PROCEEDINGS OF THE INTERNATIONAL CONFERENCE

ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT, (@ 1COT, 1992

934

Visualizing Parallel Logic Programs with VISTA

E. Tick
Dept. of Computer Seience
University of Oregon
Eugene OR 97403

ABSTRACT

A software visualization tool is deseribed that transforms
program execution trace data from a multiprocessor into
a single color image: a program signature. ‘The image
is casentially the program’s logical procedure-invocation
tree, displayed radially from the root, with possible ra-
dial and lateral condensation. An implementation of
the tool was made in X-Windows, and experimentation
with the system was performed with trace data from
Panda, a shared-memory multiprocessor implementation
of FGHC. We demonstrate how the tool helps the pro-
grammer develop intuitions about the performance of
long-running paraltel logic programs.

1 Imtroduction

Parallel programming is difficult in twoe main senses. It
iz difficult to create correct programs and furthermore,
it is difficult to exploit the maximum possible perfor-
mance in programs. One approach to alleviating these
difficulties iz to support debugging, visualization, and
environment control tools. However, unlike tocls for se-
quential processors, parallel iools must manage a dis-
tinctly complex workspace. The numbers of processes,
numbers of processors, topologies, data and control de-
pendencies, communication, synchronization, and event
orderings multiplicatively create a design space that is
too large for current tools to manage.

The overall goal of our research is to contribute to
processing this massive amount of information so that
a programmer can understand it. There is no doubt
that a variety of visualization teels will be needed (eg.,
[6, 9, 12, 5]): no one view can satisfy all applications,
paradigms, and users. Yet each view should be consid-
ered on its own merits: what are its strong and weak
points, how effective is it in conveying the information
desired, and hiding all else. In this paper we introduce
one view in such a system: based on a new technique,
called “kaleidescope visualization,” that summarizes the
execution of & program in a single image or signature,

Unlike scientific visualization, i.e., the graphical ren-
dering of multi-dimensional physical processes, in par-

allel performance analysis there are no “physical” phe-
nornena; rather, abstract interactions between objects.
Thus renderings tend to be more abstract, are less con-
strained by “reality,” and are certainly dealing with many
“interacting parameters controlling the design space. Ka-
leidescope visualization is the graphical rendering of a
dynamic call tree of a parallel program in polar coordi-
nates, to gain maximum uiilization of space. To fit the
entire tree into a single workstation window, condensa-
tion transformations are performed to shrink the image
without losing visual information.

This paper concentrates an the analysis of parallel
logic programs with VISTA, an X-Windows realization
of kaleidescope visualization. Although we concentrate
on commitied-choice reduction-based languages, VISTA
is applicable to & wider class of procedure-based AND.-
parallel languages. The paper is organization as follows.
Section 2 summarizes similar types of visualization tools,
and Section 3 reviews the VISTA algorithms (summa-
rizing [14]). In Section 4, we describe the paraliel logic
programming platform upen which VISTA experimen-
tation was conducted, and analyze the performance of
logic programs to illustrate the power of the tool In
Section 5, conclusions and are summarized.

2 Literature Heview

Earlier work on WAMTRACE [2, 3], a visualization tool
for OR-parallel Prolog, has influenced our work a great
deal. WAMTRACE is a trace-driven animator for Au-
rora Prolog (8] (originally for ANLWAM [2]). Aurora
creates a proof tree over which processors (“workers")
travel in search of work. WAMTRACE shows the tree,
growing vertically from root (top) to leaves (bottam),
with icons representing node and worker types (e.g., live
and dead branchpoints, active and idle workers)., The
philosophy of WAMTRACE was that an experimental
tool should present as much information to the program.-
mer as is available. This often results in information
overload, especially because the animation progresses in
time, leaving only the short interval of the near-present
animation frames in the mind of the viewer.

With comparison to WAMTRACE, cur goals in VIS-
TA were: (1) generalize the tool for other language
paradigms. Specifically, AND-parallel execution is more
prevalent in most languages, and needed to be addressed,
(2) to summarize the animation; (3) abstract away in-
formation so as not to detract the viewer from under-
standing one thing al a time. Thus we introduce differ-
ent views of the same static image, to convey different
characteristics; (4} more advanced use of color to reduce
image complexily and increase viewer intuiticns.

