PROCEEDINGS OF THE INTERMNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited hy ICOT, © 1COT, 1992

951

Implementing a Process Oriented Debugger with Reflection
and Program Transformation

Munenori MAEDA
International Institute for Advanced Study of Social Information Science,
FUJITSU LABORATORIES LTD.
17-25, Shinkamata l-chome, Ota-ku, Tokyo 144, Japan

m-maeda@iias.flab.fujitsu.co.jp

Abstract

Programmers writing programs following a typical pro-
cesg and streams paradigm usually have some eonceptual
image concerning the progeam’s execution. Conventional
debuggers cannot trace or debug such programs because
they are unable to treat both processes and streams di-
rectly. The process oriented GHC debugger we propose
provides high-level facilities, such as displaying processes
and streams in three views and controlling a process’s
behavior by interactively blocking or editing data in its
input streams. These facilities make it possible to trace
and check program execution from a programmer's point
of view., We implement the debugger by adopting reflec-
tion and program transformation to enhance standard
GHC execution and to treat extended logical terms rep-
resenting strearms.

1 Introduction

Debugging methods for programs in Guarded Horn
Clanses{ GHC)[Ueda 1985] are classified into those based
on algorithmic debugging|Takeuchi 1986] under the de-
notational semantics of GHC programs, and those based
on execution tracing [Goldszmidt et al. 1890]' under the
operational semantics, This paper proposes a debugging
method belonging to the execution tracing class,

In GHC programming, object-oriented[Shapiro and
Takeuchi 1983] and stream-based[Kahn and MacQueen
1877] programming focus on the notion of processes
and streams. Individnal abstract modules are regarded
as processes, some of which are connected by streams,
and communicate with each other concurrently. A typ-
ical process repeatedly consumes data from a stream,

'Even though the Hterature is concerned only with the execu-
tion tracing of Occam programs, its discussion is generally adapt-
able for mwest concurrent or paralle]l program debugging.

changes its internal state, and generates data for another
stream.

In & conventional execution tracer, it is difficult to
capture conceptual execution in terms of processes and
streams, because they are decomposed into GHC primi-
tives and never displayed explicitly. The tracer we pro-
pose fully reflects the notion of processes and streams,
and enables both the specific control flow of processes
and the data structure of streams 1o be processed, mak-
ing the causality among processes explicit.

2 Process Oriented Programs
and Debugging

2.1 Models of Processes and Streams
in GHC

2.1.1 Process model

A process can be interpreted either as a goal or as
a set of goals, eg, an “object” in object-oriented
programming[Shapiro and Takeuchi 1933]. The follow-
ing sections discuss processes based on the latter,

A process consists of goals for the continnation of the
process or goals for infernal procedures defined in the
process, The continustion goal accepts streams in its
arguments one by one, and reserves its imternal state in
other argnments. The stream argument takes a role of
an I/0 port for the data migration. The internal state is
not affected by other processes, but is caleulated by the
previous state and input data captured from streams,

A process features:

Creation: A process is created by the first call of the
continuation goal.

One-step execution: Reading data from streams, writ-
ing data to other streams, and changing the inter-

062

nal state using internal procedures are regarded as
atomic actions in an execution step,

Continuation and termination: A process will carry on
its computation with a new internal state when the
continuation poal is invoked. Otherwise the process
terminates its execution.

2.1.2 Siream model

A stream is a sequence of logical terms whose
operations[Tribble et al. 1987] are limited to reading the
first term of a stream and writing a term to the tail of a
Btreaim.

A simple notation for streams is first introduced.
Streams are constructed by stream-variables 5V, stream-
funetors (SH||ST) and stream-terminators (), where SV
is a variable constrained to become either a stream-
functor or a stream-terminator, SH is an arbitrary term
denoting the first data of the stream, and 5T is a stream
representing the rest of the stream.

A stream features:

Creation: Streams are created dynamically when a con-
tinnation goal of a process is invoked, where they
are assigned to the arguments of the goal,

Data access: First data 13 is read from stream SX by
unifying SX with strocture (D||ST) in the guard part
of a clause at runtime. Data D is written to stream-
variable SX by unifying SX with a structure (D||ST)
in the body, where 5T, called the tail of stream SX,
is & stream-variable. In reading or writing done sev-
eral times, each operation is done recursively for the
rest of stream, ST,

Connection: Streams 5, and 5y, are connected if they are
unified in the body. One of the connected streams
is regarded as an alias of the other.

