PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
OM FIFTH GENMERATION COMPUTER SYSTEMS 1982,
edited by ICOT, © ICOT, 1992

1181

A Cooperative Logic Design Expert System on a Multiprocessor

Yoriko Minoda, Shuho Sawada, Yuka Takizawa,
Fumihiro Maruyama, and Nobualki Kawato

FUIITSU LIMITED
1015 Eamikodanaka, Nakahara-ku, Eawasaki 211, Japan
prol 14@flab. fujitsw.co.jp

Abstract

CAD systems that can quickly produce quality designs
are needed for the expanding VL3I market. This paper pre-
sents a cooperative design mechanism in a cooperative logic
design expert system on a multiprocessor, co-LODEX. co-
LODEX accepis constraints on area and speed, and ourputs &
CMOS standard cell netlist that satisfies the consiraints. The
user can cven get an optimal circuit for area or speed by iler-
atively strengthening the cormesponding constraint. Short
wrnarovnd is expected through the combination of parallel
processing by several processors and their cooperation.

The cooperative design mechanism is based on an evalu-
ation-redesign mechanism using assumption-based reason-
ing within a single processor, Design alternatives are con-
sidered as assumptions and constraint violations as contra-
dictions. Redesign is implemented as a contradiction resolu-
tion. The evaluate-redesign cycle repeats itself until the de-
sign satisfies the specified constraints. Global evaluation-re-
design takes place by processors exchanging design results
for subcircuits in terms of gate counts and delays (in case of
success) or justifications for constraint viclations {in case of
failure).

Experimental results show that (1) co-LODEX can effi-
ciently carry out global optimization. For example, a circuit
with the minimum number of gates has been obtained while
satisfying constraint on speed. (2) Linear speedup has also
been observed.

1 Introduction

CAD systems that can produce quality circuits quickly
are needed for the expanding VLSI market. One of the most
pressing problems is the lack of & means to ierate the cycle
of evalpation and redesign until the design satisfies all con-
straints. Without it, it would be impossible 1o design a qual-
ity circuit with the desired characteristics (area and speed) by
looking at the design from a global point of view. There is

also demand for CAD systems that can do global optimiza-
tion for the whole circuit. With such sysiems, designers can
et a circuit with the gate count minimized and the delays
kept shorter than the given constraints or vice versa

Tumaround time seems 1o be another key issue. Short
wrnaround allows designers © rapidly implement 2 variety
of architectural choices and to choose the solution best suited
for their specific situation by comparing ares and speed char-
acteristics. Designers can thus explore their options in a
way that has not been practical before. '

Since design decisions may be retracted after later evalu-
ation, they can be thought of as assumptions. Assumption-
based reasoning uses both facts and assumptions that can be
retracted [de Kleer 1986]. Justification, originally intro-
duced for tuth mainepance [Doyle 1979, is the key con-
cept to manipulating information containing assumptions. In
de Kleer's Assumption-based Truth Maintenance System
{ATMS), all assumptions are enumerated in advance and all
combinations are examined. In design, however, we are not
interested in all combinations. This is because a decision’s
significance depends on decisions made earlier. We can
prune a considerable number of combinations.

A global optimization technique using as linear program-
ming (LF) was proposed [Kageyama 1990]; however, we
can not get the exact optimal circuit, becanse the solution
does not always give 0's or 1's for variables that must take 0
or 1.

We proposcd an evaluation-redesign mechanism using
assumption-based reasoning [Maruyama 1988). In our eval-
uation-redesipn mechanism, design aliernatives are consid-
ered as assumptions and constraint violations as contradic-
tions. Redesign is implemented as contradiction resolution.
Justifications for violations, called nogood justifications
{NIs), play a central role in the mechanism. NJs enable us
to drastically prune the search space for consmaint satisfac-
tion or optimization problems [Maruyama 1991].

In this paper, we present a cooperative logic design ex-

| 182

pert system on a multiprocessor, co-LODEX. co-LODEX
divides the whole circuit o be designed into subcircuits in
advance and designs each subcircuit on cach processor o
exploit parallel processing. Global evaluation-redesign takes
place by processors exchanging design results (in case of
success) or NJs (in case of failure). [n our cooperative de-
sign mechanism, NJs received from other agents help nar-
rove down the search space for an agent in the sense that NJs
made out of the received ones enable the agent to prune the
search space. That is the reason why we claim co-LODEX
as "cooperative”. Short wroaround is expected through the
combination of parallel processing by several processors and
their cooperadon. co-LODEX also has the advantage of
exact global optimization.

