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Abstract

This paper describes a machine learning system that dis-
covered a “negative motif™, in transmembrane domain
identification from amino acid sequences, and reports its
experiments on protein data using PIR database, We in-
troduce a decision tree whase nodes are labeled with reg-
ular patterns. As a hypothesis, the system produces such
a decision free for a small number of randomly chezen
posilive and negative examples from PIR. Experiments
show that our system finds reasonable hypotheses very
successfully. As a theoretical foundation, we show that
the class of languages defined by decision trees of depth
al most d over k-variable regular patterns is polynomial-
time learnable in the sense of probably approximately
corvect (PAC) learning for any fixed d, 2 =0,

1 Introduction

Hydrophobic transmembrane domains can be identified
by a very simple decision tree over regular patterns. This
result was discovered by the machine learning system we
developed. The system takes some training sequences of
positive and negative examples, and produces a hypoth-
esis explaining them. When a small number of positive
and negative examples of transmembeane domains were
given as input, our system found a small decision tree
over regular patterns as a hypothesis. Although the hy-
pothesis is made from just 10 pesitive and 10 negative
examples, it can explain all data in PIR database [PTR]
with high accuracy more than 90%. The hypothesis ex-
hibits that “two consecutive polar amino acids® {Arg,
Lys, His, Asp, Glu, Glo, Asn) are nof included in the
transmembrane domains. This indicates that significant
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motifs are not in the inside of the transmembrane do-
mains but in the ontside. We call such motifs “negative
motifs.”

This paper describes a machine learning system to-
gether with a background theory that discovered such
negative motifs, and reports its experiments on knowl-
edge aceuisition from amine acid seguences that reveal
the importance of negative data. Traditional approaches
to motil-searching are to find subsequences common
to functional domains by various alignment techniques.
Hence the eves are focused only on positive examples,
and negative examples are mostly ignored. Our approach
by decision trees over regular patterns provides new di-
rection and method for discovering motifs,

A regular pattern [Shinohara 1982, Shinohara 1983
is an expression wgrywy s - Thar, that defines the se-
quences containing tog,wy, ..., w, in this order, where
each w; 15 & sequence of symbols and r; varics over
arbitrary sequences. Regular patterns have been used
to describe some features of amino acid sequences in
PROSITE database [Bairoch 1991] and DNA sequences
[Arikawa ef al, 1992, Gusev and Chuzhanova 1990].
Our view to these sequences is through such regular pat-
terns. A decision tree over regular patterns is a tree
which describes a decision procedure for determining the
class of a given sequence. Each node is labeled with ei-
ther a class name (1 or 0) or a regular pattern. Al a
node with a regular pattern, the decision tree tests if the
sequence matches the pattern or not. Starting from the
roof toward a leafl, the decizion procedure makes a test
at each node and goes down by choosing the left or right
branch according to the test result. The reached leaf an-
swers the class name of the sequence. Such decision trees
are produced as hypotheses by our machine learning sys-
tem. Since the system searches a decision tree of smaller
size, regular patierns on the resulting decision tree ex-
hibit motifs which play a significant role in classifica-
tion. Hence, compared with neural network approaches
[Holly and Karplus 1989, Wu et al.], our system shows
important motifs in & hypothesis more explicitly.



We employ the idea of ID3 algorithm [Quinlan 1986,
Utgoff 1984] for constructing a decision tree since it is
sufficiently fast and experiments show that small encugh
trees are usually obtained. We also devise a new methed
for constructing a decigion tree over regular patterns us-
ing another evaluation function. Given two sets of posi-
tive and negative examples, our machine learning system
finds appropriate regular patterns as node atéributes dy-
namically during the construction of the decision tree,
Hence, unlike ID3, we need not assume any concrete
knowledge aboul attnbutes and can aveid struggles from
defining the attributes of 2 decision tree beforehand. Our
system makes a decision tree just from a small nume-
ber of training sequences, which we also gnarantee with
the PAC learning theory [Valiant 1984] in some sense,
Therefore it may cope with a diversity of classification
problems for proteins and DNA sequences,

We made an experiment on raw sequences from twenty
symbols of amine acid residues. The system discovered a
small decision tree just from 20 sequences with more than
85% accuracy that show if a sequence contains neither E
ner D (heth are polar amine acids) then it is very likely
te be a transmembrane domain.

