PROCEEDINGS OF THE INTERMNATIOMAL CONFEREMCE

ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
adited by ICOT, © ICOT, 1992

1198

Parallel Logic Simulator based on Time Warp
and its Evaluation

Yulkimori Matsumoto and Kazuo Talki

Institute for New Generation Computer Technology
1-4-28, Mita, Minato-ku, Tolkyo 108, Japan

yamatumo@icot .or.jp

Abstract

This paper focuses on parallel logic simulation, An effi-
cient logic simulator on a large-scale multiprocessor is
targeted. The Time Warp mechanism, an optimistic
method for time-keeping, was experimented and evalu-
ated.

Synchronous mechanisms and conservative mecha-
nisms for time-keeping have been examined already, and
their inefficiency on large-scale distributed memory ma-
chines has been noted, There have been few reports,
however, on evaluation of the Time Warp mechanism
although rollback processes have been presumed to be
heavy. We aim at evaluating the efficiency of this mecha-
nism, Several devices, such as a local message scheduler,
an antimessage reduction mechanism and a load distr-
bution scheme, are added in order to reduce rollback
averhead,

The simulator is implemented on the Multi-PSI, a dis-

tributed memory multiprocessor. The simulator is writ-

ten in concurrent logic language KL1. KL1 is expected
to be suitable for parallel programming because it sup-
ports data-flow synchronization and global name space
across the processor boundary.

Experiments were done so that the speedup, perfor-
mance and influences of various overheads could be mea-
sured. Using 64 processors, 48-fold speedup and 99K
events/sec performance were obtained. The overhead
measurements revealed that rollback processes slightly
affected performance. These resulis showed that the
simulator had fairly good performance as a full-software
logic simulator and that the Time Warp mechanism
worked efficiently.

1 Introduction

Logic simulation is used in order to verify not only the
functions of designed circuits but also the timing of sig-
nal propagation. Since logic simulation is currently one
of the most time-consuming stages in L51 design, faster

simulators are urgently needed. A parallel logic simmla-
tor is one likely way of producing quick simulation.

Parallel logic simulation is usually treated as a typical
application of parallel discrete event simulation (PDES).
In PDES, performance essentially depends on the time-
keeping mechanism.

The mechanisms broadly fall into three categories:
synchronous, conservative and optimistic mechanisms,
Since synchroncus mechanisms require global synchro-
nization, they, apparently, do not work efficiently on dis-
tributed memeory multiprocessors|Soulé and Blank 1988].
Furthermore, conservative mechanisms tend to deadlock
when circuits have feedback loops. A lot of computation
power is needed to avoid this[Lubachevsky 1989, Misra
1986, Shimogori and Kage 1989]. On the contrary, op-
timistic mechanisms cannot deadlock, however, they do
expend some computation power on rollback processes
[Fujimoto 1990, Jefferson 1985]. Ouly a few experiments
with the optimistic mechanism were reported [Chung
1989, Driner ef ¢l. 1991] but the details have not been
evaluated yet,

We are targeting an efficient logic simulator on large-
scale MIMD multiprocessors, most of which will be dis-
tributed memory machines. We adopted the Time Warp
mechanism, an optimistic mechanism, because the over-
heads of the mechanism were considered to be reduced
using some devices such as a local message scheduler, an
antimessage reduction mechanism and a load distribu-
tion scheme. By adding them to the Time Warp mech-
anism, we expected that it would become suitable for
logic simulation on large-scale MIMD machines.

We have implemented a parallel logic simulator on the
Multi-PSI[Taki 1888] — an experimental parallel infer-
ence machine, a distributed memory multiprocessor, The
simulator was written in concurrent logic language KL1.
KL1 provides several advantages for quickly program-
ming parallel applications. Data-flow synchronization,
global name space and dynamic memory allocation are
expected to remove the causes of many bugs.

Several benchmark cireuits have been simulated on the

simulator in order to evaluate the efficiency of the Time
Warp mechanism, Peformance, speedup, rollback over-
head and inter-PE (processor element) communication
overhead have been measured.

