PROCEEDINGS OF THE INTERNATIOMAL CONFERENCE
OM FIFTH GEMERATION COMPUTER SYSTEMS 1992,
edited by 1COT, © ICOT, 1992

969

A New Parallelization Method for Production Systems

E. Bahr, F. Barachini, H. Mistelberger

Alcatel Austria—ELIN Research Center
Ruthnergasse 1-7, A-121{) Vienna, Austria

Abstract

The growing importance of expert systems in real-time
applications reveals the necessity of reducing response
times. Since uniprocessor optimizations of production sys-
tems have widely been explored, only multiple processor ar-
chitectures appear to provide further performance gain. Effi-
cient exploitation of the inherent parallelism of production
systemns, however, requires suirable algorithuns for load bal-
ancing without simultaneously increasing organization or
communication overhead. We present a novel parallel algo-
rithum for PAMELA expert systems, based on dynamic diseri-
bution of data processing. The concept is supported by a
mransputer based architecture with an advanced interconnec-
tion structare. !

1 Introduction

PAMELA (PAttern Matching Expert system LAnguage)
[Barachini and Theuretzbacher 1983, Barachini 1988] was
originally designed as a high performance rule—based expert
system language especially suited to treat real-time prob-
lems. PAMELA's inference engine is highly optimized and
muakes the language one of the most efficient platforms for
rule—based systemns on uniprocessors. Mevertheless, the
computational complexity of mle-based programs leads to
cansiderable response times. Significant additional speed-
ups are expected from parallel execution of the inference en-
gine.

Parallel PAMELA (PZAMELA) uses a patallel marching
scheme nor restricted to a specific marching algorithm. The
matches are performed concurrently on a number of identical
processing elements, requiring only linle communication,
This is achieved by means of a special scheduling algorithm,
The parallelization algorithm is able to incorporate all opti-
mization techniques of the serial PAMELA version.

A transputer based architecture, the "Parallel PAMELA
Research Engine” (PRE), has been developed to support the
needs of the parallel version of PAMELA. PRE uses a per-

1 ‘This research is spomgored by the Austrian Innovations—
und Technaologielonds as part of the IMFACT project.

sonal computer as master processor, with a multicast inter-
fuce from the PC to the processing elements [Kasparec er al.
1989). PRE is a research architecture and scalable to 32
transputers. This limitation is not due to the parallelization
algorithm but arises from intended cost and complexity re-
strictions for the hardware architecure, Moreover, it is well
known from the literature thiat the inherent parallelism in typ-
ical present—day production systems does not allow speed—
up factors of more than 20, Hence, the nurmher of 32 transput-
ers is no obstacle for performing significant run-time
experiments.

We discuss in defail the mapping of the fine-grain algo-
rithm onto the coarse—grain PRE architecture. Freliminary
performance data of a few hand—coded examples show the
efficiency of our algorithm in exploiting inherent parallel-
ism. These experiences serve as a motivation for a full imple-
mentation of a parallelizing production system compiler,
which is in the final stage of development,

2 Production Systems

A (forward chaining} production system (PS) consists of a
production memory containing mles, and & working memory
(WM) containing data (working memory elements, WMES)
representing the systemn state. Real-time production systerns
are able to communicate with the outside world, e.g. for sam-
pling data or for sending messages to another system,

A rule resembles the well-known [F..THEN. .. statement,
It consists of a left hand side (LHS, corresponding to the IF-
part) and a right hand side (RHS, corresponding to the
THEN-part). The PS exccution breaks inte a sequence of
"recognize—act cycles” (RACs). A single RAC consists of
the following steps:

During the "match phase”, the LHSs satisfied by the
WiviEs are determined. For each valid rule a comrespond-
ing instantiation enters the “conflict set™ (CS).

® During "conflict set resolution™ (CSR) one of the rule in-
stantiations in the C3 is selected,

¢ During the "act phase” the RHS statements of the se-
lected mule are executed. These stalemenis usually
change WM or initiate communication with the outside
world.

970

3 The Match Algorithm of
Sequential Pamela

The RETE |Forgy 1979, Forgy 1982] and ihe TREAT [Mi-
nnker 1987 algorithm are the besr known state saving algo-
rithums, which avoid recompurations of comparisons done in
previous RACs, Both algorithims map the patterns of the
LHSs of the rules to nodes of a network, The inference en-
gine of PAMELA wses o modified version [Buaraching and
Theurerzbacher 1988] of the RETE algorilun. Since we
have chosen the RETE also fer the implementation of owr pa-
rallelization method, we sketch the busic mechanisms within
1 RETE network.

