms the OPSS in any of the four problems.

4.4 Number of comparison operations

Another criterion to measure statistics at runtime is count-
ing the number of comparison operations. Consider the
following simple Lisp function meamber:
(defun member {a)
{cond {{null [} ni)
tlequal a (car 1))
{t {membera (cdr B}

Suppose that the function is called with (membar 1 (26
47 1) It i clear that the function mamber will be called
five times and therefore, the number of comparison opera-
tons will be five, Figure 7 shows the number of
comparison operations for four programs. When we con-
sidered the execution time, we discussed that the behaviors
of the four programs are rather irregular. The MRN curve
of MAB in Figure 6 gave an amplification factor higher
than the one for Brick or Waltz, However, that irregular be-
havior no longer persists in Figure 7. This consistent
behavior is due mostly to the new criterion. Figure 7 again
demonstrates that MEN outperforms OPS3 for all pro-
grams,

4.5 Distribution of groups

Figure 8 shows the runtime distribution of wmes and con-
didon elements for four programs. Take the Brick Sorting,
for example. At runtime, there is no wme generated for
group2, proopd, and groupt. Those wmes generated for
Brick at runtdme fall inte either group? or groups. As we
can observe from Figure §, there is a considerable amount
of discrepancy between the runtime wme distribution and
the compile CE distribution.

For MAB, however, the simation becomes different.
Az we can observe from Figure 8, the discrepancy for
MAR becomes much smaller compared o that for Brick.
MAB and NMAB show a reladvely low discrepancy
whereas Brick and Waltz show a rather high discrepancy
in terms of the wme distribution and the CE distribution.

Contrary t the compile time distribution of condition

elements, most of the wmes generated at runtime fall into is no single rule which can predict the behavior of the runt-
a few distinctive groups. All the four problems have basi- ime dismibution of wmes. A simple conclusion we could
cally two groups actively working at runtime. However, draw from these discrepancy plots would be that more the
these diswibution curves are problem dependent and there discrepancy there is, more the improvement there will be,

200 T T Y T T T T T T T ™ T T T T T ¥
v Brick Sorting o Brick Sarling
E maaf e R N - —e— CEsmCT
2 —&= OP§5
B oueslt z wk
l;' il -]
c 40 r
& |
3
o
g &
Q 03 7 20k b
[
o A0 = -
= whk J
200 4
8 X P il P il -
o 4 & @B 15 [F 1& 18 18 28 [7
= T T T T T T T L.
w000 Monkay and Banane -
2]
oo -
oPss ml J
o
oo .) i
= E b J
Anos - J
e o
3000 -
ok E
0l =
B0 = Ll 2
o—8 - .
] 2 4 [4] g 12 14 s a T
1H0E T T T T T T T g T & T T
o || Waltz Lataling 1 _ [Yz Lelaiing
—o— dEkamcT
000 e = 1 —o wNEsE AT
wres B Owoepay
o 1
wem i, — 'l
5500 L a -
300 - wl
200 =
mr -
0o F
e L DGy G=0=0 I 1
. P T R R L 1 .
@ 2 4] B g 8 14 i@ B 0 [+] i a 4] = [T
L T T T T T T T T T T LE] T T T T T T
— N Monkeys & M Bananas | M Mankeys and M Bananas
g — mr —t— CEsmCT i
i“ —»— oegg s TS T a
L —f— Obagay i 1
g moeo E _
o) f
wooa b i - ot
g &
'E. El 2wl
: il
5 =l
o F o
e -
oo | 13 i 4
o I & L i i r M L & ,_..—--ﬂ--—-_.‘_!I i
1] H L] L B i 12 14 1§ 1B Fd -] 1 2 a 4 L] & ¥
Praducilon Cycle Mumber Group Number

Figure 7: Number of comparison operations on ong-inpul nodes. Figure 8: Runtime distribution of wmes.

5 Performance Evaluation

Based on the foregoing three different types of observa-
tions, i.e., one-input match time, number of comparison
operations, and distribution of wmes, we analyze the per-
formance of both interpreters,

5.1 Comparison of MIEN and OPS5

Figure 9 shows the ratic of MEN 10 OPS3 on one-input
match time for four different programs. Here, the ratio
means simply the comparison of two match time units for
one-input nodes. Again, x-axis is plotted against the pro-
duction cycle numbers whereas y-axis indicates the ratio of
two different approaches.