A hydropathy plol [Engelman et al. 1986, Kyle and
Daoolittle 1982, Rao and Argos 1986] has been used pener-
ally to predict transmembrane domains from primary se-
quences, With this knowledge, we first transform twenty
amino acids to three categories (+, +, =) according to the
hydropathy index of Kyte and Doolittle [1982]. Fram
randomly chosen 10 positive and 10 negative training ex-
EJI.'IP]EE\ [aliidy EJEL’EITI. ha.s !-L'IC'EI:EEF'LI]]I}I' IJT{Jdu'l'.fd SOOI slnﬂ.tl
decision brees over regular patterns which are shown to
achieve very high aceuracy. The regular patterns appear-
ing in these decision trees indicate that two consecutive
polar amino acid residues are important negative motifs
for transmembrane domains. From the view point of Ar-
tificial Intelligence, it is quite interesting that the polar
amino acid residues D and E were found by our machine
learning system without any knowledge on the hydropa-
thy index.

After knowing the importance of negative motifs, we
examined decision frees with a single node with regular
patterns oy=zg=+- =z, for n = 3. The best is the pattern
Ty=Tg=T5=T4=T5=Tg that gives the sequences containing
at least five polar amino acids. The result is very ac-
ceptable. The accuracy is 95.4% for positive and 55.0%

for negative examples although it has been believed to

be difficult to define transmembrane domains as a simple
expression when the view point was focussed on positive
examples.
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2 Decision Trees over Regular
Patterns

Let £ be a finite alphabet and X = {z,y,z,71,72, -}
be a set of variables. We assume that £ and X are dis-
joint. A paftern is an element of (E U X)*, the set of
all nonempty strings over £ U X, For a pattern =, the
language L{x) is the set of strings obtained by substitut-
ing each wariable in 7 for a string in E7. We say that a
patiern 7 is regular if each variable occurs at most once
in 7. For example, zaybza is a regular pattern, but zz
iz not. Obviously, regular patterns define regular lan-
guages, but not vice versa. [n this paper we consider
only regular palterns. A regular pattern containing at
most k variables s called a k-variable regular palfern.

A decision free over regular pallerns 15 a binary tree
such that the leaves are labeled with O or 1 and each
internal node is labeled with a regular pattern {see Fig-
ure 1). For an internal node v, we denote the left and
right childeen of v by left{v) and right{v), respectively.
We denote by m{v) the regular pattern assigned to the
internal node v. For a leal w, value{u) denotes the value
0 or 1 assigned to u. The depth of a tree T, denoted by
depth(T), is the length of the longest path from the root
to a leaf.

For a decision tree T' over regular patterns, we define
a function fr : B — {0,1} as follows. For & string w
in ¥%, we determine a path from the root to a leafl and
define the value IT{w:I Ly the following algorithm:

begin /+ Input: w & E* =/
v+ root;
while v is not a leaf do
if w € Lir(v)) then v +right{v)
else v «left{v);
Jr(w) — value(u)
end

For a decision tree T' over regular patterns, we define
L(T) = {w € Z*| friw) = 1}. Itiseasy tosee that L{T")
is also a regular language. But the converse is not true
Let L= {a® | n = 1). It is straightforward to show that
there is no decision tree T' over regular patterns with L =

L{T). The same holds for the language {a*b | n = 1}

3 Constructing Decision Trees

This section gives two kinds of algorithms for construct-
ing decision irees over regular patterns that are used in
our machine learning system.

