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Abstract

The incomplete theory problem has been of large interest
both in explanation based leaming and more recently in
inductive legic programming. The problem is stedied in the
context of Hom clause logie, and it is assumed that there is
only one clause missing for each positive example given.
Previous methods have used either top down or bottom up
induction. Both thess induction strategics include some
undesired restriction on the hypothesis space for the missing
clause. To overcome these limitations a method where the
different induction strategies are completely imtegrated is
presented. The method involves a novel approach to inverse
resolution by wsing resolution, and it implies some
extensions to the framework of inverse resolution which
makes it pessible to unigquely determine the most specific
result of an inverse resolution step.

1 Introduction

Completion of incomplete theories has been of large interest
in machine learning, particulardy in the area of explanation
based learning, for which a complete theory is crucial
[Mitchell er al. 1986, DeJong and Mooney 1986]. Research
on augmenting an incomplete domain has been reported in
[Hall 1988, Wirth 1988, Ali 1989). A new framework for
inductive learning was invented by inverting resolution
[Muggelton and Buntine 1988]. Papers considering
augmentation of incomplete theories in this framework are
[Wirth 1989, Rouveirol and Puget 1990, Rouveirol 1950].
We only consider Hom clause logic, which is a subset of
first order logic, and we follow the notation in logic
programming [Lloyd 1987]. The incomplete theory problem
can then be formulated as follows. Let P be a definite
program {an incomplete theory) and E a definite program
clause which should but does not follow from P (P 12 E).

* This research was supporied by NUTEK, the Swedish National B oard
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Then find a definite program clause H such that:

(@ PU{E}l# H

{b) Pu{H} I=E

H is an inductive conclusion according to [Genesereth
and Milsson 1987].

Let E={A«B1,....By). Then by top down induction
We mean any reasoning procedure, to infer an inductive
conclusion, that starts from A. By beffom up inducfion
we mean any inductive reasoning procedure that starts from
B 1 .....Bn.

Muost previous methods use either top down [Hall 1988,
Wirth 1988, Ali 1989) or bottam up induction [Sammuot and
Banerji 1986, Muggelton and Buntine 1988, Rouveirol and
Puget 1990). Both these induction strategics have some
undesired restrictions on the hypothesis space of H. In
[Wirth 1989] a method that combines top down and bottom
up induction is presented, while in this paper a method
where they are completely integrated will be described. In
the previous methods there are also other undesired
restrictions, namely that the input clause E must be fully
instantiated [Eall 1988, Wirth 1988, Wirth 1989, Al 1989,
Sammut and Banerji 1986] or a unit clause [Muggelton and
Buntine 1988]. Our method works for full Homn clause
logic.

Logical entailment is used as a definition of generality.
Let E and F be two expressions. Then E is mere general
than F, if and only if E logically entails F (E = F), We also
say that F is more specific than E.

In the examples, predicate symbols are denoted by p, g,
r, 5, tand u. Variables (universally quantified) are denoted
by x, ¥, z and w. Constants are denoted by a, b and c.
Skolem functions are denoted by k.

In section 2 the inductive framework of inverse
resolution is given. In section 3 some extensions to this
framework, which make it possible to determine the most
specific inverse resolvent, are described. In section 4 a new



inverse resolution method 1s presented, and finally in section
5 related work and contributions is discussed.

2 The Framework of Inverse
Resolution

The inductive framework of inverse resolution was first
presented in [Muggelton and Bentine 1988). First, as a
background, resolution will be described. Then inverse
resolation will be definied, and some problems considering
inverse reslution will be pointed out.

2.1 Resolution

A subsitfution 15 a finite set of the form [vi/ty,....vpfta ],
where each vj is a variable, each t; is 2 term distinct from v;,
and the variables vq,...,vp are distinct. Each element vi'ty is
called a Binding for vi. A substitution is applied by
simultaneously replacing each occurence of the variable vi,
in anexpression, by the term ;.

An exprassion is either a term, a literal, a clause or a set
of clauses. (A fixed ordering of literals in clauses and a
fixed ordering of clauses in sets of clauses are assumed.)

Let E be an expression and V be the set of variables
occurting in E. A renaming substifution for E is 2
substitution {%1/¥],....%n/va ) such that y1,...,.¥p are distinct
variables and (V={x1,-.. %0 ) ) ¥ 1,eo¥n } =2

Let E and F be expressions. Then E is a variant of F if
there exists a renaming substitution 9 such that E=F9.

A unrifier for two terms or literals t] and tp is a
substitution 8 such that tyB=tz8.

A unifier @ for t; and 12 is called a mosf general
unifier (mgu} for t) and ts, if for each unifier 8' of 1) and
ty there exists a substitution 8" such that 9'=68",

Let € and I be twao claoses which have no variables in
commaon. Then the clause R is reselved from C and D,
denoted (C;D) g R, if the following conditions hold:

(8) Aisaliteralin Cand B is a literal in D.

(6) ©isan mguof A and B.

(&) Risthe clanse ({C-{A W AD-{B})8.

The clause R is called a resolvent of C and D.

