PROCEEDINGS OF THE INTERMATIONAL CONFERENCE
ON FIFTH GEMERATION COMPUTER SYSTEMS 1992,

edited by 1COT, @ ICOT, 1992

626

Efficient Induction of Version Spaces through
Constrained Language Shift

Claudio Carpineto

Fondazione Ugo Bordoni
Via Baldassarre Castiglione 59, 00142 - Rome, ITALY
fubdpt5@itcaspur.bitnet

Abstract

A large hypothesis space makes the version space
approach, like any other concept indoction algorithm based
on hypothesis ordering, computationally inefficient.
Working with smaller composable concept languages rather
than one large t language is one way to attack the
problem, in that it allows us to do part of the induction job
within the more convenient languages and move to the less
convenient langnages when necessary. In this paper we
investigate the use of multiple concept languages in a
version space approach. We define a of languagcs
ordered by the standard set inclusion relation, and provide
& procedure for efficiently inducing version spaces while
shifting from small to larger concept languages. We apply
this method to the attribute languages of a typical
conjunctive concept language (i.e., a conjuncve concept
language defined on a tree-structured attribute-based
instance space) and compare its complexity to that of a
standard version space algorithm applied 1o the full concept
language. Finally we contrast our approach with other
work on language shift, outlining an alternative highly-
constrained strategy for searching the space of new
concepts which is asr based on constructive operators,

1 Introduction

Of all the algorithms for incremental concept induction that
are based on the ﬂamal order defined by generality over the
concept space, the candidate elimination (CE) algorithm
[Mitchell 1982] is the best known exemplar. The CE
algorithm represents and updates the set of all concepts that
are consistent with data (ie. the version space) by
maintaining two sects, the set § containing the maximally
specific concepts and the set G conaining the maximally
general concepts. The procedure to update the version
2::1{:&‘13 as follows. A positive example prunes concepts in
which do not cover it and causes all concepts in § which
do not cover the example to be generalized just enough to
cover It. A negative example prunes concepts in 5 that
cover it and causes all concepts in G that cover the example
o be specialized just enough to cxclude it As more
examples are seen, the version space shrinks; it may
eventually reduce to the target concepl provided that the
concept description language is consistent with the data.

_ This framework has been later improved along several
directions. The first is that of incorporating the domain
knowledge available to the system in the algorithm; this has
resulted in feeding the CE algorithm with analytically-

generalized positive examples (e.g., [Hirsh [989],
[Carpinero 19907}, and malyticu.llf-gcn:rﬂlized negative
cxnmp]ns {e.g., [Carpineto 1991]). Another research
direction is to relax the assumption about the consistency of
the concept space with data. In fact, like many other
learning algerithms, the CE algorithm uses a restricted
concept language to incorporate bias and focus the search
on & smaller number of hypotheses, The drawback is that
the target concept may be contained in the set of concepis
that are inexpressible in the given language, thus being
unlearnable. In this case the sets § and G become empty: to
restore consistency the bias must be weakened adding new
coneepts-to-the-concept language [Urgoff 1086]. Thirdly,
the CE algorithm suffers from lack of computational
efficiency, in that the size of § and ‘G can be exponential in
the number of examples and the number of parameters
describing the examples [Haossler 1988]. Changes to the
basic algorithm have been proposed that improve efficiency
for some concept language [Smith and Rosenbloom 1990].
In this paper we investigate the use of multiple concept
languages in a version space approach. By organizing the
concept languages into a graph corresponding to the
relation larger-than implicilly defined over the sers of
concepts covered by the languages, we have a framework
that allows us to shift from small to larger concept
languages in a controlled manner, This provides a powerful
basis to apply & general divide-and-conquer sirategy to
improve the efficiency of a standard version space
approgch in which the concept description language is
factorizable, The idea is to start out with the smallest
concept languages (i.¢., the factor langoages) and, once the
version spaces induced over them have become
incongistent with the data, to move along the graph of
product languages to the maximally small concept
languages that restore consistency. Working with smaller
concept languages may greatly redoce the size of 5 and G,
thus resulting in a neat improvement in efficiency. On the
other hand, use of several lanpuages in parallel and
language shifts negatively affect complexity. Therefore the
two main objectives of the paper are : (1) define a set of
languages and a procedure for inducing version spaces
afier any language shift efficiently, (2) show that in some
cases this method may be applied to reduce the complexity
of the standard CE algorithm. Since this framework
supports version-space induction over a set of concept
languages, it can also be switable to handle inconsistency
when the original concept language is too small. More
generally, it suggest an alternative approach to inductive
lan shift in which the search for useful concepts to be
added to the concept language is not based on constroctive
operators. This aspect is also discussed in the paper.