This paper firstly overviews our system. Hemarkable
devices to enhance efficiency, such as a load distribu-
ticn scheme, a local message scheduler and an antimes-
sage reduction mechanism are mentioned. Secondly, KL1
and the Multi-P5S[are briefly introduced. Then, fairly
good performance and speedup in actual execution are
reported. Finally, we refer to the examination that re-
vealed the main causes affecting performance in our sim-
ulator,

2 The Time Warp Mechanism

Ewvent simulation can be modeled so that several objects
change their states by communicating with each other.
An object is a state-automaton. A message has infor.
mation of an event whose occurrence time is stamped on
the message (time-stamp).

Jefferson proposed the Virtual Time paradigm and
its implementation, the Time Warp mechanism[Jefferson
1985]). He suggested that the Time Warp mechanism
would be useful as the time-keeping mechanism for
FDES.

It the Time Warp mechanism, each object usually acts
according to received messages and also records the his-
tory of messages and states, assuming that messages ar-
rive chronologically. But when a message arrives ai an
object oul of time-stamp order, the object rewinds its
history (this process is called rollback), and makes ad-
justments as if the message had arrived in correct time-
stamp erder. After rollback, ordinary computation is
resumed. If there are messages which should not have
been sent, the object also sends antimessages in order to
cancel those messages.

In addition to the above, a global control mechanism
sometimes works to update GVT {global virtual time)
which is used for memory management, GVT must sat-
iafy the following two conditions.

L. GVT is not greater than the minimum simulation
time at any object.

2. GVT is not greater than the minimum time-stamp

values in the messages that have been sent but not
vet received.

After the global control mechanism updates GV'T, it no-
tifies all objects of the new GVT. As no objects rewind
their histories before GVT, the memory area occupied
by histories before GVT can be releasad.

1199

3 System Overview

3.1 System Specification

The systemn sitnulates combinatorial circnits and sequen-
tial cireuits that have feedback loops. It handles three
values: Hi, Lo, and X {unknown). A different delay time
can be assigned to each gate (non-unit delay model).
Sinee this system only treats gates, flip-flops and other
functional blocks should be completely decomposed inteo
gates.

The supported functions are the minimum set for ex-
periments, but they can be easily expanded (e.g. to han-
dle more signal values).

3.2 Load Distribution Scheme

For efficient execution of parallel logic simulation on a
distributed memory machine, the scheme of load distri-
bution is important at the following three points: load
balancing, keeping inter-PE communication frequency
low and deciving a lot of parallelism.

In our simulator, target circuits are partitioned stat-
ically in the preprocessing phase. We propose a new
partitioning strategy called “Cascading-Oriented Parti-
tioning" (COP, for short) for high-quality load distribu-
tion.
COFP makes several clusters by grouping getes that are
connected to each other in a cascade form. A grouping
operation starts from the primary input of the creuit.
By tracing a path of the gate connection straightforward,
subsequent gates are incladed in & cluster. K there are
several candidates to be included, only one gate is se-
lected and ihe others are left to be the starting points
for other grouping operations.

After partitioning, small clusters that contain very few
gates are merged into adjacent large clusters. Conversely,
extremely long cascade-formed clusters are cut into sev-
eral smaller clusters so that they do not cause load im-
balancing.

Finally, clusters are assigned to PEs randomly; the
only constraint is thal each processor should contain a
roughly equal number of gates.

COP intends to exploit parallelism of the multiple
fanouts. COP also guarantees that a gate has af least one
adjacent gate in the same cluster. So, COP is effective
in keeping the communication locality, that is, reducing
inter-PE communication. The random distribution of
clusters attains load balancing.