Since C and I» have no varfables in commen, the mgn
can uniquely be divided into two disjunctive parts 64 and
8y such that =048y and ABy= BBg. Consequently
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condition {c) can be rewrilien as:
(c) K is the clause (C-{A])0 4 (D-{B }16g, where
8=040p and ABs= Bop.

Let Ry be a definite program clavse and P a definite
program. A lirear derivafion from R and P consists of a
sequence Rp,Ri,.. of definite program clauses and a
sequence C1,07,... of variants of definite program clauses
in P such that each Rjag is resolved from Cipq and Bj. A
linear derivation of Ry, from Ry and P is denoted:

(Rp:C1) g (Rp;Ca) g ... =g By or for short
(RypP) bg* Ry

2.2 Inverse Resolution

A place within an expression is denoted by an n-tuple and
defined recursively as follows, The term, literal or clause at
place <a)> within £{t1....tn) o {t1ytn} i5 tay. The term
or literal at place <aj,....am> (m>1}) within fty,...,tx) or
[thsratn} 15 the term or literal at place <az,..am> it tay-

Let E be an expression. Then for each substitution 8 .
there exists a unique inverse substitution 6-1 such that
EB8-1=E. Whereas the substitution 8 maps variables in E to
terms, the inverse substitution 8! maps terms in EA to
variables, An inverse substitution is a finite set of the
form {(t1,{p1, 10 P1,my BV Leosltna P Lo oPrmg | V)
where each vj is a variable distinet from the variables in E,
each b iz a term distinet from vy, the variables vi,...,vy are
distinct, each pyj is a place at which t; is found within E and
the places py 1.....pn,m,, are distinct. An inverse substitution
15 applied by replacing all ¢ at places {pj 1,....pi.m;} in the
expression E by v,

Example: If the following inverse substitution
{(a.{<1,1,2,<1,2,1,1=,<2,2,1=})/x] is applicd on the
expression {(pla,al—p(fia))(q{a)er{a)}], the expression
{ {(plax)e=plf(x)), (glak—r{x))} is obtained.

Let R, C and [} be three clauses. If R can be resolved
frem C and D, then D can be inverse resolved from R and
C. The clause D is inverse resolved from R and C,
denoted (R;C) I-m D, if the following conditions hold:

(@) Aisaliteral in C.

(b) B4 is a substitution whose variables are variables that
oCcour in A,

{cy (C—{A}Ba is a subser of R,

{d} I'isa subset of (C—{ A 110 4.

(e} Bg~! is an inverse substitution whose terms are terms
that occur in A,

(f) Disthe clanse (R-IJu[ A}94)8g-1.
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The ¢lause D is cafled an inverse resolvent of R and C

Given R and C there are four sources of indeterminacy
for D, namely: A, 84, T and Bg-1,

If A is a positve literal then D is forwardly inverse
reselved, and if A is a negative literal then D is
backwardly inverse resolved.,

Example: Supposc we have R=(s{a,z)eqg{a),r{b)},
C=(p(a,x)e=qglalrix)) and D={s(y,2)p(y,b)). The claese
D can be forwardly inversed resolved from R and C,
(RiC) g D, if A=plax), 8a={x/b), [=(+—gfa).r{b)} and
Bp—l={(a,|<1,1>,<2,1>]¥y}. The clause C can be
backwardly inverse resolved from R and D, (R;D) l=g C, if
A=—p(y,b), Oa={y/a}, I'=(s(a,z)«) and Bp-'=
{(bf<l,2=<3,1>})/x ). (It is assumed that the positive
literal is first in the ordering of literals in a clanse.)

Let Dg be a definite program clause and P a definite
program. An inverse linear derivation from Dp and P
consists of a sequence Dp,Dy,... of definite program clauses
and a sequence Cp,Ca,... of varianis of definite program
clauses in P such that each Dy, is inverse resolved from
Cis1 and Dy, An inverse linear dervation of Dy, from Dy and
P is denoted:

(Dg:Cy) g (Dy:C2) g ... - Dy, or for shert
(Do;F) Hr* Dy

A backward inverse linear derivation is an inverse
lingar derivation where each Dj is backwardly inverse
resolved, and a forward inverse linear derivalion is an
inverse linear derivation where each D is forwardly inverse
resolved.

2.3 Some Problems

Consider the definition of inverse resolved. The substitution
84 can be divided into two disjunctive parts, 84 including
the variables that occur both in A and (C-{A}), and 842
including the variables that only occur in A (Ba=6a B 42).
Then, to determing an inverse resolvent D, we have to
choose A, Ba1. 842, T and Bg~L. Only in some special
cases there are more than one alternative for A and B).

Example: Let R=(peq(a),r(b)} and C=(peqix)r{x}).
Then we have either A=—qix) and 84 =]/}, or A=—r1(x)
and 841={x/a).

For I and 851 there are limited numbers of alternatives,
but for 842 there is not. The terms in G472 can be any
possible terms. Consequently, it is hard to choose 643.

Unfortunately there are examples when the choice of 847 is
crucial.