Ay st

/

black red

NN

627

anyrank

7\

face numbered

J/{L\K l/z/ '\u

Fig. 1. Two concept languages in the playing cards domain,

The rest of the paper is organized as follows, In the
next section we deFine a graph of conjunctive concept
languages and describe the learning problem with respect to
it. Then we present the learning method, Next, we apply
the method to the factor langeages of 2 conjunctive concept
language defined on & tree-structured attribute-based
instance space, and evaluate its utility. Finally we compare
this work to other approaches to factorization in concept
induction and to inductive: language shift,

2 Thelearning problem

We first introduce the notions that characterize our leaming
problem. In the following concepts are viewed as sets of
instances and languages as sets of concepls.

A concept ¢ is more general than a concept 7 if the set
of instances covered by ¢ is a proper superset of the set of
instances covered by c3.

A language L, is larger than a language L, if the set of
concepts expressible in L, is a proper superset of the set of
concepts expressible in L.

In the playing cards domain, which we shall use as an
illustration, two possible concept languages are: Ly =

{anysuit, black, red, &, &, ¥, 4} and L; = [anyrank,
face, numbered, 1, Q, K, 1, 2, 3, 4, 5, 6,7, & 9, 10).
The relation more-general-than over the concepls present in
each language is shown in figl.

The product L 5 of two factor langnages Ly and L is
the set of concepls formed from the conjunciions of
concepts from L, and Ly (examples of product concepts are
‘anyrank-anysuit', ‘anyrank-black’, etc). The number of
concepts in the product language is therefore the product of
the number of concepts in its factors. Also, a concept
Cerez in the language Ly ; is more general than (>) another
CONCEPE €y o if and only if ;" > ¢," and 3> ¢,

With n initial languages it is possible o generae ,_,
n!/{n-k) k[= 20- 1 product languages (see fig. 2).
Moreover, given that the superconcept 'any’ can always be
added to cach factor language, the relaton larger than over
this set of languages can be immediately established, for
each product language is larger than any of its factor
languages.

The leamning problem can be stated as follows.

A set of factor concept languages
A set of positive instances.
A set of negative instances.

Incrementally Find
The version spaces in the set of product
concept languages that are consistent with data
and that contain the smallest number of faciors,

N
J >/\1, >< |

Fig. 2, The g:rarph of product languages with three
actor languages.

3. The learning method

In this aptﬂzach concept learning and language shift ane
interleaved. We process one instance at a time, using &
standard version space approach to induce consistent
concepts over each language of the corrent ser {initally,
the n factor languages). During this inductive phase some
concept languages may become inconsistent with the data.
When every member of the current set of languages has
become inconsistent with data, the language shifiing
algorithm is invoked. Tt iteravely selects the set of
maximally small concept languages that are larger than the
current ones (i.e. the two-factored languages, the three-
factored langnages, etc.) and computes the new version
spaces in these languages. It halts when it finds 2
consistent set of concept languages (i.e. a set in which
there is at least one consisient concept language); then it
returns control to the inductive algorithm 1o process
additional examples. The whole process is iterated as long
as the set of current languages can be further specialised
{i.e. until the n-factored language has been generated). 'We
call this algorithm Factored Candidate Elimination (FCE)
algorithm. The top-level FCE algorithm is presented in
table 1.

The core of the algorithm is the procedure to find the
new consispent version spaces in the product languages (in
italics in table 1), The difficulty is that the algorithm for
inducing concepts over a language (the inductive algorithm)
is usually distinct from the algorithm for adding new terms
to the language itself (the language-shifting algorithm). In

628

Tahle 1: The log-level FCE algorithm

Input: An instanee set (1],
A set of partially ordered concept lainguages (L} formed by n given
one-factored linguages and their producis,
Cutput: The vession spaces in the set of languages (L] that are consistent with {1) snd that
contain the smallest number of facions.
Variables: [Lg]y is the subset of (unerdered) languages in L] which have k faciors.
[V] i a se1 of version spaces, with IVSy| = ILgyl.
[Ls. W5}y is the set of pairs obizined pairing the comesponding elements in [Lg]k
and { V5 Jj.
Function: CE(L,],vs) takes an instance, a concept language and a version space and retums the
updated version spece.
FCE({1],{L))
K=l.
(V8] = [Ls];.