Note that the emphasis of WAMTRACE on anima-
tion is a feature, not a bug — the animation enables
the gross behavior of the dynamic scheduling algorithms
to be understood. Animation is implemented, but not
stressed in VISTA. In this paper, we analyze a system
with simple on-demand scheduling [10], and so anima-
ticn is not critical to understanding program behavior.

There are numerous views of performance data, quite
different than WAMTRACE, e.g., [6, 9, 12, 5]. In gen-
eral, these methods are effective only for lazge-grain pro-
cesges, and either do not show logical (process) views
of program execution, or cannot show such views for
large numbers of processes. Voyeur [12] and Moviola
[5] are closest in concept to VISTA. These animators
have great benefit, but this limits the complexity that
can be realistically viewed. Related research concerns
a visual representation [7] and visual debugger [4] for
committed-choice languages, but these are not for per-
formance analysis.

3 Inside VISTA

The main goal of VISTA iz to give effective visual feed-
back to a programmer tuning a program for parallel per-
formance. To achieve this goal, VISTA displays an en-
tire reduction tree in one {workstation) window, with
image condensation il needed, Two types of conden-
gation are performed: level and node condensing (de-
seribed below). In addition, VISTA enables a user to
view the tree from different perspectives (PE, time, or
procedure) and zoom-up different porticns of the tree.
Since the tree js usually dense for small-grain parallel
programs (even after condensation), and the tree must
be redisplayed when the user desires different views, the
tree-management algorithm must be efficient and the
window space must be utilized effectively.

We now define terminology for describing logical call
trees. The level of a node is the path length from the
root to the node. The root level is zero. The root is the
initial procedure invocation, i.e., the query. The height
of a tree is the longest path from the root to a leaf, plus
one. The height of a node is the height of the tree minus
the level of the node. Level condensing is a mapping
from a tree T to a tree T¥ with the same ancestor and
descendant relationships, such that a node n at level |

935

in Tis mapped into a node n' at level I' in T7, where
I = |l/e| and eis level-condensing ratio (defined below).
Node condensing is the removal of all the descendants of
the node n from the tree, if the allocated sector (defined
helow) for n in the window space is less than one pixel.

With these definitions in hand, VISTA management
is now reviewed. There are two inputs to the algorithm:
a trace file and a source program. A trace file entry con-
gists information corresponding to a time-stamped pro-
cedure reduction. Although not currently implemented,
VISTA could easily be extended to accept arbitrary e
vents logged in the trace, as does WAMTRACE.

There are alternative ways to map an arbitrarily
large tree onto a limited window space. We employ an
abstraction requiring two passes over the trace: finding
ihe tree height and creating a level-condensed tree. The
condensed tree keeps the shape of the original tree (al-
though scaling is not precise). This original shape allows
us to carry our intuitions over from the tool's view to
tuning performance of actual programs. In order to cal-
culate the level-condensing ratio, e, the maximum tree
height te be displayed (i.e., limitation of the window
space) is needed: hpar = [w/2d], where w is the maxi-
mum window width, and J is the distance between two
adjacent levels. If tree height k < fiya., level condensing
is not needed. f i > hpee, level condensing is performed
with the ¢ ratio calculated as follows:

i = mhmur‘ﬂﬂ{h_cﬂhmu}

¢ = cn i<t
- at+l =t

where [is the node level. This condensation scheme puts
more emphasis (space) on the levels closer to the root
because earlier reduclions are generally more “impor-
tant" than later reductions. The heuristic corresponds
to the user's intuition that processes responsible for dis-
tribution of many subprocesses should appear larger.