Equivalence relation 2 is defined for the set of streams
&, used to visualize streams.

For substitution o, relation 2, is defined for &, the set
of streams consisting of terms obtained in the execution.

1. 5,838 .
2. (B)lS} ~, 8;¥s€ S
3. 810 =58 =58y ~, 8,3, %8

The first reflective rule implies that twe lexically identi-
cal variables satisfy the relation. The second rule implies
that a stream and its subpart are elements of the same
equivalence class, The third rule means that connected
streams are also elements of the same equivalence class.
Relation =, is defined as the symmetric and transitive

closure of relation =~,. Below, relation = is written in
place of 2, if substitution « is clearly understood from
the context.

In GHC, a stream is actually implemented by a list in
most programs, ie. stream-functor (D||S) and stream-
terminator {} correspond to term [D' | §'] and atom [].

2.2 Process Oriented Debugging

GHC programs based on the process model are called
process oriented programs, cach goal in the execution
trace belongs to & process, which is either a continuation
or a part of an internal procedure of the process. In trac-
ing and checking process oriented programs, the goals be-
longing to a target process must first be extracted from
the “chaotic” execution trace where these goals are in-
terleaved,

The data flow must also be checked. Unless a pro-
ceg inputs intended data, the process eutputs incorrect
data to its outpul stream, or becomes permanently sus-
pended. Intended data may not be sent to the process
for two possible ressons. First, an adjacent process cor-
responding to the producer of the data malfunetions, Or,
second, the input of the process is disconnected with the
output of the producer, an error cansed by misuse of &
shared variable, in which case it is easier to detect the
error if the stream connection between processes, ealled
“a process network,” is displayed.

To make process oriented programs execution traces
easier to read, the process oriented debugger(POD) we
propose, visualizes process and stream information strue-
tured from input/output data, internal state values, in-
ternal procedure traces and the stream connection be-
tween processes,

Programs can be debugged as follows:
Step 1 A user starts exeeution of a target program.

Step 2 The internal state and input foutput data are dis-
played and checked at an appropriate interval. The
process netwoek is also checked,

Step 3 The program code corresponding to a process
where an error occurs is checked in detail, with
any adjavent processes possibly contributing to the
anomaly also checked.

Step 4 Input /output data sequences are saved for check-
ing an abnormal process becanse comparing the se-
quence of output data before and afler a program is
modified makes it easier to check the behavior.

If the process malfunctions in Step 3 and 4, it is
forcibly suspended and overall execution is continued as
far as possible becanse program reexecution takes much

time and costs, i.e., reexecution must be avoided if it will
take too much data in streams up to a sufficient length.
Otherwise the program will have nondeterministic tran-
sitions.

Reexecution can be avoided either by giving the de-
bugger the functions to delete or to modify unexpected
data and to insert data in a stream interactively, or by
having functions preserve data in streams automaticalty
and execute a process in the preserved environment,

‘Thus the POD requires the following execution control
functions:

1. Forcibly suspending, resuming and aborting the ex-
ecution of each process,

2. Buffering and modifying the data in streams inter-
actively,

3. Reexecuting a process in the preserved environment.

3 Implementing the POD

3.1 Process Declaration

In our process model(Section 2.1.1}, goals are classified
into those for the continuation and theose for internal
procedures, They are syntactically the same, and are
specified by the user in & process declaration,

The process declaration consists of a predicate speci-
fication and continuation marking. The predicate spec-
ification begins with the keyword process followed by
the name of the predicate specifying the usage of each
argument. The usage of each argument is specified by
declaring keywaord state or pert in an appropriate or-
der. Annotation state shows that the argument repre-
sents a part of the internal state. Annotationport shows
that the argument represents a process's [/O port. The
continuation mark consists of & @ preceding the goal in
a clause. An example of the process declaration is given
in Listing 1.

3.2 Stream Treatment

As mentioned previously, streams consist of special vari-
ables, functors, and terminators.

In the POD, streams are recognized and supported by
introducing tagged data structures. Each variable, func-
tor, and atom that makes up & stream has an auxiliary
field to store the stream identifier. An identifier is asso-
ciated with each stream equivalence class.