The next section gives an overview of co-LODEX,
Section 3 describes its cooperative design mechanism, We
give some experimental results in Section 4 and concluding
remarks in Section 5.

2 ¢co-LODEX Overview

2.1 Inputs and Outputs

The wser specifies a behavioral specification, a block dia-
gram of the datapath, and constraints on ares and speed. co-
LODEX outputs & CMOS standard cell netlist thar sadsfies
the constraints. The resulting netlist can be input to an auto-
matic place-and-route system for CMOS standard cells.

The specification language for behavior used in co-
LODEX is UHDL [Fujisawa 1989], an extension of DDL
[Duley and Distmeyer 1969]. Figure 1 shows the specifica-
tion for a circuit thar solves a second-order differential egua-

UHDL,

mniterface_wiew; interface_exampla01;
inpats: xE12Y, ¥I002), (12}, ni(12), &if12);
aulpus: xo(l2), yall2)

behavior_view: behavior_exampled];
define: consth = 5, consi3 =1
termimal; wl{l 3y, w2{12), uI{12), wd(12), wi(12), ub(12), y1(12), FF;
operator: 2stage_pipelined_moltiplier(x, y, 2} ={lm=2) z 2 x ¥ y; end_op;
fumetian: mam: clk;
while (FF') do
2a: ‘2stzge_pipelined_maluiplier(y, dx, ul};
3u: Zstege_pipelined_muoltiplier'(x, conss, u2);
4n: ‘Tetage_pipelined_multiplier'{eonst3, y, ul);
Sa: “2etage_pipelined_muliplier{u2, ul, ud),
X <- X +dx;
fi: “Tsangs_pipelined_muttiplier{u, dx. y1),
FFe-z<u;
Ta ‘Istage. pipelined_mu|tiplier(ud, dx, uf),
il <= u - ud;
B y-yly
Sa: w<- 06 -ul, %0 = x, yo e y;
andda;
la: piopla<a), X <- xb ¥ < i, dx <- dxi, 0 <- ui, 8 <- ai;
endUHDL.

Fipure 1. Example of behaviora] specification

tion (DAffECY). The program might be used to describe a
subsystem of a controller or have a digital signal processing
application. [Brewer 1987]

A block diagram of the datapath is shown in Figure 2,
The boxes signify functional blocks. COMP, MULTI,
ADD_SUB, MUX, REG, FF, and the others represent a
comparator, a multiplier, an ALU(add/subtract), a multiplex-
er, a register, a flip-flop and inpot/output buffers.

Constraints on area are expressed as inequalides in the
gate count, for example, “(Total gate count) < 2000." The
user can specify as an area constraint the maximum gate

Ld G b

a2
Luwcs | Lo |

(o | :,..:mja : [reos |
| =7 | | — | |_RE;3_4 | m;s_a] REG_6

Lo

s

0 L muxa |
t . 1 |
[come | | [muxa | [muxa | MUX_5
— —
[MULT] ADD_SUB

[l

Figure 2. Block diagram

count that could be squeezed into a given LSI device.
Constraints on speed are expressed as inequalites in the
propagaton delay, for example, “(Maximum delay) = 120
ns." The user can specify as a timing conswaint the clock
cycle the LSI device should aperate with,

2.2 Brief QOverview

co-LODEX divides the whole circoit fo be designed into
subcircuits. Each subcircuit is designed by a design agent
Figure 3 shows the five subcircuits for the DIffEQ example
and the agents in charge. It should be noted that the control
eireuit, CTRL, is incleded. co-LODEX establishes a finite-
state machine from the behavioral specification and extracts
the specificadons for the control circuit in terms of logical
expressions. It then divides the whole circuit so that the
blocks along critical path candidates are distributed to as few
agents as possible. It is likely that agents along a critical
path candidate need a considerable amount of mutual com-
munication since agents sharing 4 constraint must communi-
cate with each other.

Each agent designs given functional blocks hierarchically
using the top-down method. It keeps spliving up functional
block and subblocks into sub-subblocks uniil all given
blocks are implemented with CMOS standard cells. This is
done by referring to the library that includes knowledge
abour functional block design, knowledge about technology
mapping, and standard cells data. Then it counts the number
of gates and estimaies delays to evaleate the implemented

Agentl
MUX_6 7
— Agentd
wec.0 | | Rec2 REG 4

REG_1

1183

circuit against constraines on area and time.