For Brick Sorting, for example, the cne-input match
time of OPS5 at production cycle number 13 is about 8
times morg than that of MRN, For NMAR, the one-input
match time of Ops3 at the cycle 13 is about 17 times more
than that of MRN. It is clear that there is & substantial im-
provement, ranging from 2 1o over 20, depending on the
programs and the prodoction cyele number,

Figure 10 gives a more accurate perfonmance measure.
It uses the number of comparison operations at each pro-
duction cycle. The x-axis is plotted against the production
cycle number while the y-axis is again the ratio of the
MRN-based match to Rete-based match. To closely exam-

n T T T T T T T T

e L Ratio of One-Input Match T]

I
(1
[l
[
]
1}
¥
P
i
i
[l
[
r
[
1
k
4
Il
[
"
1
]
¥
i

Ratio (OPS5/MAN)

a 1 1 1 [1 1 i i i i
Figure 9: Ratio of one-mput match tme,
20 — T T T T T T T T

Ratio of Mumbear of Comparisons 4

[3]

T
o e e

L

Ratio (OPSS/MAN)

&0 2 4 & & 10 12 14 16 18 20
Production Cycla Number

Figure 10: Ratic of number of comparison operations,

083

ine the improvement curve, consider again the production
cycle number 13 as we did for Figure 9.

For Brick Sorting of Figure 10, the number of compar-
ison operations performed by the Rete-based match ar
cycle 13 is about 8 times more than that by the MRN-based
maich, This improvernent of 8 is exactly the same as the
one we pbiained from Figure 9, For NMAB, the improve-
ment, however, becomes different from what we would
expect. Closely examining the NMAB curve of Figure 10
at eyele 13, we find that the improvement is 8! We remem-
ber that the improvement we obtained from Figure 9 for
MMAEB at cyele 13 is 17, This is not surprising because
measuring the real time can be affected by many factors
which we iterated several times. Nevertheless, it is clear
from the two improvement curves plotted in Figure 9 and
Figure 10 that the MRN-based match algorithm outper-
forms the Rete-based match algorithm. Since the objective
here is to compare the performance of the two march algo-
rithms, the two fgures would suffice the stated objective.

There are some other experimental results which are of
particular interest but due to space constraints we shall
have to be content with what we have presented thus far.
When the two figures are summed and averaged along the
production cycle number of x-axis, it gives an eventual im-
provement of six. The average improvement of the MRN
approach over OPS3 on one-input match time would reach
to six fold for the four production programs considered in
this smdy.

5.2 Discrepancy in the distribution of wimes and CEs

It is interesting 1o observe the discrepancy between the
compile time distribution of condition elements and the
runtime distribution of wmes. By lnding the discrepancy
between them, we can more accurglely locale the behavior
of each production system, thereby identifying the poten-
tial improvement for a given production system program.

Figure 11 displays all the discrepancies for the four
programs. Note the discrepancy curves in Figure 11 and
the improvement curves of Figures 9 and 10. Among the
four discrepancy curves, the Brick curve has a high and

regular behavior, which can in turn ranslate to a high im-
m T T T T

Discrepancy between CE and WME Disiribution

[=:]]

£

g
T

Percantage (%)
&

Group Mumber
Figure 11: Discrepancy between CE and wme distribution,

954

provement. The curve for Brick in Figure 11 verifies this
relaton in which the improvement is high when the fluctu-
ation is low,

However, the above statement on the relation between
the discrepancy and the improverent would have to be
further substantiated by more experimental resulis. Most
problems are runtime dependent and a simple prediction
rule would be problematic. Based on our observations, it
could be concluded that if there is more discrepancy be-
tween the compile ime distribution of CEs and the runtime
distribution of wmes, the prodoction system program
would have more potental parallelism in match step.