For each instence i in {1},

For each (lg.vs) in [Lg, V5]
va = CE(ilg,vs).
I all the version spaces in [V5)) are emply
Then Repeat
I E=n
Then Refurn failure
E=K+1.
For tach I in [Lgly,
find the mew version space vx arsociated with ir.

Uniil a1 least one v& 15 not cmply,

general, the inductive algorithm has to be run again over
the instance set after any change made by the language-
shifting algorithm ([Utgoff 1986], [Matheus and Rendell
1989], [Pagallo 1989], {Wogulis and Langley 19897). In
this case, however, in defining the procedure to induce the
new consistént concepts after any language shift, we take
advantage of the features of the panticular inductive learning
algorithm considered (i.e. the CE alporithm) and of the
properties of language "muliplication”. The two key facts
are that the CE algorithm makes an explicit use of coneept
ordering and that concepis in any product language
preserve the order of concepts in its factors. This makes it
possible 1o modify the basic CE algorithm with the aim of
computing the set of consistent concepts in a product
langnage as a function of some approprizte concept sets
induced in its factors.

The concept seis computed in each factor language
which will be utilized during language shift are the
following, First, for esch language we compute the set 5+,
5* contains the most specific concepts in the language that
cover all positive examples, regardless of whether or not
they include any negative examples. Second, for each
language and each negative example, we compute the set
G*, G* contains the most general concepts in the language
that do not cover the negative example, regardless of
whether or not they include all positive examples,

These operations can be better illustrated with an
example. Ler us consider again the playing cards domain
and suppose that we begin with the two concept languages
introduced above - rank (L) and suit {L,). Let us supposs
the system is given one positive example - the Jack of
spades - and two negative examples - the Jack of hearts and
the Two of spades. We compute the two corresponding
version spaces (one for each language), the sets S* (one
for each language), and the sets G* (one for each language

L

and for each negatve example) in parallel, In particular, the
sets 5% and G¥ can be immediately determined, given the
ordering over each language's members. The inductive
phase is pictured in fig.3 (f stands for face, b for
black.etc).

The three instances canse both of the version spaces to
reduce o the empty set. The next step is therefore o shift
to the set of maximally small concept languages that are

larger than L, and L, (in this case the product L ;) and
check to see if it containg any concepts consistent with
data. The problem of finding the version space in the
language L, can be subdivided into the two tasks of
finding the lower boundary set 5;; (ie. the set of the

most specific concepts in Ly, that are consistent with data)
and the upper boundary set Gy (i.e. the set of the most

general concepts in Ly, that are consistent with data),

Compuation of 512

Becanse a product concept containg an instance if and
only if all of its factor concepts contain the instance, the
product of 5,;* and 57* remurns the most specific factor
concepts that include all positive instances. By discarding
those that also cover negative examples, we get just the set
5,5, If the set becomes empty, then the product language is
also inconsistent with the data. More specific concepts, in
fact, cannot be consistent because they would rule out
some positive example. More general concepts cannot be

consistent either, for they would cover some negative
examples. In our example, as there is only one positive

example, the result is trivial : 8,5 = [Ja].

629

1.'4+ /f

Jv {}

vers-sp, vers-sp, S+ G*
ny |any
/ \"h S, ={J}
J N, | g-w
G;={I'I.Q.K}
\ i
- G,={b. +}
C%-[f.i.a..m}
24 {} {})
Go=fr.#}

Fig. 3. Concept sets computed during the inductive phase.

Compuggtion of Gi2

Rather than_generating and testing for consistency all
the product concepts more general than the members of
Sy2, the set Gy, is computed using the sets G* As for
each negative example there must be ar least one factor
concept in each consistent product concept which does not
cover the negative example, and because we seek the
maximally general consistent product concepis, the idea is
to use the members of the sets G* as upper bounds to find
the factor concepts present in such maximally general
product concepis.