An agent usually designs its subcircuit independently
and in parallel with the other agents. Howewver, since the de-
sign results of the other agents are necessary for evaluation
ggainst global constraints, agents exchange their results
every ime they finish design/redesign. An agent redesigns
when it detects a constraint violation for which it is responsi-
ble, for example, if a path passing through it is too slow. If
it designs a standard cell nelist that satisfies all the local con-
straints, it notifies the resulting gate count and delays. If it
cannot, it notifies information about constraint violation.

3 Cooperative Design Mechanism

We propose a cooperative design mechanism on a multi
processor, It is based on the redesign mechanism within
each agent. Moreover, (1) exchanging design results and
NIs among agents and (2) combining the NIs received from
other agenis are necessary, Agenis exchange the design re-
sults {gate cownts and delays) of subcircuits when they suc-
ceed in design. They exchange the resulting N1s when they
fail to design subcircuits without any stored NJ satisfied.

3.1 Redesign within Each Agent

The area a circuit requires and its delay are the sum of
their constituent parts, The delay of a path, for example, can
be atributed to that of the components along it. This fact
lets us break a global condition into local conditions, A hier-
archical structure is useful for this,. 'We explain a redesign

hgentd

R MUK_B REG_S

N\ =0~

- .__/

Figure 3.

Ageni3 =
N ADD

RS Critical path candidate

Sub-circuits and agents

1184

Chi
5 MUX7, REG.4, ., REGH, MUX_3, MUX_4, MUX_S5, ADD_SUB_——>

mechanism using assumption-based reasoning, which oper-
ates on & hierarchical design description.

Hierarchical Design Description

Design objects are représented in a merarchy. Figure 4
shows part of the hierarchy corresponding to Figure 3.
There are three types of nedes; agent nodes (capsules), com-
ponent nodes {ovals) and alermative nodes (rectangles). An
agent node is responsible for one or more component nodes.
A component node associates aliernative nodes as possibili-
ties of implementation. There is a special component node
called the chip node thar comesponds to the whole chip. An
alternaiive node contains information about the connection
berween subcomponents and has the subcomponent nodes
a5 children. An alternadve 1s called either “in" or “ow™
based on whether it is adopted or discarded. Each compo-
nent node has af most one in aliernadve node. Other alterna-
tive nodes are stored in the our alternative list o be recalled
later if necessary.

Figure 4 shows the following:

‘The whole chip (Chip) consists of an input buffer (X,
registers (REG_] and REG_4), muliiplexers (MUX_3,
MUX_4, MUX_5, and MUX_T), an add/subtract unit
(ADD_SUB), and other parts.

-Agent3 is responsible for five components,

-ADD_SUB consists of an adder (ADD) and an exclusive
or (XOR).

Figure 4. Hierarchical design description

-ADD, the 12 bit adder, consists of three 4-bit CLA (carry-
lookahead adder) cells connected senally. Currént ol al-
ternatives might include a serial connection of six 2-bit
CLA adder cells and 12 single-bit adder cells,

Justifications for Constraint Violations (NJ]s)

An NI (nogood justification) is a logical expression that
must not hold during design, Satisfying an NJ means & con-
straint violation and Invokes the redesign mechanism,

The following default NI at Chip (in Figure 4) is equiva-
lent to the anginal constraint on gate count in that any design
viplaring the constraint sarisfies it.

Xia) + REG_l{a) + REG_4{a) + MLIX_3(a) + MUX_4{a)

+ MUX_5(a) + MUX_6(3) + ADD_SUB(a) + ... > CHIP (1}
The form, “component {*a")", represents gate count of each
component. This savs that if the wtal gate count of the mput
buffer, the registers, the multdplexers, and so on, exceeds
the value of variable CHIP, it means a constraint violation.
CHIP is the variable that refers to the currently valid con-
straint value on gate coumt, for example 2000, co-LODEX
ransforms each consmaint specified by the designer into de-
fault NJs.