When a WME is added ro or removed from the WM, a
Plus—token resp. a minus—token representing this action is
passed 1o the RETE network. In ore—input nodes (11MNs) ar-
tributes of the incoming token are compared against constant
vilues. Two—input nodes (21Ms) have a token memory for
ench input. An incoming plus-token 15 stored in the token
memory, a minus=token removes the corresponding 21N to-
ken from the memaory. In 2INs aitributes of each incoming to-
ken will be compared against anributes of all tokens in the
opposite token memaory, according to the conditions in the
LHS. On euch (suceessful) matelr, a new token is zenerated
ang is gent to the successor node. If 4 token leaves the RETE
network a rule instantiation emers the CS. Figure=1 shows
a RETE network with three 1INs and two 2INs.

Cs

Figure—1: RETE network of a rule with
three patterns

4 Parallelization of Production
Systems

Before discussing parallelizarion, it seems appropriate first
o clistinguish several classes of parallel architectures. In the
familiar Flynn taxonomy [Flynn 1972), SIMD (single in-
struction, multiple data), MISD (imulriple instruction, single
data), and MIM D (multiple instruction, maultiple data) archi-
tectures congtitute the variety of parallel architectures, Al-
though there have been attempts to inplement production
systems on SIMD machines [Forgy 19807, MIMD architec-
tures obviously berter match the needs of production system
algorithms, Paralle] {distributed) systerns of the MIMD class
fall into two categories [Bhuyan 1987], multiprocessors (all
processors share main memory) and multicomputers (sach
processor has ity own local memory with its local address
gpace, a processor cannot directly access another processor's
local memory. Communication is accomplished via messa-
ge-passing).

Two performance measures are of particelar interest in
evaluating parallel sysrems, speed-up (defined as the ratio of
the execution times for one and for # processors) and effi-
ciency (deflined as speed—up divided by the number of pro-
cessors) [Eager ef i, 1989]. Efficiency depends on the ratio
of communication and computation, Liniting factors are
memory contention (with multiprocessors) and the commu-
nigation overhead (with multicomputers), respectively.

Saon after the invention of the state saving algorithms,
various imvestigarions have been started on parallel architec-
tures for production systems. There are several levels of par-
allelism inherent to production system algorithms like the
one used in PAMELA. Apart from application parallelism
(concurrent execution of loosely coupled production system
tasks), there exists match parallelism on rule, inter—node,
and intra-node level, act parallelism, and CSR parallelism
[Gupta 1986]. The usefulness of exploiting a particular type
of parallelism depends on the time spent foreach phase. Typ-
ical numbers for RETE production systems are: match (up
to) 90%, act 5%, and CSR 5% [Forgy 1979, Gupta 1986].
Mosr investigations therefore have concentrated on concur-
rent execution of the maich phase. However, newer studies
have shown? that some production systems spend consider-
ably less than 90% in the match phase. With rule level paral-
lelization, for the time of one RAC, each rule is assigned toa
different processing element (PE). With inter—-nn_dn level pa-
rallelization, each node of the RETE-network is assigned to
a particular PE, whereas with intra—node level paralieliza-
tion comparisons within a node are assigned to different PEs.

So far, none of the implementations of these ideas [Butler
et al. 1988, Gupta 1986, Gupta and Tambe 1988, Kelly and
Sevoria 1987, Miranker 1984, Oshisanwo and Dasiewicz
1985, Schreiner and Zimmermann 1987, Shaw 1987, Stalfo
1984, Tenorio 1984, Tien and Raghavendra 1987) has been

2 Prvale communication with Daniel Miranker

able to simultaneously cope with bortle—necks due to com-
munication overhead or due to shared resources, and load
balancing problems. The approach presented in this paper is
placed among the intra node parallelizations, but avoids the
above—mentioned problems. The algorithm also explois pa-
rallelizarion of the CSE and is not restricted 10 RETE but can
be applied to TREAT as well.