An open question is Lthe categorization of programs
into those which abide by this heuristic, and those which
donot, A program that would “frustrate” VISTA heuris-
ties has the most significant computation near the leaves,
where distribution of this work (near the root) is less im-
portant. A trivial example is a tree of parallel tasks,
each a very heavy sequential thread of computation.
VISTA will condense the graph to fit within the win-
dow, in the limit (of very long threads) producing a star
shape. Although this may be considered “intuitive,” it is
abstracts away all information except the threads, which
themselves are difficult to view against the background.
Alternative views, such as condensing each thread into
a polygon, perhaps colored as a function of the conden-
sation, may be more informative because the freed-up
window space would allew the work distribution at the
root to be viewed also. How this and other types of con-

936

A § iRl

EJEER

O f#2,8,3)
0] Gl
F Ol i) =
: c] [[] [] e o [e
e 23} g A2 e
A | (i,
"~ wman(] (] [F] [@R] [[5)

a0} GpstliB) (g i) dgw 280
LT B 1 [k]

|E | tm.2y

LU) [il

{ma 24}
lha 7)

Figure 1: Whole Tree for Qsort: “7- gsort([2,1,4,
513:' K7 L]E_hh?ra;

]

S I l345= @)

E g

.Figure & Weight Calculation for Qsort
densation, while not scaling the tree linearly, can lead
to better understanding of certain programs, is a topic
of future research.

At this stage of the algorithm, the levels to be dis-
played, and to be discarded, are decided, To illustrate,
consider Fig. 1 showing the original tree for a Quick
Sort program (the trace executed on four PEs and con-
sists of 23 records). Hach node is labeled with a tripie,
{5, pe, index), where s; is procedure s (abbreviated) in-
voked at trace index 1, pe is the PE number, and inder is
the sequence index of that PE. For example, (gs,3,1) of
node [denctes that procedure geort was invoked as the
5*% traee record, and reduced on PE = 3 as the first goal
executed by that processor. After level condensing with
e=2 nodes B, F-L, U, and V are contracted into their
parents. These odd-level nodes are removed because if
(! mod c) # 0, all nodes in level | are condensed.

Each node at level [in the logical tree is displayed
in the window at a locus defined by radius r = d = |,
where d is the (constant) distance between two adjacent
levels. The node is illustrated by a point, however it is
connected to its children (at the next level) by a closed
polygon arcund the “family” (the polygon degenerates
into a line if there is one child). The polygon itself is
colored, representing an attribute of the parent. After

(7578 (ma2e)h (10,2%)

L T
Lo, trinan) [u]
[n=s] () 26338 maay
1oy 1) (2
[h=a 5]
(0.7%)

Figure 3: Node Allocation for Qsort

£lb 81
T

Figure 4: Execution Graph of Qsort: PE View (4 PEs)

level condensing has completed, the nodes at each level
are allocated to the.corresponding locus (a concentric
circle). This is analogous to the pretty printing problem
for text. We soive this problem heuristically by allo-
caling a sector Lo each node depending on its weight.
The node and its children are then displayed within the
range of the sector only. The weight w for each node
is heuristically defined as the sum of the weights of its
children plus the height of the node. Thus more weight
is put on nodes closer to the root because, the closer
the node is to the root, the fewer nodes the correspond-
ing circle can contain. Fig. 2 shows an example of the
weight calculation for the Quick Sort program.

A sector is defined as the subset of the concentric cir-
cle within which a nede can be displayed. To formalige
the sector caleulation, consider a unique labeling of each
node by a path from the root {zy,z3,..., 24}, where x;
is the sibling number traversed in the path. For exam-
ple, in Fig. 2, node J with weight 9 has label {1,3,1}.
The sector of a node at path p is represented as a pair
($p: 85}, where 5, and a, are the starting degree and the
allocation degree of the node, respectively. The sector
of the root is defined as (0, 360). The starting degree o
for a node at level k is calculated as follows:

. SN . leftmost child
By gty <= Sxy ggenlzy—1) T Obherwise
T2 23, A2x—1)
In other words, if the node iz the leftmost child, then
the starting degree is equal to the starting degree of
the node’s parent, Otherwise, the starting degree of the
noede is equal to the sum of the starting and allocation
degrees of its left sibling. The allocation degree a, for a
node at level & is calculated as follows:
Wey g Tk
Y Uny el i)

LU R x ﬂl":l.-'l‘t-.mql'u...n
where 1w, is the node's weight, the summation is the
total weight of all m siblings (including the node itself),
and the final factor is the allocation degree of the parent.
Fig. 3 shows the sectors of the nodes for Fig. 2.