A timing consmaint in terms of the clock cycle is mans-
formed into a set of default NJs, that is, an inequality repre-
senting that the sum of the delays of the components along a
path from source to destination exceeds the constraint value.
For example, one of the default NIs represents that the path

from REG_1 via MUX_4, MUX_5, ADD_SUB, MUX_T,
to REG_4 is longer than the clock cycle. Itis as follows:

REG_L{p2) + MUX_#{p1) + MUX_5(p2) + ADD_SUB(p2)

+ MUX_TpZ) + REG_4(pl) > CLOCK (2)
The form, “component {‘p’ number)”, represents a path
within each component. CLOCK is the variable that refers
to the currently valid constraint value of the ¢lock cycle, for
example, 120.

Starting from default NJs, new NIs are added during re-
design through NI expansion and generation as described
below, NJs save us doing direct evaluation against con-
siraints. All we have to do is w0 check to ses if any NJ is
satizfied.

NJ] Expansion

NJ expansion is used 1o narrow the scope and go down
the hierarchy to resolve contradictions, or constraint viola-
tions. NI expansion is formally defined in the following
three steps. The NJ to be expanded is the one that is satis-
fied at the moment.

Step 1: Select a component appearing in the NI 10 be ox-
panded. Call it C.

Step 2: Replace C in the NI with its in alternative’s sub-
components. If the in aliernative is at the leaf of the hierar-
chical strucmre (at the standard celf level), replace C with
its actual gate count or its delay value,

Step 3: Go down the hierarchy to the aliemative node and
store the NI obtained in Step 2.

(End}

NJ Generation

If every alternative of a component causes a constrint
violation, NT gencraton enables us to get a new NI, the log-
ical product of the NJs corresponding to each altemative.
The generated NJ does not refer to that component. It is put
ar the aliernative node one level up. This procedure is just-
fied by resolution [Robinson 1965]. In general, the generat-
ed NI is a logical product of NJs about gate count and NJs
ahout delay.

Evaluation-Redesign Algorithm within Each Agent
The redesign algorithm within each agent uscs NJ expan-
sion and generation. Redesign is invoked when an M1 rns
out to be true, since satsfying an NJ means a constraint vio-
lation.
Step 1:Set ALT to the agent node and proceed to Step 2.
Step 2: Check to see if there is any sarisfied NT at the an-
cestor aligrmative nodes (including hiself) of ALT. If so,

1185

set ALT to the aliernative node where the satisfied NI is
put, and proceed to Step 3. Otherwise, go to Step 7.

Step 3: If there is a subcomponent of ALT appearing in the
NI, proceed 10 Step 4. Otherwise, go to 3tep 3.

Step 4: Expand the MJ. Set ALT o the current aliernative
node and return to Step 3.

Step 5: Make ALT our. Select another alternative node that
is not inhibited by an NJ, make it in, set ALT o it, and go
to Step 2. If every alternative is inhibited by MNJIs, proceed
1o S1ep &

Step 6: Generate an NI Set ALT to the current alternative
node and go to Step 3. If there is no aliernative node one
level up, output the gencrated NJ and exit (Faill).

Step 7: If there is no component node whose alternative
nodes are all our, exit. (Succeed!). Otherwise, selectan al-
ternative node that is not inhibited by WNls, make it in, sat
ALT to it, and go to Step 2.

(End)

In Step 5, selection is done either by recalling an our al-
ternative or by generating a new implementation,

The above algorithm starts when an agent receives
information from the other agents. Once the algorithm ter-
minates in success or failure, the agent sends information
the other agents.

3.2 Cooperative Design Algorithm

We propose a cooperative design algorithm by describ-
ing the procedure for each agent.

Step 1: Design its subcircuit. Repeat redesign by the evalu-
afion-redesign algorithm. The gate counts and delays of
the other subcircuits are assumed 10 be 0. If any agent
fails, the algorithm terminates in failure. Otherwise, pro-
ceed o Step 2,

Step 2: Exchange the design results, that is the gate counts
and delays of the subcircuits, with the other agents.
Proceed to Step 3.

Step 3: Set the gaie counts and delays of the other subcir-
cuits to the design results received in Step 2. 1 no stored
NI is satisfied, go 1o Step 9. If some of the stored NJs are
satisfied and the design results of each agent are the same
as in the previous cycle (caught in a loop), go to Step 7.
Otherwise, proceed to Step 4,

Step 4: Redesign its subcircuit. If at least one agent sue-
ceeds in redesign without any stored NI satisfied, go to
Step 2. Otherwise (all agents fail), proceed to Step 5

Step 5: Exchange the generated NJs with the other agenis.
Proceed to Step 6.