The first algorithm employs the idea of D3 algorithm
[Quinlan 1986] in the construction of decision trees. The
IDY algorithm assumes data together with explicit at-
tributes in advance, On the other hand, our approach
assumes a space of regular patterns which are simply
generated by given positive and negative examples. No
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Figure 1: Decision tree over regular patterns defining a lan-
guage {a™b%' | m,n,l > 1} over T = {a, b}

extra knowledge about data is required. Although the
space may be large and contain meaningless attributes,
our algorithm finds appropriate regular patterns from
this space dynamically during the construction of a de-
cision tree in a feasible amount of time. This is a point
which is very snited for our empirical research.

Let P and N be finite sets of strings with P n iV = .
Using P and N, we deal with regular patterns of the form
Ty Ty - ity such that w, ...ty are substrings of
some strings in P U N. Let TI(P, N) be some family of
such regular patterns made from P and N, The family
II{F, N} is appropriately given and used as a space of
attributes,

For a regular pattern = € TI{ P, V), the cost B{x, P, Ny
is the one defined in [Quinlan 1986] by

+n +n
E(x,P,N) = Tﬁ”p],n]} + ”j;']_k—”ilrlf{m,ng},

where py {resp. n,) is the number of positive examples
in P (resp. negative examples in N) that mateh =, i.e.,
pi = [P0 L), my = [N 0 L(x)[, and po (resp. o)
is the number of positive examples in P (resp. negative
examples in V) that do not match 7, ie., py = |PNL(r]l,
ng= |NNL{r), Liz) = 5" - L), and

1(z,y)
{[] (fz=00ry=0)
= x £ B ¥ f
- ] - ] t ;
777 %757 z!+yog:r+y {otherwise)

The first algorithm DT1(P, N') (Algorithm 1) sketches
our decision tree algorithm for II(P,N), where
CREATE(x, Ty, ) teturns a new tree with a root la-
beled with 7 whose left and right subtrees are Ty and T},
respectively.

The second algorithm uses a different evaluation funec-
tion. For a decision tree T over regular patterns, let
nodes(1'} be the number of nodes in T, and T(T) be the
set of trees constructed by replacing a leaf v of T by the
tree of Fig. 2 (a) or Fig. 2 (b) for some pattern .

The score function Seore(T, P, N) balances the infor-

funetion DT1 { P, N : sets of strings }: node;
begin

if &' =0 then
return{ CREATE(*1”, null, null) )

else if F =@ then
return{ CREATE("0", null, null) )

else begin
Find a shortest pattern = in [I[P, V)
that minimizes E{mx, P, N);
F—Pnlir)y, RK+P-P5;
Ny = NnL{x);, Nyg— N - N
return{CREATE(x,DT1(Fp, Np),DT1(F, M)

end
end
Algarithm 1
T
@ @ () (o)
(a) (&)

Figure 2: A leal'is replaced by (a) or () for some pattern .

function DT2( P, N: sets of strings,
MuorNode: int 1 breg;
begin
if ¥ =0 then
return{ CREATE(*17, null, null} )
else if P = @ then
return( CREATE("0", null, null) )
else begin
T —CREATE{*1", null, null};
while { nodes(T) < Moz Node
and Seore(T, P,N) < 1) do
begin
find Ty € T(T)
that maximizes Seore(Tnes, P, N);

T =T
end
end
return ( T )
end

Algorithm 2

mation gains in classification and is defined as

_1PaLm) INni{T)|
TS Nl

The second algorithm DT2{ P, N, MazNode) (Algorithm
2} checks all leaves at each phase of & node generation
using the evaluation function Score(T, P, N).
Algorithm 2 is slower than Algorithm 1 since all leaves
are checked at each phase of a node generation. However,

Seore{T, P, N)




Algorithm 2 constructs decision trees which are finely
tuned when the size of decision trees iz large, More-
over, it s noise-tolerant, i.e., it allows conflicts between
positive and negative training examples. If the size of
T F, N}y is polynomial with respect to the size of P and
N, then these algorithms run in polynomial time.