After the previous steps, the execution graph is ready
for display in the X-Window System [11] with VISTA as
a client. When drawing the graphic, if the sector caleu-
lated is less than one pixel, node condensing is done, i.e.,
the node and its children are not displayed. The exact
position for each node in the window space isn't calcu-
lated until the tree is displayed, since the size and the
center of the tree may be changed. The exact node po-
sition (x, ¢ in the window is calculated in the next step
asx =dx ! xcos(s+af2) snd y = dx!xsinfs+af2),
where, d is the level distance, [is the level of the node,
and (s,a) are the start/allocation degrees of the node. A
complete description of the internal algorithems is given
in {14]. To put the algerithms into perspective, Fig.
4 shows the VISTA display showing a PE view of the
Quick Sort program (corresponding to Figs. 1-3).

4 Program Analysis with VISTA

Qur initial experimental testbed for VISTA is an instru-
mented version of the pa.ra]lel FGHC aystem, Pande
[10, 13]. Tuning & fine-grain parallel FGHC program
for increased performance involves understanding how
much parallelism is available and what portion is be-
ing utilized. In experimenting with parallel logic pro-
grams using VISTA, we have found a number of ap-
proaches useful for understanding performance charac-
teristics. Qur experiments consisted of a set of execution
runs on a Sequent Symmetry, and involved both modi-
fying the benchmarks and varying the numbers of PEs.
We exarnine three such benchmarks here.

4.1 Pascal’s Triangle Problem

Pascal’'s Triangle iz composed of the coefficients of (z +
y)" for n = 0. The binomial coefficients of degree n are
computed by adding successive pairs of coefficients of
degree n — 1. A set of coefficients i defined as a row
in Pascal's Triangle. Our first benchmark [13] computes
the 35* row of coefficients, with bignum arithmetic.

The easiest way to understand a program in VISTA

937

iz with a procedure view or graph. Fig. 5 shows the re-
duction tree from the procedure view. This graph, dis-
played here without any condensation, has 2,235 nodes
and a height of 56. The interesting snail shape, where
the radial arms correspond to row calculations, indicates
that the rows, and therefore the computalions, are grow-
ing in size. Near the root, & cyan distribution procedure
spawns the rows, and near the leaves, a sky-blue bignum
procedure adds coefficients. The size of the subtree (i.e.,
one row) is increased by one for every two rows. This
means that I and 3 + 1 rows have the same number of
coefficients (bhecause only the first half of the row is ever
computed, taking advantage of the symmetry of « row).
The two lines at the east side represent the expansion
of the final half row into a full row. This program illus-
trates how the user can roughly understand execulion
characteristics from the procedure view, even without
knowing the precise details of the source code.

To analyze the parallelism of the execution graph,
we first examine load balancing among PEs. Good load
balancing among PEs does not necessarily mean effi-
cient, exploitation of parallelism. However, without fair
load balancing, full exploitation of parallelism cannot be
achieved, In VISTA, a fair color distribution in the PE
view or graph represents good load balancing. Figs. 6
(PE graph) and 7 (time graph) represent the execution
on five PEs. In the time view, the RGEB color spectrum
from blue to magenta represents the complete execution
time. Because there are few visibly distinet colors in
this range, the same color in the time graph does not
necessarily represent the same time. If some nodes are
represented with the same color within the time graph,
and by the same PE color within the PE graph (ie,
all the nodes are executed by the same PE), then the
reductions were execuied sequentially.

All five colors are distributed almost evenly in the
PE graph for Pascal, representing good load balancing,
To further analyze parallelism, both PE and time graphs
are used in conjunetion. In the time view, the spectrum
is distributed radially, although net perfectly so. This
indicates that most rows were executed in parallel. Al
though the maximum parallelism is limited by the PEs
at five, again the vagueness of the RGB spectrum can
be misleading, making it appear as il there is more par-
allelism. This problem can be evercome to some sxtent
with & subtree display, where the spectrum is recycled
to represent Lime relative to the selected root.