In COP, the smaller each cluster, the better load
balancing but the higher inter-PE communication fre-
quency. There is a performance trade-off between good
load balancing and the low frequency of inter-PE com-
munication. It is necessary to decide the appropriate
size of a cluster according to the number of gates in the

1200

target circuit and the number of PEs,
COP may look similar te Agrawal’s algorithm, how-
ever, COP is different from it in the next two points.

o Agrawal’s algorithm basically assumes simulation

using the synchronous time-keeping mechanism.
According to the gate delay value, the algorithm
estimates the number of messages generated in each
cluster at each tick for the purpose of load halane-
Ing.
Conversely, an estimation such as the above is
slightly beneficial to our simulator because messages
with different time-stamps can be evaluated simul-
taneously in the Time Warp mechanism,

* [n Agrawal's algorithm, once a cluster is gener-
ated, it will never be decomposed into smaller ones,
Therefore, the load is sometimes imbalanced.

In COP, however, clusters that are too large are cut
into several adequately sized clusters. This enables
the system not only to be flexible for varicus num-
bers of PEs but also it to exploit more parallelism
{i.e. pipeline parallelism).

3.3 Local Message Scheduler

In the simulation, there are usually several messages to
be evaluated in 2 PE. When the Time Warp mechanism
is used, the bigger time-stamp a message has, the more
likely the message is to be rewound. For this reason,
proper message scheduling in each PE is expected to re-
duce rollback effectively.

In our system, a message scheduler resides in each PE.
When a message is spawned, it is first registered in the
scheduler in which the destination object belonge. The
scheduler picks up the messages with the smallest time-
stamps and sends them to destination objects at the ap-
propriate morment.

This scheduler ensures that rollback never happens as
leng as an object is receiving messages from other objects
in the same PE. Only messages sent from other PEs may
cause rollback.

3.4 Reduction of Antimessages

In Jefferson’s original Time Warp mechanism, when roll-
back cceurs, as many antimessages must be generated as
the number of messages that need to be canceled (Figure
1). However, the number of antimessages can be reduced
when we assume the next condition: for any objects A
and B, messages transmitted fram A to B are received
by B in the same order as they are sent by A (order-
preserved condition)[Fukui 1989).

'For reference, clusters with 12 to 32 gates are generated for a
tircuit consisting of 12,000 gates in the simualation using 4 FEs.

X
Time
Sy Sl
1 Time
@)
A
1|-.‘
¥
1o be canceled

Figure 1: Cancellation with several antimessages

i
1o be canceled

to he cancalad
Figure 3: Cancellation with no antimessages

Assume that My, My, .., M, are messages and AM is
an antimessage. Also assume Mj, Ms,.., M, all satisfy
the following three conditions:

o My, M,, .., M, were sent before AM,

o My, My, .., M, were sent along the same channel that
AM is sent along,

o M, M;, ., M, have lime-stamps greater than or
equal to AM.

Then it is clear that My, M;, .., M, must be canceled.
No other messages must be canceled. Only one antimes-
sage that corresponds to the canceled message with the
smallest time-stamp need be sent (Figure 2).

We advanced this idea one step further, Assume that a
sender has to cancel messages My, My, .., M,, which have
already been sent in this order, and at the same time
the sender knows that a new message M., will be sent
whose time-stamp is equal to or less than that of M,,

In this case, the sender sends A,.. bul no antimes-
sage. When a receiver receives M., with a smaller time-
stamp than the M, that the destination object received
just before, the receiver can easily notice that an invalid
situation has oceurred, and can cancel My, M, .., M, im-
mediately {Figure 3),

In our system, the message streams of KL1 are used
for communication between objects. Since KL1 keeps
the order of messages in the stream, the order-preserved

condilion 1s satisfied. So, we adopted the above opli-
mization for reducing antimessages.

4 Hardware and Language

4.1 Hardware

This simulator is implemented on the Multi-PSI|Taki
1988], a distributed memeory MIMD machine. The Multi-
PSI consists of 64 processing elements (PEs) connected
to each other by a 2-dimensicnal mesh network, APE is
a40-bit (8 bits for tag and 32 bits for data) CISC proces-
sor conkrolled by horizontal micro-instruction. The cycle
time 15 200 nsec,

A networl controller is paired with each PE, support-
ing message passing communication between PEs. The
bandwidth of the controller is 5M bytes/sec. The net-
work has wormhole routing functionality.