In implementing identifiers, note that if two streams
with different identifiers are unified, their identifiers
should be the same. This is achieved by assigning a
variable to each identifier and unifying the identifiers if

963

their streams are to be unified. The problem of whether
two sireams satisfy equivalence relation 2 is solved in a
variable equivalence check.

The POD recognizes and manages streams as follows:
First, before starting the execution, a program transla-
tor, which is a subsystem of the POD, converts a target
program to & canonical form as detailed in Section 3.4.
Streams are replaced with special tagged terms, and ex-
tended unifications are placed for their unifications which
causes accessing data in streams or connecting streams
a5 described in Section 2.1,

All the parameters of each process are stored in its pro-
cess table every own execution step. Process execution
is visnalized using these process tables.

3.3 Reflective Extension of Unifier

Section 3.2 addressed a need for extended unification,
discussed in more detail together with its implementation
with reflection.

Tagged structures must be implemented using
wrapped terms CSm'(Var,ID), ‘Sm'{Atom,ID), and
‘8m'({Cons,Head Tail},ID). The first term represents
the fresh variable of & stream whose first argument, Var,
corresponds to the original variable. The second, 1D, is
a fresh variable that denotes the identifier of its stream.
The second term represents the terminator of a stream
whose first argument, Atom, abstracts (), while the third
corresponds to {Head|| Tail) and Cons is & functor for con-
catenation.

Terms are classified into six fypes: variable, atom,
compound term?, stream-variable, stream-functor, and
shream-terminator,

New unification rules are needed for stream-term x
stream-term and stream-term ® regulas-term. The fol-

lowing cases are representative of the extended unifica-
tion X »< Y

Case 1 X is stream variable "Sm'(V,ID), Y is & variable
Assign Y to X

X is streamn variable ‘Sm'(V,,ID,),

Y is stream variable ‘Sm'(Va,ID).

Assign Vs to V) and IDs to ID,.

X is stream variable ‘Sm'(V. 1D,

Y is compound term {C,H,T}.

Assign {CH,'Sm'(N,ID)} to V, and execute
‘Sm(M,ID) »< T, where M is a fresh variable,
X is stream funetor ‘Sm’({C,,H;, T, },1D).

Y is compound term {Cp,Hj,Ta}.

Assign Hj to H; and C; to C,.

Execute T > Ty recursively, O

Case 2

Case 3

Case 4

*In KL1, notation {F, Ay, ... A} is allowed to express com-
pound term FlAy, ... As). We follow the notation for convenienee,

064

The remaining 17 possible cases are omitted here due to
space considerations.

The variable check is essential when deseribing the uni-
fier and is done by reflection [Smith 1984]). Because re-
flection provides functions to manage memory and goal
queue, it becomes easy to implement streams.

Defore developing the POD, we added a reflective fea-
ture to GHC similar to that for RGHC|Tanaka 1988].
When a user-defined reflective predicate is invoked, its
arguments are automatically converted from internal
representation to the meta-level ground form. Table
1 shows the correspondence between object-level and
meta-level terms.

Case 3 is deseribed using a reflective predicate whose
second argument Gs is a stream conneeted with the goal
scheduler,

reflect (vector({atom(’3m’) ,variahle(V),ID}) >¢
vector ({C,H,T}) ,Ga ,Mn) :- true |
Gs = [variable(V) = wector{{C,H,vector(
{atom(’Sm*) ,variablel{N) ,ID})}),
vector ({atom(*Sa’) ,variable(H),ID}) >< T 1,
Mo = [malloc(¥)].
ih Gs: Goal scheduler, Mm: Memory manager,

The third argument Mm is & stream connected to the
memory manager for the object program. Terms written
in stream Gs are converled from meta-level ground terms
to internal representation and placed in the goal queune.
Terms written in stream Mm are understood as messages
for memory access. Message malloe| N) invokes dynamic
memory allocation, and the reference pointer to allacated
memary is bound fo variable V. Extended unification is
defined similarly by the reflective predicate for all cases.

3.4 Tagged Term Transformation

As described above, tagged terms are represented as
wrapped functors. The translator converts streams to
tagged terms automatically, In the following, we show
program examples before and after the conversion, then
we explain the detail of the translating process. Fur-
thermore we present additional transformation steps to
direct the data migration, in other words, to detect the
origin of data.