Fig. 8 shows the single-PE time graph for Pascal. In
this graph, the spectrum is distributed laterally, around
the spiral. This distribution indicates that the nodes
were executed by depth-first search, the standard Panda
gcheduling when no suspensions occur. By comparing
the two time graphs, we can infer the manner of schedul-
ing: breadth-first on five PEs, and depth-first on one
PE, but without a PE view, we cannot conclusively in-
fer parallelism. Fig. & shows that some rows are not
executed entirely by the same PE (i.e, task switches

038

occur within some rows). These characteristics indicate
that suspensions are occurring due to data dependencies
between successive rows of coefficients. All three figures
in conjunction indicate the “wavelike™ paraflelism be-
ing exploited as the leftmost coefficients of the Triangle
propagate the computation down and to the right.

4.2 Semigroup Problem

The Semigroup Problem is the closure under multiplica-
tion of a group of vectors [13]. The benchmarl uses an
unbalanced binary hash tree to store the vectors pre-
viously calculated so that lookups are efficient when
computing the closure. Fig. 9 (PE graph) and Fig.
10 (time graph) were executed on five PEs. The total
oumber of nodes in the reduction tree is 15,419, and
the tree height h=174. In this experiment, the window
size was 850850 and the level distance was four, The
maximum tree height to be displayed is calculated as
humaz = | %2 % 2] =106. Level condensing is performed
becanse k> finae. The first 38 levels are not condensed,
but the remaining 136 levels are condensed by 2:1. This
example demonstrates some strong points of VISTA: (1)
After level condensing, the tree keeps its oniginal shape;
(2) The window-space efficiency is very good. If the
tree were represented in a conventional way (propagat-
ing from the top of the window), representation would
be difficult, and space efficiency would be poar.

To understand the parallelism characteristics of Semni-
group, load balancing among processors is analyzed first.
The most immediate characteristic of the PE graph is
that the reductions form the shape of many spokes or
threads of procedure invocations. Near the root are dis-
tribution nodes. Each thread represents a vector multi-
plication. As the graph shows, almost all threads were
executed without task switch. This indicates few sus-
pensions due to lack of data dependencies, i.e., the vec-
tors are not produced in the pipelined fashion of the
Pascal program. By eye, we judge that the five colors
in the PE graph are evenly distributed, indicating that
load balancing is good.

Lack of data dependencies between nodes is con-
firmed by a single-PE time graph (not shown). The color
distribution of this graph is similar to that of Fig. 10, in-
dicating that as scon as the first node of the new thread
is spawned, both the child and parent threads were ex-
ecuted in parallel, without any suspensions. The rea-
son that the threads are not execuied clockwize or anti-
clockwise in Semigroup, as in Paseal, is that there were
some initial data dependencies near the root. These
dependencies, caused by hash-tree lookups for avoiding
recomputation of a semigroup member, cause critical
suspensions that “randomize” the growth pattern.

When the PE graph (Fig. 9) is viewed in conjunction
with the time graph (Fig. 10), parallelism can be ana-

lyzed in more detail. Threads with the same colors in
the time graph, and different colors in the PE graph, are

executed in parallel. The PE graph still has a fair num-
ber of threads per PE, indicating that not all potential
parallelism has been exploited and additional PEs will
improve speednp. These approximations can be refined
by examining subtree displays,

Historically, the Semigroup program analyzed above
was the result of a number of refinements from an origi-
nal algorithm written by N. Ichiyoshi [13]. Earlier algo-
rithms utilize a pipeline process structure, wherein new
tuples are passed through the pipe, and duplicates are
filtered away, Any tuple surviving the pipe is added as
a new filter at the end, and all of its products with the
“kernel tuples (the program's inputs) are sent through
the pipeline. Although these algorithms are elegant, the
pipeline structure is a performance bottleneck, The ver-
sion analyzed above utilizes a binary tree instead of a
pipeline, increasing the parallelism of the checks.