4 Transmembrane
Identification

Domain

The problem of transmembrane domain identification is
one of the most important protein classification problems
and some methods and experiments have been reported.
For example, Hartman et al. [1989] proposed a method
using the hvdropathy index for aming acid residues in
[Kyte and Doalittle 1982]. The reported success rate is
about 75%. Most approaches deal with positive exam-
ples, i.e,, sequences corresponding to transmembrane do-
mains, and try to find properties commen to them.

The sequence in Figure 3 is an amino acid sequence of
a membrane protein. There is a tendency to assume that
a membrane protein contains several transmermbrane do-
maing each of which comsiste of 20 ~ 30 amino acid
residues. Therefore, if a sequence corresponding to a
transmembrane domain is found in an amino acid se-
quence, it iz very likely that the protein is a membrane
protein,

Our idea for transmembrane domain identification is
to nse decision trees over regular patterns for classifica-
tion. Algorithm 1 and 2 intraduced in Section 3 are nsed
Lo find good decision trees frem positive and negative
training examples. In order to aveid combinatorial ex-
plosion, we restrict the space of attributes to the regular
patterns of the form

Torlfy
where 7 and ¥ are variables and o is a substring taken
from given examples.

In our experiments, a positive erample is a sequence
which is already known to be a transmembrane domain.
A negative example is a sequence of length around 30 cut
out from the parts other than transmembrane domains.
The lengih 30 is simply due to the reasonable length of
a transmmembrane domain. From PIR database our ma-
chine learning system chooszes randomly two small sets
P and N of positive and negative training examples, re-
spectively, Then, at each trial, by uwsing Algorithm 1 or
Algorithm 2, the system tries to construct a small deci-
sion tree over regular patterns which classifies P and &
exactly.

We have evaluated the performance ratio of a pro-
duced decision tree in the following way., As the total
space of posilive examples, we use the set POS of all
transmembrane domain sequences (689 sequences) from
PIR database, The total space NWEG of negative ex-
amples consisis of 18256 negative examples randomly
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chosen from alf proteins [rom PIR, The success rate of
a decision tree for posilive examples is the percentage
of the positive examples from POS recognized as posi-
tive [class 1), The success rate for negative examples is
counted as the percentage of the negative examples from
NEG recognized as negative (class 0).

Fignre § (a) is one of the smallest decision trees discov-
ered by our system just from 10 positive and 10 negative
raw sequences that achieve good accuracy. The perfor-
mance ratio is [84.8%, 89.6%) for all data in POS and
NEG, respectively. This decision tree suggests that if
a sequence of lenglh around 30 contains neither D not
E then it is very likely to be a parct of transmembrane
domain.

The alphabet of amino acid sequences consists of
twenty symbols. It has been shown that the wse of
the hydropathy index for amino acids is very successful
[Arvikawa ef al. 1992, Hartmann et al. 1985]. According
to the hydropathy index of [Kyte and Doaolittle 1082,
we transform these twenty symbols to three symhbols as
shown in Table 1. This transformation reduces the size
of a search space drastically small while less information
ig, fortunately, lost in classification.

Then by this transformation table, the sequence in
Figure 3 becomes the sequence in Figure 4.

Fignre 5 (b), (c) show two of the hest decision trees
over regular paiterns that our machine learning sys.
term found from 10 pesitive and 10 negative train-
ing examples. The decision tree (h) recognizes 91.4%
of positive examples and 94.8% of negative examples.
Even the decision tree of () can recognize 92.6% of
the positive examples and 91.6% of the negative ex-
amples. The negative motif *--" which indicates con-
gecutive polar amine acid residues plays a key role
in classification. This may have a close relation to
the signal-anchor structure that consists of two parts,
the hydrophabic part of a membrane-spanning sequence
and the charged residues aronnd the hydrophohic part
[Lipp et al. 1989, Von Heijine 1988).

The decision tree (a) also shows the importance of a
cluster of polar amine acids in transmembrane demain
identification although our machine learning system as-
sumed no knowledge about the hydropathy.