5 The Basic Idea of Independent
Match Parallelization

Anticipating the very simple overall stucture of the architec-

ture (figure—2) we can sketch the steps of a RAC in Parallel

PAMELA:

& During the match phase the comparisons are assigned to
the PEs by a scheduling algorithm (without inter-PE
communication).

e Each PE performs its local CSR (which means also a pa-
rallelization of the CSE) and sends its candidate mule in-
stantiation to the "master” processon.

® The master selects one of these candidates (global CSR),
executes the RHE of the corresponding rule, and sends
the WME thanges back to the PEs.

Al the beginning of an RAC, ¢ach PE therefore must be able
to decide independently which partition of the expected
comparisons it intends to perform. This decision is made dy-
namically during run—time by aspecial schedoler mnning en
each PE.

Figure—2: Hardware architecture

571

In order to illustrate the idea of the independent match
paratlelism, we consider a 2IN of a RETE-network (fig-
ure=3). It iz assumed that both token memories of node & arc
known to all PEs. Each PE has physical copies of these me-
mories and in this sense they are global. These memories
have heen independently penerated from the WM, which is
also global - ie. there is a copy of the WM on each PE. The
task to be carried oot is to compare each token of the left to-

k<l

Figure—3: Partitioning of comparisons

ken memory with each token of the right memory, according
to the comparison prescription of the 2IN.

Irn order to partition the comparizon among the PEs, either
the left or the right memory is divided into a number of
blocks, equal to the mumber of PEs (in our example we as-
sume 4 PEs). This partitioning is only “virtual” in the sense
that both memories are still global. This is indicated by the
dashed lines in figure—3. The partition just mmeans that during
the match phase in node &k, the m—th PE takes the tokens in the
m-th block and eompares them against all tokens in the op-
posite memory. In this way, all comparisons in node & are per-
formed by the PEs me = 1., N, But the run—time is reduced by
a factor 1IN, provided that the partitioned memeory containg
encugh tokens. Each PE generates its own tokens corre-
sponding to its suceessful matches. This leads to disjoint
parts of the left memaory at node k+J. These parts are local to
each PE, ie. part m is only known to PE m (indicated by the
solid Fines in figure—3). The matches in the subsequent nodes
performed by PE m can only be done with its [ocal data. One
can easily see that the conjunction of all comparisons gives
the whole set of comparisons of the uniprocessor version.
This is a necessary condition for consistency.

We demonstrate the consistency of the panitioning algo-
rithm by an example with four PEs, which should perfonm all
matches in a two-input node. The input memories of this
node are assumed to be global. The left memeory is repre-
sented by the vertical axes of the squares in figure—4 and the
right memory by the horizontal axes. Then we have three
possibilities to distribute the matches between the PEs: (vir-
tual) pantitioning of either the left token memory (first square

972

1 2 3 4 1,234
1 1
2 2
234 21314
1234 | 1 X 3
4 4
13 24 1 2 3 4
1 {1
2| 1| 2
2 2
3 3
14| 3 4
4 4

Figure—4; Consistency considerations

in figure—4} or the right token memory info four parts (sec-
o seuare), or partitioning of both memories into two parts
with a suitable assignment of tokens to PEs (third square in
figure=4). The last square in figure-4 represents an assign-
menr of the tokens violating the consistency since not the
whole cross product-of marches is-perfonmed. This restric-
tion can be easily taken care of by the following procedure. A
partitioning number pg s assigned to the panitioning node k.
e is the dyadie logarithm of the number of portions into
which the matches in node & has been partitioned. Formally
we can define gy =) for unpantitioned matching in node £.
Furthermore, a maximum partitioning number g, 15 intro-
cuced. This number can be calculated by the dyadic loga-
rithm of the number of PEs, which is always a power of taro.
Then the resiriction takes the form p < pog, In general, the
left memory in a RETE-node need not be global due to pre-
vious partitionings in predecessor nodes. In this case the
right memory most not be fully partitioned according to the
consistency requirements mentioned above,

Since each PE holds the whole RETE-netwark the PEs
can process the data, assigned by the paritioning algorithin,
without conumuonication with other PEs. The matches are
performed by using data which is local or global in the log-
ical sense but strictly local with respect to the physical PE.
During the match phase all required global data items are nor
acceised by communicarion with other PEs but are generated
from the global WM, which is located on each PE.