Since the Multi-PSI is a distributed memory machine,
commmunication lateney between objects in different Pls
takes appresimately twenty times longer than fatency in
the same PE. However, the distributed memory archi-
tecture can be scaled up easily.

4.2 Language and Implementation

This simulator is written in concurrent logic language
KL1.

KL1 is a langnage without destructive value assign-
ment to variables, that is a single assignment language.
Due to its nature, data-flow synchronization is realized
without significant overheads in the language implemen-
tation. Therefore, KL1 never compels programmers to
describe synchronization explicitly at a primitive level.

On the other hand, a single assignment language tends
to consume storage rapidly. A dynamic memeary alloca-
tion mechanism and several garbage collection mecha-
nisrng are supported in the KL1 implementation. So,
programmers are free from writing memory management,

The KL1 language assumes a system-wide (global)
name space even on a distributed memory machine. In
KEL1 programming, first, a programmer writes only the
logical concurrency, relations among concurrent objects
or data-flow. Then, the programmer adds the “pragma”
to specify object allocation to a certain processor, as be-
low.

..., B8processor(PE), ...

where I is a “goal” of KL, which represents an object.
Inter-PE reference pointers among objects or variables
are maintained automatically by the KL1 language sys-
tem ab run time. Thus a programmer need not worry at
all about the programming of inter-PE communication.

Since the characteristics described above eliminate the
causes of many bugs, KLI emables us to develop parallel

1201

programs much more easily than with the conventional
lenguages (e.g. FORTRAN and C). In facf, it took one
person just three months to complete the primary ver-
sion of the simulator, including the circuit partitioning
module! Moreover, because of L1, several different ex-
periments, which needed program medification, could be
performed in a short peried.

4.3 Avoiding Asynchronous Copying
GC

Az mentioned above, garbage collection (GC) is indis-
pensable for KL1. Two kinds of garbage collection {GC)
mechanisms, & copying GOC[Baker 1978] and the MRB
GC[Chikayama and Kimura 1987], are implemented for
intra-PE memory management on the Multi-PS1,

For the Time Warp mechanism, the most wnportant
point in cbtaining good performance is Lo keep the pace
of simulation in each PE equal. However, the copying GC
starts at different times in different PEs and disturbs the
pace of simulation.

Fortunately, since the MEB GC collects single refer-
ence data area without stopping KI.1 execution, it is
expected to stabilize the pace of simulation. We took
great care to keep the data reference single o that all
data areas can be collected by the MRB GC. Hence we
sncceeded in preventing the copying GC*,

5 Measurements and Discus-

sions

Four sequential circuits, presented in ISCAS'8D, were
simulated on the Multi-PSI The number of gates, aver-
age fan-ins and average fan-outs of the circuits are shown
in Table 1. We measured system performance, speedup
2nd overheads, such as rollback and intee-PE communi-
cation, 1n the experiments.

Tahle 2 shows the system performance for various
numbers of PEs. Figure 4 indicates speedup. Table
3 shows the percentage of each process cost®. Table 4
shows the percentage of actual events® and rewound mes-
sages.

Table 5 shows the frequency of rollback f., the av-
erage depth of rollback d. (i.e. the average number of
rewound messages per rollback) and the frequency of
inter-PE communication f.. f; is defined as KfE, 4. as
H./R, and [, as MMy, where A is the total number
of rallback cecurrences, & is the total number of actual
events, H. is the totzl number of rewound messages, M,

#Consequently, when & certain circuit was simulated using 64
PEs, an improvement in performance of approximately 37% was
attzained compared to the case where the copying GC oceurred(ses
appendix),

IThese are the average values for 64 PEs.