We examined how the performance of our machine
learning system changes with respect to the number of
training examples. The training examples are chosen
randomly ten times in each case and a point of the graph
of Figure 6 is the average of these ten resulis for each
case. Figure 6 shows the results. We may observe the
following facts:

1. The hydropathy index of Kyte and Doolittle
[Kyte and Doolittle 1982] iz very useful. When in-
dexed sequences are used, the system can produce
from 40 positive and 40 negative examples a decision
tree with only several nodes whose accuracy is more
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MOVYNOLVAGGLFRVVEE (PLGFVEVLOWVFAIFAFATCOSY) TGELRLS VECANKTESALNIEVEFEYPFRLHOVYFDA
PSCVHGGTTEIFLVGDYSSSAE (FFVTVAVFAFLYSMGALATYIFL) ONKYRENNK { CPMMOFLATAVEAFMWLVSSSAW
ARGLEDVEMATDPENT I KEMPHCROTGNTCKELRDPVTS (GLNTSVVFGFLNLYLWVGNLYEVF) KETGHAAPFMRARP
GAPERQPAPGDAYGDAGY GOGPGEYGPODSYGPOGGY QFDYGPASGGGGEYGPDGDYGOQGYGOQGAPTEFSNOM

Figure 3: An amino acid sequence which contains four transmembrane domains shown by the parenthesized parts.

Amine Acids Hydropathy Tndex New Symbal
LM CFLVI 1.8 ~4.5 — -
PYWSETGEG =1.6 ~ —0.4 — +
RKEDENQH —4.85 =32 — =

Table 1: Transfarmation rules

kg kkE ko Ehe e (b E bR R RN R R R b ] b ok — b H ek ko

R e e e e L ] e o ko R sk b
e . & | & T & e e ————— R e S T BT W S Ry
R e it it el e L R o O B o St I U S S0 N A0 SF S AT S O SR (S S o O WP U

Figure 4: The sequence obtained hy the transformation

[6.5%, 3.9%]

[4.4%, 13.0%]

(a) (B4.8%, B9.6F)

[#1.4%, 5.2%]

(b} (21,45, 94.8%)

o yes

[1.2%, 3.2%] [92.6%, BA%]  [74%,91.6%]

(c) (92.6%, 91.6%)

Figure 5: The node label, for example, -- is an abbreviation of ;--z; that tesis il a given sequence contains the sequence
==. The leaf label 1 {resp. 0} is the class name of transmembrane domains (resp. non-transmembrane domains). The total
space consists of G689 positive examples and 19256 negative examples. Each of the decision trees (a)-(e} iz constructed from 10
positive and 10 negative training sequences. The pair [ple, n%] attached to a leal shows that p% of positive examples and n%
of negative examples have reached to the leal. The pair (p%, n%) means that p% of 689 positive (resp. n% of 19256 negative)
examples are recognized as transmembrane domains (resp. non-transmembrane domains).

than 90% for the total space in average. On the
other hand, for raw sequences the accuracy is not so
good but both accuracies approach to the same line
as the number of training examples increases,

2. The number of nodes of a decision tree is reasonably
small. But when the number of training examples
is larger, the number af nodes in a decision tree be-
comes larger while the accuracy is not improved very
mmch, There may arise the problem of overfitting,

A new discovery obtained from these decision trees
is that the motif “==" drasiically rejects positive exam-
ples. After knowing the negative motif *--", we have
examined the decision trees with a single node with the
patterns of the form

T =¥g=r =Ly
for m = 3. The hest is the pattern containing “=" five

times. The resull is quite acceplable as shown in Table
2.
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Accuracy (%)
100 -
== mdexed positive
e indexed negative
o —— raw positive
» raw negative
- 30
80 -
Number of Nodes
in Decigion Tree
- 10
b= raw
r . raoipren= il
0 e —o—  indexed
oy
& : - - ; r ¢
o 20 10 60 a0 100
MNumber of Training Examples

Figure G: Relations between the number of training examples, accuracy and the number of nodes in a decision tree

Pattern POS5 (689) | NEG (19256)

£y ~Ty-T3-T4~T5~Tq | 657 (95.4 %) | 18296 (95.0%)

Table 2: Result for zy-gy-2y-14-Ts-2g

With these decision trees over segular patterns, we
have developed a transmembrane domain predictor that
reads an amino acid sequence of a protein as an input
and predicts symbal by symbel whether each location of
a symbol is in & transmembrane domain or not. Exper-
iments on all protein sequences in PIR show that the
success rate is B39 ~ 90%.