This samewhat simplified picture can be applied to all ac-
tive nodes in the RETE-network and shows three major
poinis of our approach;

® the approach relies on data parallelism in token memory
rather than on program parallelism,

* g very fine grained dvngmic distdbution of matches
among the PEs leads to good lead balancing,

* oo communication is necessary during ihe match phase,
since no PE requires data from another PE.

Compared to a statie assigmment of partitioning nodes our
miethod is much more flexible, which is crucial if data load
varies over lime. This is especially the case for real-time pro-
duction systems communicating with the outside world.

In order to clarify some open questions, a few remarks
should be made. So far, we have only considered compari-
sons in 2IMs and have not included those in 11Ms. In principle
it is possible te split the token flow already in an 1IN, Since
the 1IN maiches consume less than 5% of the total match
time of a typical production system, we decided to discard
this possibility in favour of more flexibility in partitioning
later RACs.

For simplicity it has been assumed that the token memo-
ries contain a sufficient number of tokens, so that partitien-
ing beads to parts with nearly equal numbers of tokens. In real
life this may be a bit too optimistic. Assuming we have 4 PEs
and only 3 tokens in the memory of a node, a division into
four pars excludes one PE from processing this node and all
successor nodes for current path of roken flow, Therefore,
three is the maximom speed-up factor in this nodes. Since we
need no synchronization point after the execution of a node,
the free PE can process another node in the meantime, Nev-
ertheless, it is advisable to partition large memories because
this reduces the chance of idle PEs. A special scheduling al-
gorithm is called on-each PE at the beginning of a match
phase, which estimates in advance the optimum nodes for
partitioning.

I reality the matching procedure is more complex since
several token packages may enter the RETE-network at dif-
ferent nodes each RAC. The imterference between token
packages can be easily handled by processing package by
package. All maiches in the course of the token package's
flow through the network are performed before the next
package is processed. Furthermore, a token package can be
partitioned at several nodes. This is allowed as long as the
generalized consistency requirement

fopst

Z Tt < Timas (1)

k=jfirst

isobeyed. Due to the fact that we can have nodes with partial-
ly partitioning, ie. py < ., left memories can hold dara of
different "degree of locality”, generated during previous
RACs. Such dara is known by fixed subsets of PEs. There-
fore, if an incoming token package has ro be marched against
a left memory, the package might branch into token packages
of different locality degrees. In all subsequent nodes these to-
ken packages have to be processed separately.

When nule instances finally enter the C5 it must be gear-
anteed that the Jocal C5s are disjoint in order not to contain
dublicated instances, This is achieved by enforcing condi-
tion (1) bur with “=" insiead of "<". Since the FEs' conflict
sets form disjoint sets most of the CSR is automatically pa-
rallelized. Only the CSR for the best candidaies received
from the PEs is done by the master. CSR parallelism is only

possible when the priority of rule instances do not depend on
the existence or priority of other nele instances so that a glob-
af view of the C§ is necessary. However, for LEX, MEA
[Cooper and Wogrin 1988] and many other CSR. strategies
our algorithin exploits parallelism.

In contrast to mle—level parallelization our algorithm can
take full advantage of RETE-network sharing. This is due to
the fact that our algorithim relies on a kind of data flow split-
ting which is iniplicitely controlled by above mentioned con-
sistency precautions.

6 The Scheduling Algorithm

At the beginning of sach RAC, new tokens enter the RETE-
network, They are counted and buffered into roken packages.
These incoming tokens have to be matched against the oppo-
site memaries in 2INs and emerging tokens are passed to the
successor nodes, The task of the scheduling algorithm is to
predict the match activity within the RETE-network for each
token package. For this reason, the seheduler needs actual in-
formation about the number of entering tokens, size of token
mermories, and statistical data.

Since the scheduler works independently on each PE, it is
only allowed ro vse globally known data. Otherwise, there
would be no guarantes thar the schedulers on the PEs amive
at the same results (e.g. decision on the partitioning nodes).

?ﬁl An,

&mk-l-l

Figure-5: A rypical ewo—input nade

Figure—5 shows a typical situation in a 2IN. The number of
matches in node £ is just the product of the nunber of incom-
ing tokens and the number of tokens in the oppoesitememory:

Va = rqﬁm;q

The number of emerging tokens (successful comparisons)
can be estimated by

Sty = Vi

973

P is the probability that a panticular match is suecessful. py
itself is estimated by the ratio (successfl matches Mmatches
of previously performed comparisons in nede £ and will be
continuously updated.