U0riginal program

process plpert,pert).

boot - true | p([1,21_1,%), qX).

pOLANED,Y) :- true | Y=[41¥1], @p(X,YL).

kConversiom for streams

boot - trus | pll1,2{],X,'8n* (¥1,I01}, *S=’ (N2, ID2)),
qlX, "Sm’ (N3, I03)),
[1,21_] »< *8=7(N1,ID1), NX >< *Sm’(NZ,ID2),
NX »< 'Sm’(N3,ID3).

pOLAIED, ¥, HAL,HAZ) - true | Y=[AITi],
p(X,¥1,8m" (N1,ID1), 'Sm* (N2, ID2}],

BAl »< [DA|DX], HA2 »< [DA|DYi],
DX >< *Sm*(Ni,ID1), DY1 »< *Sm'(N2,ID2).

The converted program differs from the original ia the
following ways:

1. The arity of predicate p doubles, i.e. the third and
fourth arguments are new, and the parameters of p
are converted to tagged terms for streams such as
'Sm’ (N1, ID1).

2. The first and second arguments of the converted p
are the same a8 those of the original, and the corre-
sponding parameters are maintained,

4. Several extended unifications are added in the body.

The above points characterize the transformation: Two
kinds of variable bindings are treated. One is the same
as the original bindings and is used for the execution of
the guard goal. The other consists of tagged terms for
streams, and is used in extended unifications.

According to GHC semantics, unification invoked in a
guard can not export any bindings to the caller. Fur-
thermore user-defined predicates can not be placed in a
guard. Because it is not easy to extend the guazd exe-
cution rule of GHC, we follow the sernantics as much as
possible.

In our transformation, by maintaining the original
bindings, the guard execution invelving the parameter
passing is independent of the term extension, and the
extension never canses execution errors. The memory
consumption by storing two kinds of bindings is, how-
ever, at least twice as much as that of the original.

Transformation processes are detailed as follows:

Step 1 Choose a clause, and erase all the guard unifi-
cations by partial evaluation[Ueda and Chikayama
1985]. Replace nonvariable argument Arg to fresh
variable Var, and add goal Arg = Var in the
guard. By applying the replacement for every
argument, we get a canonical form such that
every argument is a varlable and every guard
goal is ether a unification = of a variable and
& nonvariable term, a difference \=, an arith-
metic comparison or & type checker, We write a
canonical clause as PCAL, ... An):= G(41,.. ., An)
| Q(a1,...,An,B1, ... ,Bm), where G(AL, ..., AD0)
and Q(A1,...,An,B1, ... ,Bn) represent a conjune-
tion of goals,

Step 2 Rename all variables in the clause and get
o clause: P(A1Y, ... An'):- G(AL’,...,An') |
Q(AL1®, ... ,An*,B1*,...,Bm*). Extract all the
unifications from GCA1*,...,An’), and replace
gymbol = of unification with symbol >< of extended

965

Table 1: Representations of meta-level terms

Term
Level | Unbound variable | Atom Compound
Object || unobservable [Atom {Cy,---,Cul
Meta | variable{ Addr) atom[Atom) | vector({C7,---, Oy })

unification. The obtained conjunction is written as
G'(AL",...,An").

Step 3 For goals defined as processes or as continuations
in Q(41?, ..., An° ,B1’, ... ,Bm’), get conjunetion
Q'(AL’,...,An" ,BL’,...,Bw’) by repeating fol-
lower. Replace port-declared parameter Param
with stream ‘Sm'(N,ID}, where N and 1D are fresh
variables. Place extended unification Param »<
*Sm'(N,ID) in the body of the new clause.

Step 4 For two poals, B(DL,...,Di) in QCAL, ..., An,
Bi,...,Bm) where Dj,1 < j £ 4, is ranged over
{&1,...,An,B1,...,Ba}, and B*(D1°,...,Di’} in
Q' (ALY, ... he' BLY, ... Bm"),
goal B'*(DL,..,Di,01°%,..,0i") i defined as
their concatenation. Conjunetion §'°(41,... 4n,
Bi,...,Bm,Al?,...,An",B1",Bn’) is defined
by combining every B* .

Step 5 An objective clause is obtained by combining G,
G and Q° 7 as follows:

P(Al,...An A1%,...An*):= GCAL,..An) |
G'CALY,. . An*),
€1 »>< ’8m’(51,I01),...,C1 »< ‘Sm’(84,IDi),

Q**{a1,...,4n,B1,.. Bm,A1", ..., A" ,B1*, .. ,Bm").