5 PAC-Learnable Class

This section provides a theoretical foundation on the
classes of sels classified by decision trees over regular
patterns from the point of algorithmic learning theory
[Valiant 1984

For integers k,d = 0, we consider a decision tree T" over
k-variable regular patterns whose depth iz at most d, We
denote by DTRP(d, k) the class of languages defined by
decision trees over k-variable regular patterns with depth
al most d.

Theorem 1 DTRP{d, k) iz polynomial-time learnable
for all d,k = D.

We need some terminology for the above theorem.
When we are concerned with learning, we call a subset of

E* & concept. A concept elass C is & nonempty collection
of concepts. For a coneept ¢ € €, a pair {z, (1)) is called
an example of ¢ for z € E",where ¢(z) = 1 (dz) = 0) if
z is in ¢ (is not in €). For an alphabet £ and an integer
n > 0, E5* denotes the set {x € * | |z] £ n}.

A concept class C is zaid to be polynomial-fime learn-
able [Blumer ef al. 1989, Natarajan 1989, Valiant 1984]
if there is an algorithm A which satisfies (1) and (2).

(1) A takes a sequence of examples as an input and runs
in polynomial-time with respect to the length of in-
put.

{2) There exists a polynomial p{-,-,-) such that for any
integer n = 0, any concept ¢ € C, any real number
g 8 (0 <ed < 1), and any probability distribution
P on 57 if A takes p(n, 1, 1) examples which are
generated randomly according to P, then A outputs,
with probability.at least 1 — 4, a representation of &
hypothesis k with P{c@ k) <e.

Theorem 2 [Blumer et al. 1989, Natarajan 1989] A
concept class  is polynomial-time learnable if the fol-
lowing conditions hold.

1. Cis of polynomial dimension, i.e., there is a polyno-
mial d{n) such that [feNE=" | c € C}| < 24 for
all m = 0.

2, There iz a polynomial-time algorithm called =
polynomial-time hypothesis finder for C which pro-
duces a hypothesis from a sequence of examples such
that it is consistent with the given examples.
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Moreover, the polynomial-time hypothesis finder for ©
is a learning algorithm satisfying (1) and (2) if C satisfies
1.

The following lemma can be easily shown.,

Lemma 1 Let T be a decision tree over regular patterns
and T, be a sublree of T al node v, We denote T, by
(T, 1), where = is the label of node ¢ and T, Ty are
the left and right subtrees of T, respectively. Let S hea
set of strings and let T be the tree obtained from T by
replacing T, with Ty at node v, If no string in 5 matches
m, then L(T)n S = L{T")n 5.

Froaf of Theorem 1.

First we show that the concept class DTRP(d, L) is of
polynomial dimension. Let DTRP(d, &), = {L N D5 |
L e DTRP(d, E)} for = = 0. We evaluate the cardinality
of 'TRP(d, £).. Let = be a regular pattern with |x| =
n 4 k, then no string of length al mest n matches =, By
Lemma 1, we need te consider only regular patterns of
length at most n + k. The number of such patterns is
roughly hounded hy (|E] + 1)"**. Since a tree of depth
bounded by d has at most 2¢ — 1 internal nodes and at
most 2¢ leaves, |DTRP(d, k),| < ((|E] + 1)+t . 22
This showe that the dimension of DTRP{d, k). is O(n).