Having calculated the number of expected matches for a
certain entering token package in all relevant nodes of the
RETE-network, the scheduler decides upan the optimum
partitioning nodes for the considered toleen package. For this
reason, the scheduler searches for the minimum of a special
function W representing a measure for the load balance
amang the PEs. The argument of this function is the number
of the pantitioning nede part. For example, such a function
could have the following form:

part— 1 i= Imﬂt
w(part} = Z V; + E
i=firat 1 —p{,‘;:rt

From the entrance node firs? of the considered token pack-
age to the node pari-!, no parallelization takes place. This
contribution is represented by the first sum, The partitioning
node part and all its successor nodes are parallelized. Hence,
the number of comparisons per PE is only a fraction of the
total number of comparisons in each node, leading to speed-
up factors F; in the second sum. These factors range between
1 and the number N of PEs. F; = T means that one PE per-
forms all matches in node §, F; = N refers to the most balanced
parallelization. It can be easily shown that the speed—up fac-
tors cannot inerease from one node to its successor, ie. F; £ F;
for i = . IE, for instance, only one comparison has to be per-
formed in node first then, obviously, Faee = f and F; = I for
all subsequent nodes. This kind of unbalanced distribution of
comparisons has already been mentioned in the previous sec-
tion. For the minimum function p to work sufficiently well,
the V;"s must represent the major portion of work to be per-
formed during the matching, If it burns out that insertions into
token memaries take a significant amount of lime, appropri-
ate terms have to be added.

OF course, the scheduling scheme can be generalized to
several partitioning nodes for each token package. This is
achieved by iterative application of the minimum ssarch,
with updated Vis for & = part after each step.

After having determined the partitioning node pan, the to-
ken package actually enters the RETE-netwaork.

7 The Parallel PAMELA Research
Engine

It is a well-known experience that performance of (very ex-
pensive) shared-memory multiprocessors degrades at high-
ern (> 4) due to memory contention. The decision therefore
has been made to construct a parallel architecture for PAME-
LA, offering the scalability of message passing machines ag
well as tightly coupled pairs of processors (fignre-6). This
tight coupling will facilitate future experiments using small

o974

shared—-memory subelusters constitating the otherwise lose-
ly coupled architecture. The P*AMELA Research Engine
(PRE) is a protorype serving for the evaluation of paralle-
lized PAMELA (P?’AMELA) cxpert systems.

In order to allow the PRE fit into a standard enviromment,
an industry—-stanclard 386-based PC was selected for the
master processor. This allows the use of standard operating
systems and tools (Unix, XWindows) as well a5 to interface
to a variety of networks. The full PAMELA-C expernt system
sheil therefore can be pored to the PRE.

Personal Computer

20386

Service
Board

Reconfigurable Crossbar Switch

| I 11 [IV

LIBRO

= BO;y|oB
SMTE| {SMTE] {SMTB| |SMTE

Figure-&: Basic architecrure of the PRE

In implementing the PEs, the design is based on the Inmos
transputer. In the course of the design, two particular prob-
lems were to be solved, namely (1) o effectively update
working memory on the PEs, and, (i) to exchange data be-
tween a transputer pair on one PE. Therefore, up to 16 double
transputer boards can be served by the PC.

To solve the first problem indicated abowve, a "Link Broad-
cast Interface” (LIBRO) board was developed. The first ver-
ston of LIBRO was implernented on a PC add—on card. This
PC LIBRO is a quadruple transputer link interface for per-
sonal computers; up to four boards per PC can be stacked and
treated as a single device. The LIBRO solution allows W
contents and other global information to be broadcast
through four to gixteen links under control of a master pro-
cessor (PC). Each link channel is bufferad in both directions,
s0 fast access with string primitive instructions is possible.

The core of the PPAMELA Research Engine consists of
Swepable-Memory Transputer Board (SMTB) modules
{figure~T) for the PEs. An SMTB incorporates two IMS-805
rranspuiters at 25MHz with three free links each. The fourth
link of each transputer is used to acCcess A COMIMON MSMOTY
swapping contraller. The latter controls the access to four
IMByte blocks of memory. Each memory block is allocated
to one of two transpufers at a time. Control information
supplied by the two transputers through a dedicated link is
used to change the allocation status. Therefore, we have a
kind of shared memery between the two transputers on an
SMTE.