In retrospect, we see how VISTA could have helped
in developing these successive algorithms. Fig. 11 shows
the time graph for an older version of the program that
has the same complexity as the program analyzed above.
Thus the main difference is the pipeline bottleneck, which
is clearly indicated by the signature’s snail shape. Un-
like Pascal, time iz not projecting radially, indicating
lack of wave parallelism. Successive tuples are depen-
dent on previous tuples surviving the pipeline, and this
dependency is seen in the coloring (it could be better
viewed if the RGB spectrum were more distinguished).
The dependency is made explicit by clicking on nodes
to indicate the corresponding procedures. Fig. 10 radi-
afes from the query, indicating the potential parallelism
afforded by a tree vs. a pipeline. The coloring further
indicates that the tree is not bottlenecked.

4.3 Instant Insanity

The Instant Insanity problem is to stack four four—calored
cubes so that the faces of each column of the stack dis-
play all four colors. This is a typical all-solutions search
preblem with eight solutions. There are several meth-
ods for doing the search in a committed-choice language:
most notable are candidates/noncandidates and layered
streams [13]. The candidates method builds an OR-tree
where each node concerns whether the eurrent candi-
date is consistent with the current partial solution. At
the root, all orientations of all cubes are candidates and
the partial solution is empty. At the leaves, no can-

didates remain and the partial solutions are complete.
Each node has two branches:.one branch contains the

solutions that include the current eandidate, and the
other branch contains solutions that do net include the
candidate. Layered streams is a network of filters that

eagerly attempt to produce a stream of solutions of the

form HeT. Here H is the first. element shared by a set

of solutions, and T are the tails of these solutions. To

throttle excessive speculative parallelism, a “nil check”

is inserted at each filter to ensure that T must have at

least one element.

Layered streams has 9,094 reductions (nil check) and
8,775 reductions (without nil check). This increase of
7% reductions is becanse of two factors: the additional
speculative execution and the bloated conversion of the
now largely incomplete layered stream back into normal
form. Both of these effects are seen by comparing the
VISTA graphs (Fig. 12 and 13). The conversion rou-
tine is clearly viewed as a significant subtree without
the nil check, compared to a single thread with check-
ing. The user can now appreciate the relative weight of
the conversion with respect to the entire search, The

speculative branches, however, do not stand out. This
would be an interesting application of user-defined trace

records, where a “trace dye” could be introduced with
a nil check that does not throttle the speculation.

The candidates program has 37,657 reductions, so
that VISTA must condense the image. The final image,
shown in Fig. 14, has 23,127 nodes. Examining the
structure and coloring of the layered-streams and can-
didates programs, there are no chvious parallelism bot-
tlenecks in either {measurements of all three programs
showed equal PE utilization of 93-95%). From the time
graph coloring, the fine-grain parallelism of the filter
structure is apparent in the layered sireams program.
The candidates graph shows large-grain structure, al-
though we must view the time and PE graphs together
to ensure that PEs are equally distributed across time.

The simple examples analyzed here facilitate the ex-
position of VISTA, Intuitions gained for these programs
have been confirmed by timing measurements [13]. Pro-
grams without as much parallelism, and on larger num-
hers of PEs, can be similarly analyzed. As the number
of PEs grows, however, the tocl approaches its limita-
tions because the user can no longer distinguish between
the multiple colors representing the PEs. This is an im-
portant area of fufure research,

5 Conclusions and Future Work

This paper described the performance analysis of par-
allel logic programs using “kaleidescope visualization.”
The VISTA system is an X-Windows realization of the
method, and is demonstrated in the context of parallel
FGHC programs. We showed how the user can tune a
large-trace program for performance by examining alter-
native abstract views of the execution. VISTA, because
of its efficient implementation, proved its merit in en-
abling rapid analysis of views. This tool complements,
but by no means replaces, other visealization methods,
e.g., animation of PE activity and message passing,
We are currently extending this research in several
areas, First, we need to experiment more with the cur-
rent VISTA protetype, for various programming lan-
guages, to determineits utility. Second, coloration meth-
ods for combining the time and processor views need
exploration, .g., a method of spectral superpesition {1].

939

The anthor was supported by an NSF Presidential Young
Investigator award, with funding from Sequent Com-
puter Systems Inc. Computer resources were supplied
both by OACIS and Argonne MCS. D.-Y. Pack, in an
outstanding effort, implemented VISTA.