A complete execution time of production cycles is il-
lustrated in Figure 12 to help give an overall view of the
two interpreters. Again, the x-axis is plotted in production
cycle numbers bul the y-axis at this time is plotted in the
total production cycle time. The total matching time is
dominantly high compared to the selection time or action
time as Forgy has indicated [2]. In any case, the MR-
based production system inierpreter ouwtperformed the
Rete-based OPSS.

a0 T T T T T T Li T

J{TL Brick Sarting
ask 1} —o— RN Maich i
E —c— AN Skt
1 —f— WRN At
—me- PSS Msich
20 ﬂ e OPS5Seed 1

=k OFESAct

/

e

Executfon Time
B —

|
.
|
i
|
i

-e-,_::_‘_‘_‘_h
m""::_'_'
. .'\"
I
T
o

o oz a5 6 50 if 14 16 18 20
Produclion Cycle Numbar

Figure 12: A compleie execution tme for iwo approaches.

6 Conclusions

The main purpose of this paper was to evaluate the perfor-
mance of the multiple root node-based pattern matcher for
production systems, A bottlencck was identified on the
most efficient pattern Rete matcher, A solution to the bot-
tleneck was proposed by inroducing moltiple ot nodes
to the Rete matcher, The MRN-based production system
has been completely implemented in Lisp. To measure the
relative algorithmic performance of the MRN-based
maticher, benchmark production system programs were se-
lected and executed on Sun 4/90 using both the MRMN-
based interpreter and Rete-based OPSS. Experimental re-
sults indicated that the MRN approach would give a
multiplicative effect on the Rete-based production sys-
tems. The two criteria used in this study, one-input match
ume and number of comparison operations in a window of
20 production cycles, have shown that the MRN-based

matcher can indeed give on the average a 6 fold improve-
ment over the Lisp implementation of the Retwe-based
OPSS. Our experimental results suggest that production
systems have more potential parallelism than what has
been known. To further identify the complete source of
parallelism in production systems, we have been imple-
menting the MEN-based production system interpreter in
SISAL, a pure funcrional language targeted to data-flow
multiprocessors. The implementation is near completion
and when complete we will be able to identify very fine-
grain parallelism in production systems.

References

[11 Brownston, L., Farrell, R., Kant, E., and Martin, N.,
Programming Expent Systems in OPS35, Addison-
Wesley Publishing Company, Reading, MA, 1985,

[2] Forgy, CL., “Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem,” Artifi-
cial fntelligence 19, Seprember 1982, pp.17-37.

[3] Guudiot, J-L., and Sohn, A., “Data-Driven Multipro-
cessor Implementation of the Rete Match Algo-
rithm,” in Proc. of the Int'l Conf. an Parallel Pro-
cessing, St. Charles, IL, Aug. 1988, pp.256-260.

[4] Gaudiot, J-L., and Sohn, A., “Data-Driven Parallei
Production Systems,” IEEE Trunsactions on Soft-
ware Engineering, March 1990, pp.281-293.

[5] Gupta, A., Parallelisms in Production Systems, Mor-
gan Kaufmann Publishers, Inc., Los Alws, Califor-
nia, 1987,

[6] Gupta, A., Forgy, C.L., Kalp, D., Newell, A., and
Tambe, M., “Parallel OPS5 on the Encore Multi-
max," in Proc. af the Int' ! Conf, on Parallel Process-
ing, 5t. Charles, IL, August 1988, pp.271-280.

[7] Ishida, T., “Methods and Effectiveness of Parallel
Rule Firing,” in Proc. of the IEEE Conference on Al
Applicarions, Santa Barbara, CA, March 1990,

[8] Kua, 5., and Moldovan, D, L, “Performance Com-
parison of Models for Multiple Rule Firing,"” in Proc.
af the 12ch IFCAS, Sydney, Australia, August 1991,
pp.o92-47,

[9] MeDermott, J., and Forgy, C.L., “Production System
Conflict Resolution Strategies,” in Pattern Directed
Inference Systems, D. Waterman and F. Hayes-Roth
(Eds.), Academic Press, NY, NY, 1978,

[10] Miranker, D.P., Treat: A New and Efficient Match
Algorithm for Al Production Systems, Morgan Kauf-
mann Publishers, Inc., San Mateo, California, 1990,

[11] Sohn, A., and Gaudiot, J-L., “A Macro Actor/Token
Implementation of Production Systems on a Data-
flow Multiprocessor™ In Proc. of the 12th ITCAT,
Sydney, Australia, August 1991, pp.36-41.

[12] Sechn, A., “Parallel Processing of Production Sys-
tems on a Macro Data-low Multiprocessor” Techni-
cal Report, EE-Systems Dept., University of South-
em California, August 1991,