4 Actual events are the messages that are not rewound.

1202

Table 1: Target circuits

| Circuits | 1494 ['s5378 [s9234 [s13207 |
No. of gates [683 [3,853 | 6,965 | 11,965 |
Avg. fan-ins || 215 | .70 | 1.57 | 1.66
Avg, fan-outs | 2,08 1.61 1.50 1.55

Table 2: Performance (events/sec)

PEs\Circuits | 51494 [s5378 [50234 [13207 |

1 2,572 | 2,410 | 2,326 | 2,081

4 5,662 | 8,401 | 7,709 | 9,002

16 10,413 | 26,141 | 19,003 | 33,703

64 10,943 | 64,013 | 35,118 | 99,299
Speedu

Mo. of PEs

Figure 4: Speedup

is the total number of messages thal are sent across PE
boundaries and M, is the total number of messages,

5.1 Performance and Speedup

As shown in Table 2 and Figure 4, the simulator attained
approximately 99K events/sec performance and 48-fold
speedup in the best case using 64 processors. This perfor-
mance is fairly good for 2 full-software logic simulator.
This good speedup shows that the Time Warp mecha-
nism works efficiently,

In some cases, however, comparatively poor spesdup
was measured. In order to ascertain the cause of lim-
ited speedup, we will discuss the inter-PE communica-
tion overhead, the rollback overhead and parallelism in
the following subsections.

Table 3: Percentage of time for each process (64PEs)

| Process\Circuits [51494 | 35378 [59234 | 813207
Evaluating and
scheduling 72,28 | 80.28 | 58.69 | 85.70
messages ete,
Hellback 532 [250 1.61 1.53
InteePE | 1915] 524 | 438 | 2.12
communication
GVT updating || 1.21 | 048 | 082 | 0.64
History releasing | 0.43 | 241 | 1.57 | 3.86
1dfing 763 | 6.00 | 33.13 | 6.06

! This process is not only for actual events but o
for mussages rewound,

Table 4: Percentage of actual events and rewound mes-
sages (64PEs)

Circuits 51494 [55378 | 29234 | 513207
Actual events || 20.34 | 81.84 | 656.23 | 86.54
| Rewound msgs. | 70.66 | 18.16 | 34.77 | 13.46

Table 5: Frequency and depth of rollback, Frequency of
inter-PE communication({64PEs)

Circuits || s1494 | s5378 | 50234 [13207 |
J— —_—— e
fr [0.938] 0.0703 | 0.0510 | 0.0227
d, 257 | 3.16 | 10.46 | 6.84
[f.] 0.340 [0.110] 0.0761 | 00208 |

5.2 Inter-PE Communication Over-
head

The cost per message for inter-PE communication was
measured to be 0.503 msec®. However, the average cost
of the essential work, that is, evaluating and scheduling
a message, was 0,362 msec. So, the inter-PE communi-
cation cost was not negligible®,

Tables 3 and 5, however, show that both the frequency
and the percentage of inter-PE communication processes
were low in the cases of 513207 and s9234. This means
that our strategy for partitioning circuits worked effec-
tively and that inter-PE conununication had only a slight
effect on performance in these cases. Comversely, in
the case of 51404, both the inter-PE communication fre-
quency and the percentage of its process were high com-
pared to other cases. 51494 has, on average, more fan-ins
and fan-outs than the others (Table 1), and it tends to

BA tiessage is 25 byles of data

“However, the ralative cost of inter-PE communication i far
lower than systems where inter-PE communication is supporhed
by the operating system.

Table §: Modified speedup and parallelism

| {lircuits 51494 | sA3TH | s0234 | s13207
Modified speedup || 3.96 | 23.62 | 12,51 | 35.66
Parallelism 1588 | 35.52 | 17.95 | 43.24

cause the high inter-PE communication overhead.

5.3 TRollback Overhead

Rellback frequency and its cosl greatly attracted our in-
terest. Table 5 shows that the rollback frequency is not
as high as we formerly suspected, except for 1404,

The average cost per rollback, even for the highest
case, 892347, amounted to 0.578 msec by our measure-
ment. Since the time for essential processes was [L362
msec, the rollback procedure is not exiremely fime-
consuming compared to the essential works, and con-
sequently the percentage of total rollback cost is not se-
riously high in itself, as shown in Table 3.

5.4 Parallelism

Parallelism suggests the upper limit of speedup. In
practice, however, the actual specdup is usually different
from the parallelism because of several overheads.