[1] J. A. Berton. Strategies for Scientific Visualization:
Analysis and Comparison of Current Techniques,
Proceedings of Extracting Meaning from Compler
Data: Processing, Display, Inferaction, SPIE vl
1239, pages 110=121. February 1990.

[2] T. Disz and E. Lusk. A Graphical Tool for Ob-
serving the Behavior of Parallel Logic Programs.
In Inter. Symp. on Logic Prog., pages 46-53. IEEE
Computer Society, August 1987,

(3] T. Disz et al. Experiments with OR-Parallel Logic
Programs. In Inter. Conf on Logic Prog., pages
576-600. MIT Press, May 1987,

(4] Y. Feldman and E. Shapiro. Temporal Debugging
and its Visual Animation, In [nter. Symp. on Logic
Frog., pages 3-17. MIT Press, November 1991,

{5 R. Fowler ef al. An Integrated Approach to Paral-
lel Program Debugging and Performance Analysis
on Large-Scale Multiprocessors. SIGPLAN Notices,
24{1):163-173, January 1989,

[6] M. T. Heath and J. A. Etheridge. Visualizing the
Performance of Parallel Programs. [EEE Software,
pages 29-39, September 1991,

[7] K. M. Kahn and V. A. Saraswat. Complete Visu-
alization of Concurrent Programs and their Execu-
tions. In [EEE Visual Language Workshop, IEEE
Computer Society, Oclober 1990,

E. Lusk et al. The Aurora Or-Parallel Proleg Sys-
tem. In fnter. Conf. on Fifth Gen. Comp. Sysfemas,
pages 819-830, Tokyo, November 1983, ICOT.

9] A. D. Malony and D, Reed. Viswalizing Paral-
tel Compuler System FPerformance, pages 59-90.
Addisen-Wesley, 1990,

8

[10] M. Sato and A. Goto. Evaluation of the KL1 Paral-
lel System on & Shared Memory Multiprocessor, In
IFIP Working Conference on Farallel Processing,
pages 305-313. Pisa, North Holland, May 1983.

[11] R. Scheifler and J. Gettys. The X Window System.
ACM Trans, on Graphics, 5:79-109, April 1986

[12] D. Socha ef al. Voyeur: Graphical Views of Par-
allel Programs. SIGPLAN Notices, 24{1):206-215,
January 1989

[13] E. Tick. Parallel Logic FProgramming. MIT Press
Cambridge MA, 1091,

[14] E. Tick and D.-Y. Park. Kalaidescope Visualization
of Fine-Grain Parallel Programs. In Hawaii Inter.
Conf. on System Sciences, vol 2, pages 137-148.
Kauai, IEEE Compiter Society, January 1392

§

540

Py

[dd 1) marp suny, woy peaseq jo ydeay g amfny

ey

(sqd §) Moty 5[g woy [easeq jo qdeary g smILg

M=

Ll

i fLada=S

44

A.... i...-u.u..f._v..f.
£ ﬂw NG
T T N 1
4 W

(35 d g) sa1p aunpasol g worj [eased Jo ydeln) g amdyg

(#ryq .Mn_ A w...u Py)
el g —— Wy, Sy]
5, .mi_.nu.‘..b#. Lu....rﬁ.. H \.
i, O i
! =1
......:l i & \. o= = =
:ﬂvﬁr hh o .1.Ll.-l|11 . ..uq_\.
= .__.V. m_ ...ﬂ__
- ..f..._..._.._m.w.?.fv..‘.‘f. - .

.;ra.r..t.r......nl.r...,.,.,.. .%w . £

'CLLEY oo,

ZTwY

941

Figure 11: Graph of Old Semigroup Algorithm from
Time View (5 PEs)

942

Figure 12: Graph of Layered Stream Cubes with Nil
Check from Time View (5 PEs)

B A TS 1D

Figure 13: Graph of Layered Stream Cubes without Nil
Check from Time View {5 PEs)

Figure 14: Graph of Candidates Cubes from Time View
{5 PEs)