Step 6: Combine the NJs received in Step 5. Go 1o Step 1.

1186

Step 7: Setatemporary constraint and proceed to Step 8.

Step 8: Design its subcircuit. Repeat redesign by the evalu-
ation-redesign algorithm unidl all the constraints including
the temporary one are met, The gate counts and delays of
the other subcircuits are assumed o be 0. If all the agents
fuil, the algorithm terminates in failure. Otherwise, go w
Step 2.

Step 9: Put together all the subcircuits. The algorithm ter-
minates in SLCcess,

{End)

Only default NJs are stored inidally. As the algorithin
proceeds, new generated Nis and combined NJs are added.
In Step 7, select one of the violated consiraints with the
fewest agents related, and set the current value correspond-
ing to that consiraint as a temporary consiraint.

Once the above zlgorithm erminates in success or failure
{In Step 1, Step 8, and Step 99, the design run is finished,
and the user can retry by changing the constraints. The user
can look for a faster circuit by tghtening the delay con-
straint, or can rerun by relaxing the constraints in case of
failure. When the constraints are changed, the system up-
dates them and re-evaluates by checking all the stored NJs,
As more NJs are accumulated, the efficiency of the algo-
rithm is further improved.

3.3 Combining NJs

When an agent fails in redesign with the evaluation-re-
design algorithm described in the above section, it generates
an NJ and sends it out to the agents that share it. Each agent
“combines” the NJs received from other agents and makes a
ncw NI out of them. Considering an NJ from an agent as a
condition where design is impossible for the agent, the com-
bined MI can be seen as a condition where design is impos-
sible for agents other than the recipient agent. Agenls are re-
quired to design withouot any combined NJ sarisfied.

For example, suppose Apgent3 received the following
two generated MIs (3) and (4) originated from default NJ (1)
and (2) from Agent] and Agentd, respectively ("A" signifies
logical product):

192 + Ageni2{a) + Agem3(a) + Agenid(a) + Agenl¥a) > CHIP

~ 192 + AgentS{pl) = CLOCK Y

Agentlia) + Ageni(a) + sgendn) + 95 + ApentS{a) = CHIP (4)
AgentS combines the above NJs and makes the following
new MJs:

BB + Apeni2(a) + Agen3{a) + AgentS(y) = CHIP

A 192 + AgemSipl) > CLOCK (5}
96 + Agent2{z) + Agen3(a) + AgentSia) > CHIP (G)

192 i.'.']-l:l;]m-“:I

NI3) frem Agentl

() ¢ o
MI(S) v NI(8)

CHIP
NI4) from Agend

Figure 5. Example of combining Nis

{3) and {6} are added to Agent5.

Figure 5 illusmates the above, The two axes of each
graph correspond 1o default NJs (1) and (2). NI (3) means
that any design by Agentl iz either 192 gates or more, or
19.2 ns or longer along the path for default NT (2). The left
graph shows thar Agentl cannot design inside the haiched
part. Similarly, the middle graph shows that Agentd cannot
design inside the hatched part. Combining (3) and {4} gives
a condition for the agents other than Agentl and Agentd w
be unable to design without violating any constraint. If the
agents other than Agentl and Agenid design inside the
hatched part of the right graph, thar will cavse constraint vio-
lation. NJs (3] and (6) represent the hatched part.

4 Experimental Results

We implemented co-LODEX on Multi-PST [Taki 1988)
in KLI [Ueda 1986] to evaluate the performance of the co-
operative design mechanism, and tested as examples to de-
sign a specific cincuit and usual circuits.

4.1 Optimization

Optimizaton vsing co-LODEX proceeds as follows:
First, co-LODEX requests the user for area and speed con-
siraints and produces a solution satisfying the consraints.
The user then changes area or speed constraint value to the
value for the solution just obtained minus 1, and iterates as
long as the constraints are satisfied. If constraint satisfaction
fails, the previous solution is used as the oprimal solution.