We estimated the parallelism of each problem, as be-
low. We made another simufator to measure parallelism.,
In that simulator, all PEs work according fo the global
synchronization. Here, we call an interval between global
synchronizations a “time slot”. A PE evaluates only one
message in & time slot, All cutpul messages, if any, are
also sent and registered to their destination schedulers
within the time slot. When there is no message to be
evaluated in a PE at a certain time slot, the PE simply
idles. Assume that the simulation finishes after N syn-
chronization, and that M actual events, which are the
messages that are not rewound, are measured in the sim-
ulation. Here, we define the parallelism of the problem
as M /N. The parallelism means the speedup in such an
environment where the cost for non-essential processes,
such as rollback and inter-PE communication, can be
ignored. :

On the other hand, to make clear the effect of the inter-
PE commmunication overhead and the rollback overhead,
we measured the cost of releasing an unnecessary history
area, which causes super-linear speedup[Matsumoto and
Taki 1591]. Then we removed its effect from the mea-
sured speedup and recalculated the speedup. We named
the recalculated speedup “modified speedup”.

Table 6 compares the modified speedup and the par-
allelism of each problem using 64 PEs. The gap between
the modified Epcf;dup -and Lthe pa.ru.]lelim‘n 15 caused bjl'
the inter-PE communication overhead and the rollback

PThe cost is considered roughly proporticnal to the depth of
rollback, and 59234 has the largest depth.

1203

overhead. For 55378, 9234 end 513207, the parallelisim
is close to the modified speedup. This means that the
limited speedup was caused by a lack of parallelism. We
conclude that our system could show good speedup as
long as target problems have sufficient parallelism. With
respect to the exceptional case, s1494, as Table 4 shows,
a considerable percentage of the messages are rewound.
Tt is considered thal the high percentage was caused in-
directly by the high inter-PE communication overhead
or high rollback overhead, and resulted in further sup-
pression of spesdup.

6 Further Experiments

Since neither the inter-PE communication cost nor the
rollback cost are negligibly small, both of these costs are
considered to affect performance not only directly but
also indirectly. Howewver, it is difficult to separate their
influences clearly.

In this section, we report on the experiments that aim
at clarifying which affects performance more, the inter-
PE communication cost or the rollback cost. We as-
sumed the mode!l described below and made a system
for the experiments.

6.1 DModel

We assume that the only processes that need costs are
the rollback, the inter-PE communication and an essen-
tial process. Here, an essential process consisls of a mes-
sage evaluation work and a scheduling work. Any other
processes, such as GVT updating and releasing unneces-
sary history area, do not need any costs at all. Tt is also
assumed that the essential process cost is equal for any
Egates,

In our model, the inter-PE communication cost £, de-
composes into three factors as follows,

Co=Cy, +Ci + G, (1)

where G?. is the time consumed in the sender PE for
composing a message packet, () is the time from when
the message leaves the sender until it arrives at the re.
ceiver (latency), and Oy, is the time taken by the receiver
to decompose the message packet,

As the rollback cost, ¢, is reughly propertional to the
number of rewound messages, ¢, is represented by the
next equation.

t. = kh +C, (2)
where i iz the number of messages rewound in the his-
tory and) is & constant.

In practice, Equations 1 and 2 give a fairly precise rep-
resentation of these costs. With regard to Oy, and Oy,
they are approximately equal|MNakajima and Ichiyoshi
1990] on the Multi-P51, while the latency is negligible
even if messages are transmitted between the most dis-
tant PEs.

1204

6.2 Experimental System

The experimental system is based on the simulator pre-
sented in the previous sections. By adding several
dummy loads to the original simulator, the actual costs
for rollback and inter-PE communication become negligi-
ble. Thus this system maintains its fidelity to the model
as much as is possible,

In the system, the cost for an essential process is fixed
to be heavy, whereas the rollback cost and the inter-PE
communication cost are changeable.

6.3 Hesultis

We performed two kinds of comparative examination, as
helawr,

1. The inter-PE commiinication cost is fixed so that
its relative value to the essential process cost can
be kept the same as in the actual simulation, With
respect to rollback, k. and C. in Equetion (2) are
varied but O [k, is kept equal to that in the actual
simulation.