The algorithm is as follows. 1t begins by dropping
from the sets G* the elements that cannot gencrate factor
concepts that are more general than those contained in 8,5
Then, it (a) finds all the conjunctions of concepts in the
reduced sets G¥ such that each negative instance is ruled
out by at least one concept, and {b) checks if there are more
general consistent conjunctions. Step (a) requires
conjoining each factor concept in each G* gc will rule out at
least one negative example) with all the combinations of
factor concepts in the other G*'s which nule out the
remaining negative cxamples. Step (b) requires
generalising (with the value 'any") the factor concepis in
the conjunctions found at the end of step (a) which do not
contribute to rule out any m-.%gu've example. The resulting
set of conjunctions, if any is found, coincides with the set
G2, in that there cannot be more general product concepis
consistent with data. However, it may not be possible o
find a consistent concept conjoining the members of the
G*'s. In this case we are forced to specialise the members
of the G*'s to the extent required so that they rule out more
negative instances, &nd to fterate the procedure (in the limit,
we will get the set 5,9).

In our example there are just two factors and only tweo
negative instances. The initial sets G* are:

Jw-
24"

{b, #}
[r, &}

{n. Q. K}
{f, 1, 3,.., 10

The simplification with the set 5,5 refums:

Jw- (] {b}
24 [f] (]

Step (a) in this case reduces Lo the union of the
conjuncrion of G1* relative to instance 1 and Gg* relative
to instance 2 and the conjunction of Gi* relative o
instance 2 and Go* relative to instance 1. The resuli ({Ih})
does not need be generalized (step (b)) for both 'f and b
contribute to rule out (at least) one negative example. Also,
in this case, the specialisation procedure is not needed
because we have been able to find a consistent conjunction:

G2={fb). The overall version space in the language Ly is
shown in fig.4.

Fig.4. The version space in the Emduct language afier
the constructive phase.

630

4 Evaluation

There are two ways in which the factored CE algorithm
(FCE) ¢an be used to reduce the cmﬁlmw of the standard
CE algorithm. Either we use a -factoring algorithm
[Subramanian and Feigenbaum, 1986] to find the factors of
a given concept space (provided that it is factorable), or we
choose a concept language that can be naturally
decomposed into factor languages. Here we evaluate the
utility of the FCE algorithm with respect to a simple but
widely used concept language that has this property. We
consider a conjunctive concept language defined on a tree-
structured attribute-based instance space. We assume the
number of attributes be n, each aitribute with [levels and
branching factor b (the case can be casily extended to
nominal and linear atributes, considering that 2 nominal
attribute can be converted in a tree-structured attribute using
4 dummy root 'any-value', and that a linear attribute can be
considered as & tree-structured atribute with branching
factor = 1). Each term of the concept space is a conjunction
of n values, one for each astribute; the 1oal number of
terms in the concept space is [(b! - 1}/ (b - 13" It is wonth
noting that with such a concept language the set § of the
version space will never contain more than one element
[Bundy ef al. 1985). Even in this case, however, Haussler
[1988] has shown that the size of the set G can sill be
exponential, due to its fragmentation.

In the following we compare the CE algorithm applied
to this full conjunctive concept language to the FCE
algorithm-applied to its atribute-languages. While their
relative Ecﬁumances are equivalent , in that in order to
find all the concepts consistent with data in the full concept
language it suffices to eventually compute the boundaries
of the n-factored version space, their time complexity may
strongly vary., The gainfloss in efficiency ultimately
depends on the number of instances that each intermediate
language is able 10 account for before it becomes
inconsistent. In the best case all the induction is done
within the smallest languages,and language shift 1o Jarger
languages is not necessary. In the worst case no consistent
concepts are induced in the smaller languages, so that all
the induction is eventually done within the full concept
language.

To make a guantitative assessment we have o make
assumptions about a number of factors in addition o the
structure of factor and prodoct langnages, including target
concept location, training instance distribution, cost of
matching concepts 1o training instances. We consider the
Worst case convergency to the target concept in the full
concept language. This amownts to say that afeer the first
positive instance (the first instance must be positive in the
CE algorithm) there are only negative instances, and that
each of them causes only one concept to be removed from
the version space until it shrinks to the target concept (i.e.,
the first positive instance). In terms of the full concept
language ordering this means that general concepis are
removed earlier than any of their more specific concepts.
Furthermore, we assume that the generality of the attribute
values in the concepts dropped from the version space
decreases uniformly. More precisely, we assume that if an
attribute value in a dropped concept is placed at level k in
the corresponding atiribute tree, then the values of that
atiribute in the remaining consistent concepts are placed at
most at level k+1. This presentation of training instances
has the effect of maximizing the amount of instanees that
each intermediate language can take in before it becomes
inconsistent,

As for the cost of matching concepts to instances and
other concepts we assume that it is the same in all
languages.