Figure 6 shows some of the results for the MAG exam-
ple. MAG approximates {2 + b%1/2, A first, the aren con-
straint was large enough, and the timing constraint was 13(.
We obtained the circuit shown at the right. As the area con-
straint was strengthened, different results were achieved.
The smallest circuit, we find is shown at the lefi. Finally,
the above optimizaton failed in constraint sarisfaction with
NI, 1224=CHIP, This means that design is impossible if

» AREA-TIME MAP <

ns

140 |-

13e

120

119

100 |-

=11 1 | | I
12008 1309 1492 1500 1600 1708
cells

Figure 6. Experimental result for MAG circuit

the specified set of constraints satisfies the NI, We must
thus relax the constraints 5o that the above N is not rue any
More.

4,2 Speedup

Speedups were examined by increasing the number of
agents from 1 to 15. Agents corresponrd 10 processors on a
one=to-one basis. We had one extra processor for distribut-
ing the functional blocks to the other processors and taking
statistics, 50 we used up to 16 processors altogether. We
expected that speedups would increase in proporntion to the
number of agents.

Tahie 1. The number of combinations

for design method
inputs | sum | g 'ﬂ“@'ﬁh“fnms
1 1 0 1 é alls
2 1 1 1
3 1 1 1 rd | B
4 2 1 12
5 2 2 30
& 2 2 15
7 3 2 105
8 3 3 420
9 3 3 B4

1187

Specific Circuit

The example presented here is o design a multi-argu-
ment adder (array addse). The function of this circuit i5 10
calculate the sum of nine intcgers represented in two's com-
plement format. This circuit is adopied in ALUs and multi-
pliers in other example circuits described below. This circuit
consists of 122 one-bit adders. The function of 2 one-bit
adder is to calculate the sum and the carry-out of one-hit in-
tegers. Each one-bit adder has many design methods, so the
whole circuir bas over 530 million design combinations,
Table 1 Ksis the number of design methods with the number
of inputs and outputs. Each one-bit adder can be implement-
ed with CMOS standard cells immediately, Thus, we have
tested only the cooperative design mechanism of co-
LODEX. We used 30 default MNJs.

Figure T shows a part of this circuit. The boxes repre-
sent one-bit adders and the aumber inside them represent the
number of input bits. The arrows represent defiule Nls.
The upper and lower side or upper-left and lower-right side
of the amangement of neighboring blocks has a relatdonship
to the same defanlt NJ. Accordingly, co-LODEX divided
the whole circuit and the boundary lines between subcircuits
as vertical or slanting (from upper-left o lower-right).

We averaged design costs to agenis in this test. We as-
sumed that design costs depend on the total number of de-
sign methods for the agent in charge, Taking the number of
design methods into account, co-LODEX divided the whole
circuit into subcircuits as many as agenis. The shaded areas
in Figure 7. show two of the subcircuits, where the number
of agents is 10. co-LODEX can easily divide this circuit
with agents, since it is orderly.

The relation between the number of agents and the
speedups is shown in Figure 8, which shows a change in

oL

Figure 7, Array adder

1188

Speedup| .u. initial design
e 1., achange in constraint on ares "
16 | e= B Change in constraint on defay Gme
4 design for a sel of constraimes

i4 F

4k

: n‘.ﬁ-.-: .__-._.--‘_h-_-:'_"l——"- t_-'.--.li'_._'-:

ﬂ'_J L i I 'l L i L i i i A a J

1 2 3 4 5§ 6 F7 & 9 10 11 12 13 14 IS
Agents

Figure 8, Relalion between the number of agents and speadup

design time according to the number of agents. The slanting
straight line represents the ideal line, All agents are active in
consequence of a change in arca constraint, while some
agents are active and others are inactive in consequence of a
change in delay time constraint. A change in area constraint
thus increases speedups and the result surpasses the ideal
line. The reason seems to be that our cooperative mecha-
nism reduces the amount of computation by saving useless
combinatdons of alternatives from each agent. Initial design
time, ime taken uniil evaluation-redesign occurs, is roughly
constant, because the increase in diswribution work of the en-
tire specification to wgents cancels out the decrease in each
agent's design work due to an incresse in the number of
agents. Figure 8 also shows the speedups for a design, in-
cluding initial design, when a set of constraints are given,

Usunal Circuoits

Table 2 lists the results of speedups for design of six
usval circuits, including initial design, when & set of con-
straints are given, together with the optimal number of
agents and the time,

A block diagram of the dampath includes various func-
tional blocks. Some functional blocks such as ALU are
complex, and others are simpler, We observed that one or
two special agents work hard but thar the other agents spend
time waiting for messages from busy agents. Processing
time depends on the busy agents which manage complex
functional blocks.