2. The rollback cost is fixed 5o that its relative value
to the esseatial process cost can be kept the same
as in the actual simulation. The inter-PE commu-
nication cost is varied but the equality between C,,
and C;, in Equation (1) is kept because they were
approximately equal in the actual simulation.

We simulated 59234 and 51494, They involved approsx-
imately the same parallelism, whereas both the inter-
PE communication frequency and the rollback frequency
were very different.

Figures 5 and 6 show the results. In Figure 5, the X
axis shows the relative value of C,, +C,, compared to the
essential cost. In Figure 6, the X axis shows the relative
value of ;. The Y axis shows the relative performance
(by solid lines) and the relative amount of rewound mes-
sages (by broken lines) compared to those when both the
inter-PE communication cost and the rollback cost are
set to zero. The arrows indicate the the actual proper-
tion points belween these costs.

For both circuits, the higher the inter-PE communi-
cation cost, the worse the performance. This appar-
ently shows that the inter-PE communication cost af-
fected performance adversely. Interestingly, the relative
amount of rewound messages increased with the higher
inter-PE communication cost for 51494, while the curve
of the amount is approximately flat for s9234. The differ-
ence in declination of the performance curves was, there-
fore, caused not only by the difference in the inter-PE
commumnication frequency but also by the difference in
the amount of rewsund messages.

On the contrary, neither performance nor the amount
of rewound messages varied remarkably even though the

Performance Mo. of rewound msgs.
(relative) (relative)
I 3

1000

0.0 1wt 20 30
CF': + f:Flr
Figure 5: Factors affecting performance(1)
Performance Mo. of rewound msgs
(relative) (relative)
1
1.0 :‘Tﬂ.l'l
o8y -
0,51

Y o5 f 1.0 15
Cr

Figure 6: Factors affecting performance(2)

cost of rollback increased. This means that rallback cost
did not have a dominant effect on performance in our
system.

7 Summary and Conclusion

We constructed a parallel logic simulator on the Multi-
P51, a distributed memory multiprocessor. The simula-
tor was programmed in concurrent logic language KL1.
Since the causes of many bugs are essentially reduced by
KL1, the simulator was able to be programmed in only
thres months by one person,

The Time Warp mechanism was adopted for time-
keeping in the simulator. Since rollback overhead in a
naive Time Warp mechanism was considered heavy, we
added several devices such as a local message scheduler,
an antimessage reduction mechanism and a load distri-
bution scheme to reduce the overhead.

Several benchmark circuits were simulated on our Bys-
tem. Approximately 99K events/sec performance and
48-fold speedup were attained using 64 PEs. The per-

formance is fairly good for a software logic simulafor.
The good speedup shows that the Time Warp mecha
nism worked efficiently in the simulator,

We also examined the factors that are considered to
affect performance adversely. The experiments revenled
that the rollback overhead did not affect performance se-
ricusly in our system, while the inter-PE communication
overheard decreased performance.

Acknowledgement

WValuable advice and suggestions were given by the mem-
bers of PIC-WG, an ICOT working group, discussing
parailel LSI-CAD. The anthors gratefully thank them.
Data for the evaluation of our system were recommended
and given by Fujitsu Ltd. and Keio Univ. We also thank
them.

References

[Agrawal 1986] P. Agrawal. Concurrency and Commu-
nication on Hardware Simulators. IEEE Trans. on
Compuler-dided Design, Vol.CAD-5, No. 4 (1986),
pp. G17-623.

[Baker 1978] H. G. Baker. List Processing in Real Time
on & Serial Computer. Communicalions of the ACM,
Vol. 21, Mo, 4 (1978), pp. 280-294.

[Briner et al. 1991] J. V .Briner ef ol Paralle]l Mixed-
level Simuolation using Virtual Time, CAD aecelera-
ters, North-Holland, 1991. pp. 273-285.

[Chung 1989] M. J. Chung and Y. Chung. Data Parallel
Simulation using Time-Warp on the Connection Ma-
chine. In Proc, 26th ACM/IEEE Design Automation
Conf., 1989. pp. 98-103.