We can now analyse the complexity in the two
approaches, As done in [Michell 1982], the time
complexity bounds indicate bounds on the number of
comparisons berween concepts and instances, and
comparisons between concepts.

i i 1} i tlan "
Let g be the number of negative instances, g the largest size
of G. Following [Mitchell 1982), in our case the key term
is O(gZq). The maximum size of G is given by the largest
number of unordered concepts that can be found in the
version space after the firse positive instance. This number
turns out to be O{nl). To illustrate, first we must note that
the version space after the first positive instance will
contain the concepts more general than the instance,
therefore the admissible values for each atribute will be the
1 values in the arribute tree that are placed in the chain
linking the atmbute value in the instance to the root of the
attribute tree, When n = 2 thereare at most | ways 1o
choose a pair of values from two ordered sets of size | in
such a way that the pairs are unordered. When n increases,
this number comes to be multiplied by a /(0 -2)! 2! . In
fact, considering that two n-factored concepts are
unordered if they contain at least two factor concepts with
different orderings, all the possible unordered n-factored
concepis can be obtained considering the same
combinations as-in the 1 orginal unordered concepts for
each possible way of choosing a pair of anributes from
among the n atiributes. The maximum size of G is
therefore O(n?l). The complexity of the CE algorithm is

O(n*12g).

In this case
several concept languages are active at once. For each
negative instance we have to update in parallel at most
mazxg [n! / (n-k)1k!], that is O(n?), version spaces. Given
our hypothesis on instance distribution, the g value of the
intermediate version spaces will be 1 for the one-factored
languages, 2 for the two-factored languages, .., n for the
n-factored languages. The largest value of g is n, and the
relative complexity factor for each version space is
therefore O(n?). Thus the time taken to induce version
spaces within the set of active languages is ar most
O(nZnlg) = On'y).

The total time complexity can be calculated adding the
tme taken by language shift to the time raken by concept
induction alone. The cost of shifting the concepl languages
is given by the number of language shifts (2% multiplied
by the cost of any single language shift. The time taken by
any single language shift becomes constant if we modify
the FCE algorithm's inductive phase by labelling each
member of each G* and any of its more specific concepts
with all the negative instances it does not cover. In this
way, in fact, the operations deseribed in the procedure to
compute the G set in any product Janguage will no longer
involve any matching between concepts and instances, On
the other hand, the cost of labelling must now be added 1w
the cost of language shift. The labelling we introduced
requires matching each negative instance against the
members of n G¥'s (we keep only the G*'s relative to the
initial factor languages), where each G* contains only one
member {in our case, in fact, as there is only one positive
instance, we can immediately remove the concepts that are
not more general than the positive instance from the G#'s,

at an additional cost of O{gnbl}), and repeat for all the 1
more specific concepts of each member of G* (ie., the
concepts contained in the chain of admissible values
relative to that G*'s factor language). Therefore labelling
takes in all O(gnl) + Ofgnbl) = O(gnbl). The time
complexity of language shift is O(27) + O(gnbl). The
overall time complexity is therefore Ofnfg) + OQ2") +
O(gnbl), which, for practical values of n, b, and 1,
approximates to O(ng).

In sum, we have O{n*?g) in the CE algerithm versus
O(n*q} in the FCE algorithm. The effect of using the FCE
algorithm with the chosen instance distribution appears to
be that of blocking the fragmentation of G due to 1. [t is
also worth noting that the factor O(n2) in the FCE
algorithm due to the presence of multiple languages can be
reduced by reducing the number of intermediate product
langoages emploved. This would, on the other hand, be
counteracted by an increase of the factor O(n?) due to the g
of the intermediate languages. Here is a trade-off between
using few concept langoages and using many concept
languages in a given range. The fewer the concept
languages, the less the amount of competation devated to
paralle] induction and language shift. The more the concept
languages, the more likely it is thar a smaller amount of
induction will be done within the largest concept
languages, which are the least convenient. Experimentation
might help investigate this kind of trade-off .