Figure—7: Swappable Memory Transputer Board

8 Preliminary run time
measurements

In the absence of a production system compiler for the pa-
rallelizarion method deseribed, we could only encode a few

examples on a simple commercially available transputer
based architecture. The results have been encouraging, al-
though most of the examples exhibit rather low inherent par-
aflelism. In addition, the scheduling algorithm has not yet
been aptimized and it therefore causes some overhead.

A . four rales

B .. nine ruies

C ... M&R, fixed PNs
D ... M&B, dynamic
E

" schedulin
.. Extended ii&B

Figure—8: Exmmple run—ime measurements

The examples A and B in figure—8 are simple production
systems, characterized by four and nine rules, respectively,
Examples C and D use implementations of "Monkeys and
Bananas™ with static and dynamic partitioning nodes, re-
spectively. Unformunately, the activity in the RETE-nerwork
for these examples is very low so that the low speed-up is not
very surprising. Example E is an extencled version of "Mon-
keys and Bananas” using more WMEs. Tt reveals the full
power of the algorithm, yielding a spead-up factor of about
3.9 for the march phase (four PEs). Taking into account all
overheads, the factor of 3.1 is still remarkable, Figure—#
shows the speed-up dependence on the number of PEs. Al-
though these examples do not provide a representative set of
production systems , they show the existence of expent sys-
tems with speed-ups ranging fram minimal {one) to maxi-
mal (number of PEs) values. These results do not prove the
efficiency of our paralielization algoritln but they serve as a
motivation for further investigations.

9 Summary and Future Directions

We presented a new approach to parallel execution of pro-
duction systems, exploiting dara parallelism in token
memory. The approach has the following advantages com-
pared to other published parallelization methods that rely on

program parallelism:
* high wilization of processing power,

* no need for locking mechanisms for the eonsistency of
the RETE-network,

975

N ——}
Number of PEs

Overall speed=-up
= Maich speed-up

Figure=9: Speed-up dependence for extended M&B

* small communication overhead, no boitle-neck on
shared resourees

* g scalable architecture
Fossible disadvantages of the method presented may be:

*# the memory per PE will be about the size of the mono—
processor version,

* the scheduling algorithm canses additional computation
overhead,

After the Parallel PAMELA-C system is fully implem-
ented, measurements on a representative set of production
systemns will be performed in orderto assess the quality of the
parallelization method. Various strategies for scheduling on
PRE and alternative parallel architectures will be investi-
gated. In this respect, the adaption of the presented algorithm
to & shared memery architecture is of particular interest. The
usage of global data both simplifies the scheduling algorithm
and increases its accuracy and flexibility. But in order to
avoid memory and bus contention, the access to the global
memoery must either be infrequent or decoupled berween the
processing elements, Since the data of the RETE network are
frequently accessed the contention problem does not allow a
straightforward solution. Further investigations of this mat-
ter will be the subject of future research,

Acknowledgements
We owe thanks to I. Doppelbaver, H. Gribner, F. Kaspa-

rec, and T, Mandl who constructed the multicomputer archi-
tecture we are going to use for the execution of production

976

systemns. We are especially grateful to J. Doppelbaver for
providing us with a photo of the Swapable Memory Trans-
puter Board and with technical information about the hard-

WL,
References

[Barachini and Theuretzbacher 1988] Barachini E, Theu-
retzhacher W.: "The Challenge of Real<Time Process Con-
trol for Prodoection Systems”, The Seventh National Confer-
ence on Arificial Tnrelligence (AAAI-ER), Si Paul,
Minnesota, Vol I, 1988,

[Barachini 1938] Barachini F.: "BAMELA; A Rule-Based
AT Language for Process—Conrrol Applications”, Proceed-
ings on the first International Conference on Industrial & En-
gineering Applications of Anificial Intelligence & Expert
Systems, Yol 2, pp 860-B67, Tennessee, 1988,

[Bhuyan 1987) Bhuyan L.N.: "lnterconnection Metworks for
Parallel and Distributed Processing”; [EEE Computer, Tune

1987, pp. 9 ff.