To take advantage of our cooperative design mechanism
on a multiprocessor, distribution strategy would need, in ad-
dition to focusing on critical path candidates, (1) to look
ahead in the library when dismibuting the functional blocks,
and (2} to set up sub-agents if necessary.

5 Conclusion

We presenied a cooperative logic design expent system
on a muldprocessor, co-LODEX, co-LODEX divides the
whole circuit 1y be designed into subcircuits in advance and
designs each subcircult on each processor to take advantage
of parallel processing. Global evaluation-redesign takes
place by processors exchanging design results or MNJs, A
cooperative design algorithm based on assumption-based
reasoning makes this possible. Short wrnaround is expected
through the combination of parallel processing by several
processors and their cooperation.

co-LODEX can efficiently carry out global optimization.
For example, a circuit with the minimum number of gates
has been obtained while satisfying constraint on speed. By

Table 2. Resulis of experiments

T . tirrual #
Circuit umﬁ;% Main Components Specdup Efﬂﬁg,:ﬂls Time(zac)
Greaiest common devisor 11 1 subtracter, | eomparaior 1.1 2 17
Differential equation I multiplier, 1 ALU{add/subira
¥+ 5xy + 3y =0 N I uomp!:ﬂmr X 13 3 2
MAGH 1 ALUizdd/subract), 1 comparaior
m 14 1 two's complementer 17 ¥ 33
1 ALU{add/subiractfcompare)
MAG(2) 18 1 two's complementer . 3 54
1 adder, 1 subtracier, | comparaior
MAG(Y) 16 2 two's complementers 30 15 Gl
Ccu'r:ll:.:[{:nul function - RAMs, 1 ALU{multiply/add)
L . Ladder, | comparator &t 4 113
ylil= 2, x0) * x[i +) 1 decrementer, 1 incrementer

MAG: Approximation of (& + 55312

increasing the number of agents up to 15, the best linear
speedup has been observed.

Our future plans include working on parallel processing
of design, cvaluation, and redesign within an agent,
Distribution swrategy is also important for load balancing
AMONE PrOCESS0s.

Acknowledgmenis

This work has been done as part of the Fifth Generation
Computer Systems (FGCS) Project of Japan. We would
like to thank Dr. Nita, manager of the Seventh Laboratory
of ICOT, for his support.

References

[de Kleer 1986] J. de Kleer: “An Assumption-Based Truth
Maintenance System,” Arificial Intelligence 28, pp.127-
162 (1986).

[(Doyle 1979] J. Doyle: “A Truth Maintenance System,”
Artificial Intelligence 24 (1986).

[Kageyama 1990] N. Kageyama et al.: “Logic Optimization
Algorithm by Linear Programming Approach,” Proc. of
the 27th Design Automation Conference, pp-345-348
(1990).

[Maruyama 1988) F. Maruyama et al.: “co-LODEX: a coop-
erative expert system for logic design,” Proc. of
FGCS'88, pp.1299-1306 (1988).

[Maruyama 19911 F. Maruyama et al.: “Solving
Combinatorial Constraint Satisfaction and Optimization
Problems Using Sufficient Conditions for Constraint
Violation,” Proc. of the Fourth International Symposium
on Artificial Intelligence (1991).

[Fujisawa 1989] H. Fujisawa et al.: "UHDL {Unified
Hardware Description Language) and its support tools,”
Int. J. Computer Aided VLSI Design (1989).

[Duley and Dietmeyer 1969] J. R. Duley and D. L.
Dietmeyer: “A digital sysiem design language (DDL),"
IEEE Trans, Computers, Vol.C-17, No. 19, pp-B30-861
{1968).

[Brewer 1987) F. D. Brewer: “Knowledge Based Control in
Micro-Architecture Design,” Proc. of the 24th Design
Automation Conference, pp.203-209 (1987).

[Robinson 1965] J. A. Robinson: "A Machine Oriented
Logic Based on the Resolution Principle,” Journal of the
ACM, Vol.12, Noul, pp.23-41 (1965).

[Taki 1988] K. Taki: “The Parallel Software Rescarch and
Development Tool: Multi-PS1 system,” Programming of
Future Generation Computers (15988).

[189

[Ueda 1986] K. Ueda: “A Parallel Logic Programming
Language with the Concept of a Guard,” 1COT Technical
Report, TR-208 (1936).