5 Relation to factorization in concept induction

Factorization with smaller concept languages in the CE
alguriﬂm has been first explared in [Subramanian and
Feigenbaum 1986] and [Genesereth and Nilsson 19871,
Although we were inspired by their work, our goals,
metheds and assumptions are different. First, in
[Subramanian and Feigenbaum 1986) and [Genesereth and
Milsson 1987).Janguage factorization has been used with
the aim of improving efficiency doring the phase of
experiment generation, whereas we have investigated its
utility during the earlier and more important stage of
version-space induction from given examples and counter-
examples. Second, while they have primarily addressed the
problem of factoring a version space and assessing credit
over its factors, we have focussed on langoage shift
during version-space induction over a set of available factor
and product languages. Third, their approach relies on the
assumption that the given concept langage is factorable into
independent concept languagesl. By contrast, when
applying the FCE algorithm directly to the attribute
languages of a conjunctive concept language it is not
necessary the attribute languages be independent. For
example, the two factor languages we have used as an
illustration throughout the paper (L1 and 1.2) happen to be

ITwo concept languages L, and Ly are independent if membership
in any of the concepis from L does not imply or deny membership
in any of the concepts in Ly, This definition implies that for every
concept ain L g, and every concept b in Ly the intersection of a and b
is neither empty nor equal to either concepl Two independant concept
languages are unarndered with respect to the larger-than relation.

631

two independent languages?; however, we could well
apply the FCE algorithm to the concept language Ly we
introduced earlier along with the concept langoage Lo =
{anyrank, odd, even, 1, 3,5, 7,9, LK, 2, 4, 6, 8, 10,
1}, these two languages being not independent (the
intersection of the concept "2" in Ly and the concept "odd"
in Lo is empty, for instance). Using non-independent
factor languages, as their product may contain a large
number of empty or redundant concepis, may badly affect
the performance when the FCE algorithm is applied to
recover from inconsistency due to use of small concept
Ianguages. But it does not seem to affect the result when
the FCE algorithm is used to improve efficiency with
respect w0 the full conjunctive concept language.

6 Relation to inductive language shift

As mentioned earlier, the FCE algorithm can also be
seen as a method for introducing new concepls o
overcome the limitations of a set of restricted concept
langnages (i.e.. the factor languages). It does so by
creating another set of larger concept languages (i.e., the
product languages) to constrain the search for new useful
concepts, This is a significant departure from the search
strategy vseally employed in most approaches to inductive
language shift. Regardiess of the specific goal pursued -
many-systems-deal -with-improvement of some quality
measures of the learned descriptions rather than with their
correctness - "the problem of new terms" [Dienerich er al.
1982] or "constructive inducdon” [Michalski 1983] is in
general tackled by defining a set of appropriate constrictive
operators and carrying out a depth-first search through the
space of the remaining concepts to find useful (e.g.,
congistent, more concise, MOre accurate) extensions o
added to the given language. Furthermore, since the
number of admissible extensions is generally intractably
large, most of the approaches 1o constructive induction rely
on various heuristics to reduce the number of candidate
additional concepts andfor 1o cot down the search (e.g,
[Matheus and Rendell 1989], [Pagallo 1989], [Wogulis
and langley 19897).

By contrast, we compute and keep all the admissible
language extensions (in a given set of exiensions) that
restore consistency with dara, rather than considering one
or few plausible lan extensions at a tme. Just as the
relation more general than that is implicitly defined over the
terms of a concept language may allow efficient
rgfresamalion and uwpdating of all consistent concepts
[Mitchell 1982], so too the relaton larger rhan that is
implicitly defined over a set of languages may provide the
framework to efficiently organize the small-to-large
breadth-first search of wuwseful languages. These
considerations suggest that an alternative absiract model for
language shift can be formulated, in which the search for
new concepts, rather than being based on the use of
consructive operators, is driven by the ordering of a set of
candidate concept langeages (work in preparation).

2 It is often the case thet atiribute choice reflects independencies in
the world, thug giving rise 1o aciusl independent factor languages.