[Chikayama and Kimura 1987] T. Chikayama and Y.
Kirnura. Multiple Reference Management in Flat
GHC. In Proe. Fourth Int. Conf. on Logic Program-
ming, 1987, pp. 276-2493,

[Fujimoto 1990] R. M. Fujimoto. Parallel Discrete Event
Simulation. Communications of the ACM, Vol.33,
Ne.10 (1990), pp. 30-53.

[Fukui 1989] A. Fukui. Improvement of the Virtual Time
Algorithm. Trans. of Information Processing Seciely
of Japan, Vel.30, Neo.12 (1988), pp. 1547-1554. (in
Japanese)

[Jefferson 1385] D. R. Jefferson. Virtual Time. ACM
Trans. on Progamming Languages and Sysiems,
Val.7, No.3 (1985), pp. 404-425.

1205

[Kudoh et al. 1991] T, Kudoh ef al.. Parallel Logic Sim-
ulator for Shared Memory Multiprocessors, IETCE
Technical Report, CPSY91-23 (1991), pp. 151-131.
{in Japanese)

[Lubachevsky 1988] B. D. Lubachevsky. Efficient Dis-
tributed Event-Driven Simulations of Multiple-Loop
MNetworks. Communications of the ACM, Vol.32, No.1
(1989), pp. 111-131.

[Matsumoto and Taki 1991] Y. Matsumeto and K. Tali.
Parallel Logic Simulation based en Virtual Time. In
Proc. Joint Symposium on Parallel Processing ‘91,
1991, pp. 365-372. (in Japanes:)

[Misra 1986] J. Misra. Distributed Discrete-Event Sim-
ulation. ACM Cﬂmpnﬁng .E'umays, Vn].lE, Na.l
(1986}, pp. 39-64.

[Makajima et al. 1989] K. Nakajima ef al. Distributed
Implementation of KL1 on the Multi-PSIfV2. In
Proc, 1989 Inf. Conf. on Logic Programming 1989,
pp. 436-451.

[Makajima and Ichiyoshi 1890} K. Nakajima and M.
Ichiyeshi. Evaluation of Inter-processor Communica-
tion in the KL1 Implementation on the Mulii-PSI.
ICOT Technical Heport, TR-531 (1990).

[Shimogori and Kage 1989] 5. Shimogori and T. Kage.
Parallel Logic Simulation wsing A Message-Driven
Approach. [EICE Technical Report, CASBR-110
(1989), pp. 23-30. {in Japanese)

[Soulé and Blank 1888] L. Soulé and T. Blank. Paral-
lel Logic Simulation on General Purpose Machines.
In Proe. 25th ACM/IEEE Design Automation Conf.,
1988, pp. 166-170.

[Taki 1988] K. Taki. The parallel software research and
development tool: Multi-PSI system. Programming
of Pufure Generation Compuiers, North-Holland,
1988. pp. 411-426.

[Ueda and Chikaysma 1990] K. Ueda and T,
Chikayama. Design of the Iernel Language for the
Parallel Inference Machine, The Computer Jowrnal,
Vol.33, No.6 (1990}, pp. 404-500.

1206

Appendix

For the purpose of ascertaining the influence of the asyn-
chronous copying GC, we made another simulator and
compared it to the original. The difference between the
comparative simulator and the original is as follows,

Original simulator :
Only the MRB GC works for collecting garbage.

Comparative simulator :
The copying GC happens asynchronously in each
PE.

Table 7 compares the simulators when s13207 was
simulated using 64 PEs. The result shows that asyn-
chronous outbreaks of the copying GC in each PE in-
creased both rollback frequency and rollback depth. It
certainly cansed the poor performance of the simulator.

‘Table T: Influence of asynchronous copying GC

Original Comparative
simmulator simulator
{Iﬁ?;ﬁ:ﬁ;] 99,239 72,895
ﬂ‘:‘:}l‘ﬁf}ﬂ; 0.0243 0.0261
q{frﬁfl’t];ck 7.96 11.684