% Replace Cj in A1’,...,Bm* to 'Sm’(Sj,IDj)

Detecting the origin of the data is achieved by using
a tag similar to that stated above. A tagged Runector
5b(Term,PID) is introduced, where Term corresponds
to the original term and may include other tagged struc-
tures, PID is an unbound variable used as a process iden-
tifier.

We show a modified example program using ‘b’ tag,
then the additional transformation steps are detailed.

Yoonversion for detecting the origin of the data
boot(FPIDgalf) :- true |
p([1,2]_1,X,Sw* (N1,ID1), *Sa’ (N2,1D2) ,PID1),
g (X, *8m* (N3, ID3),PID2),
Sh* ([*8b® (1,PIDa=lf)]
15h ([*Sb? (2,PIDself)]] ,PIDaelf)] ,FIiD=elf)
»< '8Sm’ (N1,ID1),
NE »¢ *Sm’(H2,I0D2Y, WX »>< "Sm’(N3,ID3).
pOLANE] Y, NAL,HAZ,PID=elE) - true |

Ye[a]¥1],

plX,¥1, *Sm’ (§1,ID1}, *8m* (N2, ID2) ,PIDzeli),

Wh1 »< *5b'([DA|DX],PIDL),

NAZ >< *Sb*([DA|DY1],PIDseli),

DX »< *Sm’(N1,ID1), D¥1 »< 'S=’(N2,ID2).
%% PIDA specifies the origin of the input list.

Step 6 Add argument PID .y to the head of the selected
clause,

Step 7 Select predicate p/n in the body of the clause
and, if p/n is declared as a process, add new param-
eter PIDg g, or else add parameter PID,q¢.

Step & Recursively replace every monvariable term T,
except streams in G'(A1Y, ... ,Aa" B17, ... Bm')
with term ‘Sb'{T';,PID;). Each PID; is used to in-
dicate the origin of corresponding data.

Step 9 Replace every nonvariable parameter T of the ex-
tended unifications with term *Sb'{T",PID,¢).

3.5 Execution Control

In the POD, the specific contrel of a process proposed
in Section 2.2 is achieved by intreducing a valve inserted
into & streamn. The valve serves as an intelligent data
buffer having two input ports, one output port, and
a programmable conditional switch to close the output
port. One of the two input ports is connected to the
original stream, and the other is connected to the user's
console. The user can send commands to the valve, The
amount of buffered data and the description of the type
of storable data are programmable conditions.

The valve has three states, automatic migration mode,
conditional migration mode, and manual edit mode,
each changed by a user command or by evaluating pro-
grammable conditions. The valve operates as follows:

e [n automatic migration mode, the valve receives
data from its own input port and it stores the data
in its own buffer. Once the buffer becomes full, the
valve outputs the first data in the buffer through the
output port.

966

¢ In conditional migration mode, The valve gets data
then stores it in the buffer. Onee the buffer be-
comes full or if data does not satisfy a condition,
the valve displays an alert and changes to manual
editing mode.

In manual editing mode, the valve receives no new
data. The number and the description of data to
be stored, and data actually in the buffer can be
referenced and modified using a text editor. After
editing, the mode returns to the previous mode.

A data checking condition s provided as the con-
junction of GHC goals. The goal is a built-in or nser-
defined predicate. Built-in predicates are classified into
fype check, arithmetic comparison, and puard unifics-
tion. The type check goal is, e.g., afom(), integer(), or
Sloat(}. the arithmetic one is, e.g., >, >, <, <. The nser-
defined goal is & combination of built-in poals,

4 Examples of Tracing

The POD is developed by extending the GHC interpreter
with reflection in Prolog. A user can trace and debug a
GHC program with a direct manipulation interface pro-
vided by the POD,

The interface provides several control facilities for the
target program in a menu, enabling the user to easily
manipulate the POD by selecting a facility from & menu
with a mouse. The menu currently provides, {1) compul-
sive process suspension, (2) process resumption, {3} valve
insertion, (4) valve control, and (5) terminated process
deletion,

The POD provides different three views to visualize
program execution: the stream graph, process char, and
communication fow.

The stream graph uses animated icons and lines to
show dynamic changes in a networly graph of proceszes
and streams.