632

7. Conclusion

We have presented the FCE algorithm for efficiently
inducing version spaces over a set of partially-ordered
concept languages. The utility of this algorithm is twofold:
improving the efficiency of version-space induction if the
initial concept language is decomposable into a set of factor
languages, and inducing consistent version spaces if a ser
of concept languages inconsistent with data is initially
available. In this paper we have focussed on the former,
We have applied IM%ECE algorithm 1o the task of inducing
version spaces over a conjunctive concept language defined
on a tree-sructured artribute-based instance space, and we
have evaluated when it leads to a reduction in complexity,

Acknowledgements

Part of this work was done while at the Computing Science
Department of the University of Aberdeen, partially
supported by CEC 55 project SC1.0048.C(H). T would
like 1o thank Derck Sleeman and Pete Edwards for their
support and for useful discussions on this topic. The work
was carried out within the framework of the agreement
between the Italian PT Administration and the Fondazione
Ugo Bordoni

References

[Bundy ef al. 1985] A. Bundy, B. Silver, D. Plommer.
An analytical comparison of some rule-leaming problems.
Artificial Intelligence, Vol. 27, No. 2 (1985), pp. 137-181.

[Carpineto 1990] C. Carpineto. Combining EBL from
success and EBL from failure with parametler version
spaces. In Proc. 9th ECAI, Pitman, London, 1990, pp.
138-140.

[Carpineto 1991] C. Carpineto. Analytical negative
generalization and empirical negative generalization are not
cumnulative: a case smdy. In Proc. EWSL-1991, Lecture
Notes on Artificial Intellipence, Springer-Verlag, Berlin,
1991, pp. 81-88.

[Diewerich er ol 1982] T. Dierterich, B. London, K.
Clarkson, R. Dromey. Learning and inductive inference. Tn
Cohen & Feigenbaum (Eds.) The Handboeok of Artificial
Intelligence, Morgan Kaufmann, Los Altos, 1982

[Genesereth and Milsson 1987] M. Genesereth, N.
Milssor, Logical Foundarions of Artificial Intelligence.
Morgan Kaufmann, Los Altos, 1987,

[Haussler 1988} D. Haussler. Quantifying inductive bias:
Artificial Intelligence learning algorithms and Valiant's
learning framework. Artificial Intelligence, Vol. 36, No.2
(1988}, pp. 177-221.

[Hirsh 1989] H. Hirsh. Combining Empirical and
Analytical Learning with Version Spaces. In Proc. Grh
Int.Workshop on Machine Learning. Morgan Kaufmann,
Los Altos, 1989, pp. 29-33.

[Matheus and Rendell 1989] C. Matheus, L. Rendell.
Constructive induction on decision wees. In Proc. [lth
IICAL Detroit, Morgan Kavfmann, Los Altos, 1985, pp.
645-650 .

[Michalski 1983] R. Michalski. A theory and methodology
of inductive learning. Artificial Intelligence, Vol. 20, 1983,
pp. 111-161.

[Mitchell 1982] T. Mitchell, Generalization as Search.
Artificial Intelligence, Vol. 18, 1982, pp. 203-226.

[Pagallo 198%] G. Pagallo. Learning DNF by Decision
Trees. In Proc. ! fth ITCAT, Morgan Kaufmann, Los Altos,
pp. 639-644,

[Smith and Rosenbloom 1990] B. Smith, P. Rosenbloom.
Incrementzl Non-Backtracking Focusing: A Poliniomally
Bounded Generalizaton ﬁ.'l{gnrithm for Version Spaces. In
Proc, 8th AAAT, Morgan Kaofmann, Los Altos, pp. 848-
853.

[Subramanian and Feigenbaum 1986] D. Subramandian, J.
Feigenbaom. Factorization in Experiment Generation. In
Proc. 5th AAAI Morgan Kaofmann, Los Alios, 1986, pp.
. 518-522.

[Utgoff 1986] P. Utgoff. Shift of bias for inductive
concept learning. In Michalski et al. (Eds), Machine
Learning I, Morgan Kaufmann, Los Alwos, 1936, pp.

533

107-148.

[Wognolis and Langley 1989] 1. Wogulis, P. Langley.
TImnproving efficiency by learning intermediate concepts. In
Proc. 1{th IICAI, Morgan Kaufmann, Los Altos, pp. 657-
662.