Mext we show that there is a polynomial-time hypoth
esis finder for DTRP(d, k). Let P and N be the sets of
strings which appear in positive and negative examples,
respectively. Let 1I(k, P, V) be the set of regular pat-
terns ® up to renaming of variables such that it contains
at most & variable cccurrences and 7f is a substring of
some s in PUN. By Lemma 1, we need to consider only
patterns in II(k, P, &) in arder to find a decision tree over
regular patterns which is consistent with P and . Then
|TI{k, P, N)| < Esepun((|s[F)**1). Therefore the number
of possible trees is bounded by (JIT(E, B, NP1 . 22°
which is bounded by a polynomial with respect to the
input length T cpyp |5

It is known that, given a regular pattern = and string
w, we can decide in polynomial time whether w matches
x or not. Therefore, given a string w and a decision
tree T owver k-variable regular patterns whose depth is
al most d, we can decide whether w € L{T) or not in
polynomial-time.

The required polynomial-time algorithm enumerates
decision trees T over regular patterns in TI(k, P, N) with
depth at most d. Then it checks whether s € L(T') for
each s € Pand t € N foreach t € N. If such a tree T is
fonnd, the algorithm autputs T as a hypothesis, O

We should say that the polynomizl-time learning algo-
rithm in the proof of Theorem 1 exhausts an enormous
amount of time and is not suited for practical use.

We may understand the relationship of Algorithms 1
and 2 in Section 3 to Theorem 1 in the fn]]nwing wWay:

When we set TI{ P, V) to be the family of k-variable regu-
lar patterns made from F and N, Algorithms 1 and 2 run
sufficiently fast in practical nse {of course, in polynomial-
time} and produce a decision tree over k-variable regular
patterns which classifies given positive and negative ex-
amples. But the produced decision tree is not guaranteed
to be of depth at most d. Henece, these algoarithms are
not any learning algorithm in the exact sense of (2).

However, experiences tell that these algorithme usu-
ally find small enough decision trees over regular pat-
terns in our experiments on fransmembrane domains.
For the elass DTRP{d, &), Theorem 2 asserts that if a
palynemial-time algorithm A produces a decision tree
over k-variable regular patterns with depth at maost d
which classifies given positive and negalive examples
then it iz a polynomial-time learning algorithm.  In
this sense, we may say that Algorithms 1 and 2 are
polynomial-time algorithms for DTRP(d, k) which of
ten produce reasonable hypotheses although there is no
mathematical proof showing how often such small hy-
potheses are ablained., This aspect is very important
and useful when we are concerned with machine discov-
ary.

Ehrenfeucht and Haussler [1989] have considered
learning of decision trees of & fived rank. For learning
decision trees over regular patferns, the restriction by
rank can be shown to have no sense. Instead, we con-
sider the depth of a decision tree. [t is also reasonable
to put & restriction on the number of variables in a reg-
ular pattern. It has been shown that the class of regular
pattern langnages is not polynomial-time learnable un-
less NP # RP [Mivano ef al. 1901]. Therefore, unless
resirictions such as bound on the number of variables
in a regular patiern are given, we may not expect any
positive results for polynomial-time learning.

6 Conclusion

We have shown that the idea of combining regular pat-
terns and decision trees works quite well for transmem-
brane domain identification. The experiments also have
shown the importance of negative maotifs.

A union of regular patterns is regarded as a special
form of a deciston tree called a decimion lst. We have
reported in [Arikawa ef al. 1992] that the union of small
number of regular patterns can also recognize transmem-
brane domains with high accuracy. However, the time
exhausted in finding hypotheses in [Arikawa ef al. 1992)
iz much larger than that reported in this paper.

Oher gystem construets a decision tree over regular pat-
terns just from strings called positive and negative ex-
amples, We need not take care of which attributes to
specily as in [[)3, Therefore it can be applied to another
classification problems for proteins and DNA sequences,
We helieve that our approach provides a new application



of algarithmic learning to Molecular Biology.

We are now in the process of examining our methed
for same other related problems such as predieting the
secondary structure of proteins.
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