[Bhuyan 198%] Bhoyan LN, Yang, Q., Agrawal D.P.: "Per-
formance of Multiprocessar Interconnection MNetworks”,
TEEE Computer, February 1989, pp. 25 - 37

[Butler e al. 1988] Butler P.L., Allen LE., Bouldin DW. :
“Parallel Architeeturs for OPS5”, The 15th Annual Imermna-
tional Symposium on Computer Architecture, Honoluly,
Proceedings pp 452-457, 1988,

[Caoper and Wogrin 1988] Cooper T_A., Woarin N. : "Rule—
based Programming with OP55”, Morgan Kaufmann Pub-
lishers, Inc., Palo Alto, USA, 1988,

[Eager er al. 1989] Eager D.L., Zahorian I., Lazowska E.:
"Speedup Versus Efficiency in Parallel Systems”, 1EEE
Transactions on Compurters, Vol, 38, Mo, 3, March 1989, pp.
408 H.

[Flyan 1972] Flyan M., Seme Computer Organizations
and Their Effectiveness, IEEE Trans. Computers Vol. 21,
No. 9, Sept. 1972, pp. 948 — 960

[Forgy 1979 Forgy C.L.: "Onthe Efficient Implementation
of Production Systems”, Ph.D. Thesis, Camegie—Mellon
University, 19749

[Forgy 1980] Forgy C.L.: "Note on Production Systems and
ILLTAC V™, Technical Report CMU=CS<80-130, CMLU,
Pittsburgh, 1980

[Forgy 1982] Forgy C.L.: "RETE : A Fast Algorithm for the
Many Pattern/Many Objeet Patern Matching Problem”, Ar-
tificial Intelligence, Vol. 19, pp. 17-37, 1982,

[Gupta 1986) Gupta A.: "Parallelism in Production Sys-
tems™; CMU-C5-86-122, Ph.D. Thesis, Camegie—Meallon
University, March 1986

[Gupta 1987] Gupta A. et al.: "Results of Paralle] Implemen-
tation of OPS5 on the Encore Multiprocessor”; CMU-
C5=87=146, August 1987

[Gupta and Tambe 1988] Gupra A., Tambe M. : "Suitability
of Message Passing Computers for Implementing Produc-
tion Systems”, Proceedings of AAAI-88, Vol 2, pp. 687-
692, St.Paul, Minnesota, 1988,

[Kasparec ef al. 1989) Kasparec F,, Doppelbauver J., Griibner
H., Mandl T.: *Advanced Transputer Interconnection Tech-
niques”; 15t Imemational Conference on the Application of
Transputers (SERC/DTI), Univ. of Liverpool, Aug. 1989

[Kelly and Severia 1987] Eelly M.A ., Seviora RE.: "A
Multiprocessor Architecture for Production System Match-
ing"; Procesdings of the AAAL-8T, Vol.1,pp. 3641, 1947
1987

Miranker 1984] Miranker, D.P; "The performance Analy-
sis of TREAT : A DADO Production System Algorithm™, In-
ternational Conference on Fifth Generation Computing, To-
kyo 1934, revised article 1986

[Miranker 1987] Miranker D0P.; "TREAT: A New and Effi-
cient Match Algorithm for Al Production Systems”;
Ph.D.Thesis, Columbia Unversity 1987

[Oshisanwo and Dasiewicz 1935] Oshisanwo AO., Dasie-
wicz PF: "A Parallel Model and Architecture for Froduc-
tion] Systems™; Proceedings of the 1987 Intermnational Con-
ference on Parallel Processing, pp.147—153 May 1985

[Schreiner and Zimmermann 1987] Scheeiner F., Zimmer-
mann G.: "PESA 1 - A Parallel Architecture for Production
Systems"; Proceedings of the 1987 International Conference
on Parallel Processing, pp. 166169

[Shaw 1987] Shaw D.E: "NON-VON's Applicability to
Three Al Task Areas”, INCATL 1987

[Stolfo 1984] Stolfo 5.7.; "Five Parallel Algorithans for Pro-
duction System Execution on the DADO Machine™: Nation-
al Conference on Antificial Intelligence, AAAT-1984

[Tenorio 1984] Tenorio M.EM., "Parallelism in Froduction
Systems”, Ph.D. Thesis, University of California, 1984,

[Tien and Faghavendra 1987] Tien 5-B.R., Raghavendra
C.8.: "A Parallel Algorithm for Execution of Production
Systems on HMESH Architecture™; Fall Joint Computer
Conference, 1987, pp.349-356