The process chart displays, in a structured diagram,
copsumed and generated data from or to stresms in a
process and its subprocesses. More specifically, the dia-
gram contains dots, two kinds of lines, and data. A dot
represents a process's argument in each execution step,
One kind of line connecting two dots is associated with
relation = between them. Consumed or generated data
is located along this line. The other kind of line repre-
sents & subprocess fork point,

The communication flow[Shin 1991) shows IO process
causality. When a substitution generated in process X is
referenced in & committed clause of process Y, a directed
arrow from X to Y is displayed. we say in this case that
data from process X makes Y active,

The usages of the menu and the views are described
using a program in Listing 1, first suppese that the pro-
gram and query prime(10,Ps) are given to the POD.

Listing 1: Primes generator program
with process declaration

process gen{state,state,port), sift{port,pert),
filter{port,state,port).

prime(Max.Ps):- true | gen(2,Max,Hs), sift(Ns,Pa).

gon{¥ Max,Na):- Nr=Max | Ha=[].

genil Max,Na) ;— N<Max | Ni:=N+1i, Hs=[H|H=1],
fgen{l1,Max, H=l).

sift{[].Pa):- true | Ps=0.

asift{[FIFs],Pa):~ true | Pe=[P[Pail,
filter(Fs,P,Fsl1), @aift(Fel,Psl).

filter (0 ,P,Fa):- true | Fs=[].

filter([¥|¥s],P,Fs):~ true | sw(N,P,Fal,[N|Fei]l, Fs),
Gfilter(ls,P,Fail,

sw(N,P,Fel,Fa2,Fa):- N mod P=:=0 | Fa=Fsi,

sw(N,P,Fsl,Fs2,Fa):- N mod P=\=0 | Fa=Fa2,

Figure 1 shows the initial stream graph. Data in a
stream that connects gen and sift can be checked in
two ways, by setting a valve to either an output port of
gen after suspending gen to prevent the creation of new
data, or an input port of sift to avoid consuming data.
Let item (1) beselected to gen suspend rather than sift.
Selecting item (3), then {2), resumes gen. The generated
valve is displayed as an jcon in the window as for a pro-
cess. [nitially, the valve is in automatic migration mode
and the default bulfer is set to 100,

After process gen finishes generating data, information
in the valve is displayed in a new dialog window if item
{4) is selected. Figure 2 shows that buffer contents are
modified by deleting the number 8. OAssume, then, that
the window is closed and flushes all buffer data flushed.

Flushing data causes sift to resume(Figure 3) with
the stream graph eventually becoming stable,

Process charts for each process in a window are shown
in Figure 4. In this figure:

» Process gen maintains an output stream specified
by a vertical gray line at left in the window which
connects all third arguments obtained at each exe-
cution step. Numbers generated by gen are aligned
and displayed along this line.

* Process filter maintains both an input and an out-
put stream specified by two vertical lines - black
and gray in the middle of the window. The input
sequence of numbers beside the black line, ranges
from 3 to 9, with B deleted. Process filter gen-
erates or does not generate at cach execution step

when the cutput sequence on the gray line is refer-
enced.

Figure 1: Initial stream graph

Before dain editing After dan edifing
A Vb, Al Febm
Badtedng dnl BeuiTariog dvm
0
T
&
i, 5
s [E vt | o [E = |
[y T Coust &
=] = (== |

Figure 2: Valve controller display

Figure 4: Process chart display

967

Figure 5: Stream graph for int/2 and memo/3

o The difference between the process chart for sift
and others is the presence of a process fork speci-
fied by a dashed line, Process sift also has both
input and output streams. The output stream re-
mains unchanged as the input stream is created dy-
namically. Process sift consumes a number from
the input stream in the first argument, generating a
filter and a prime number for the output stream
in the second argument in an execution step. The
input stream of the created filter is connected lo
the original input and the output stream to the new
input stream of sift.

Listing 2: Bounded buffer program

process int{state,port}, memo{port,port,state).
bb{N}:~ true | open(W.H,T), int{0,H}, mewmo(H,T.C).
openf0,H,T) i~ true | H=T.
opentW,H,T):= W= | Wil:=N-1, H=[_[H1],
open{Ni B1,T).
int (M, [XI51):- true | X=s(N), @int{=(N}.5).
memo{ [a(X)18),T,C):~ true | T=[_IT1],
fmemo (S, TL, (X)) .

The bounded buffer program is shown in Listing 2.
Assume that the program and query bb(S) are given.
The query goal invokes processes int and memo, which
are connected after internal procedure epen terminates.
Figure 5 shows the stable stream graph. The commu-
nication flow of these processes indicates the alternate
trapsition of two states. At left in Figure 6, Process
memo becomes active by consuming data derived by the
inactive int and a stream fuonctor derived by the previ-
ous memo. Al right, data from the inactive memo activates
int.

5 Conclusion

We have proposed a process oriented debugger(POD) for
GHC programs based on a computation model for pro-
cesses and streams. The POD enables

» Overall behavior of a process to be controlled by
manipulating data in streams and arbitrary delay-
ing the transmission and reception of data between
processes,

Figure 6: Communication flow transition

» P'rocess causality to be shown using animated fig-
ures of processes and streams in hoth stream graph
and communication flow displays,

+ Stream connectivity to be organized and shown in a
process chart, as a structure of lines eonnecting the
arguments of a process.

Because individual goal execufion is not a concern,
our debugger gives some information such as input and
output substitutions and timing in less detail, making
it necessary to include a viewpoint in the future that
interprets the original sequence of primitives in such a
way that the user can follow it,

Our debugger is implemented using reflection and pro-
gram transformation. Reflection makes it easy to de-
scribe extended unification, and program transfermation
guarantees the efficient execution of guard goals under
the standard guard execution mechanism.

Acknowledgments

This research has been carried out as part of the Fifth
Generation Computer Project of Japan. Dongwook
Shin and Youji Kohda contributed insightful comments.
Masaki Muralami assisted in formalizing streams. Si-
mon Martin helped with the English. The author would
like to express thanks to them,

The research originated in his postgraduate study, and
he is indebted to Hirotaka Uoi and Nobuki Tokura of
Osaka University for their invaluable adviee,

References

[Goldszmidt et al. 1900] G.5.Goldszmidt, 5. Yemini,
5.Katz: “High-level Langiage Debugging for Con-
current Programs”, ACM Transactions on Com-
puter Systemns, Vol.8, No.4, pp.311-336, November
1990,

[Kahn and MacQueen 1977) G.Kabn, D.B.MacQueen:
“Coroutines and MNetworks of Parallel Processes™,
Information Processing 77, North-Holland, PR003-
988, 1877.

[Maeda et al. 1990] M.Maeda, H.Uoi, N.Tokura: “Pro-
cess and Stream Oriented Debugger for GHC pro-
grams”®, Proceedings of Logic Programming Confer-
ence 1990, pp.169-178, ICOT, July 1990.

[Shapiro and Takenchi 1983]
E.Shapiro, A Takeuchi: “Object Oriented Program-
ming in Concurrent Prolog”, New Generation Com-
puting, Vol.1, No.1, pp.25-48, 1983,

[Shin 1991] D.Shin: “Towards Realistic Type Inference
for Guarded Horn Clanses”, Proceedings of Joint
Symposium on Parallel Processing '01, pp.429-436,
1801,

[Smith 1984] B.C.Smith:“Refiection and Semantics in
Lisp”, Conference Record of the 11th Annual Sym-
posium on Principles of Programming Languages,
pp.23-35, ACM, January 1584,

[Takeuchi 1986] A.Takeuchi: “Algorithmic Debugging of
GHC programs and its Implementation in GHC",
1CGT Tech. Rep. TR-183, ICOT, 1984,

[Tanaka 1988] J.Tanaka: “Meta-interproters and Reflec-
tive Operations in GHC”, Proceedings of the Inter-
national Conference on Fifth Generation Computer
Systems 1988, pp.774-783, ICOT, November 1088,

[Tribble ef al 1987] E.D.Tribble, M.S.Miller, K .Kahn,
D.G.Bobrow, C.Abbot and E.Shapire: “Channels:
A Generalization of Streams”, Proc, of 4th Interna-
tional Conference of Logic Programming(ICLP)'87
Vol.2, pp.830-857 (1987).

[Ueda 1985] K.Ueda:“Guarded Horn Clauses”, ICOT
Tech. Rep. TR-108, pp.1-12 (1985-06).

[Ueda and Chikayama 1985]
K.Ueda, T.Chikayama: “Concurrent Prolog Com-
piler on Top of Prolog”, in Proc. of Symp. on Logic
Prog., pp. 119-126, 1585.