Example: Let R=(r¢—q), Ci=(p(x)é—q), Cr=(se=pla))
and D=(r<s). Then there is a linear derivation of R from D
and [Cy,Ca):

{D:C2) g ((re=pla));Cy) kg (re—q).

Consequently, there is an inverse linear derivation of I from
Roand {C),C}:

(R;Cy) Mg ((re—p(a))siCa) R (re=s).

In the first inverse resolution step Ban is chosen as {x/a).
With any other choice of 049 the inverse linear derivation of
D would not have been possible.

IR, C, A and 841 are given, then it is desirable that a
unique most specific inverse resolvent can be determined.
Unfortunately, in Horn clause logic, it is not possible due 1o
the substitution G457

Example: Let R=(ri-q) and C=(p(x)¢—q). If we seek
the most specific clause D such that (R;C) Hp D, then we
let T=E and Bp~1=@ but what should B4z be? If we let
8.42=2, the clause Dy=(rep(x).q) is obtained. For example
the clauses Dy=(re—p(a)q) and D3=(r<p(b),q) are more
specific than Dy, but neither Dy nor Dy is more specific than
the other. Consequently, there is no unique most specific
inverse resolvent.

3 Extended Inverse Resolution

Ouar inverse resolution method {see section 4) implies some
extensions to the framework of inverse resolution. After
these extensions the choices of 842, I and Bg-1 in inverse
linear derivations can be postponed, and the most specific
inverse resolvent can be determined.

3.1 Existentially Quantified Variables

Te postpone the choice of 842, existentially quantfied
variables will temporarily be introduced. Any sentence, in
which the existentially quantified variables are replaced by
Skolem functions, is equal to the criginal sentence with
respect to satisfiability [Genesereth and Nilsson 1987].
Therefore the existentiglly quantified variables will be
represented by Skolem functions. As a conseguence of the
introduction of existentially quantified variables (Skolem
functions), some additional types of substitutions are
neaded.



A Skolem function is a term f{xy,...x,) where f is a
new fonction symbol and x,....%5 are the variables
associated with the enclosing universal guantifiers.

M Skolem substitufion iz a finite set of the form
[¥1/K e ¥y |, where each v is 2 variable, each kj isa
Skolem function, and the variables vi,....vy are distinet,

An inverse Skelem substitution is a finite set of the
form {kifvi....kpfva ), where each kj is a Skolem function,
each vj i5 a new variable, and the Skolem functions
K1yeoskp are distincl.

Let g={x1/k{.....xp/ky ] be a Skolem substitution and
o ={ki/¥1,. . knfyn] an inverse Skelem substitution such
that the Skolem functions in o and ¢! are exactly the same.
Then the composition co—! of & and 6! is a renaming
substitution {%1/y1,....X'y¥n} for any expression E.

An existential substifution is a finite set of the form
[ky/t1ae.knftn], where each k;j is a Skolem function
(existentially quantified variable}, each 4 is a term {possibly
a Skolem function) distinct from ki, and the Skolem
functions ky,....ky are distinct. While a substitution or a
Skolem substitution corresponds to a specialization an
existential substitution corresponds 10 a generalization.

As an inverse substitution, an inverse existential
substitution is specified with respect 1o an expression E. An
inverse existential substitution iz a finite set of the
ffJII'.l'I. { {tlr{PI.]f"'rP] LR ”kl --~-v[Tn-{Fn,1=--an.mq ]'::.Irknl
where each kj 15 a Skolem function distinct from the Skolem
functions in E, each t; is a term disrinct from k;, the Skolam
functions ky,....kn are distinet, cach pi,j 15 a place at which
tj is found within E and the places p1,1.....Pn,m, are

distinct. An inverse existential substitution is applied by
replacing all tj at places {pj 1....Pi,m;} in E by k;.

Let o=[vi/k],....vp'kn ] be a Skolem substitution and
f={k1t1,....knMtn) an existential substitution such that the
Skolem functions in @ and 1 are exactly the same. Then the
is the substitution
{¥1/t1sevpfty ). In this way Skolem substitutions and
existential substitutions can be used to postpone the choice
of Ba7.

composition on of o and 7

3.2 Most Specific Inverse Resolution

To postpone the choice of T, the notion of optional
literals will be used. A clause {B,....Bg,Brst.....Bp}. i
which the literals {By4l,....Bn) are optional, is denoted
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Cle]={Bj.....Br.[Brs14-..Byl} where C={Bi,....Bi] and
c={Bisls..Bn}. Consequently, if e=E then Cle)=C.

Example: Let B=(p+—qrs) and C={re—q,r,s} be two
clauses. Then (R;C) Hm D, where D={p+1,q.r.5)-T" and
e {=q,—r,—s}. All these alternatives for D can be
describad in a compact way by using optional literals. Thus,
D[d]=(p+t[q.r.5]).

The definition of inverse resolved can now be modified
in such a way that the choices of 847, I’ and 8p—! are
postponed. The clavse D is most specific inverse
resolved from R[r] (which may include Skolem functions)
and C, denoted (R[r];C) =L D, if the following conditions
hold:

{a) AisaliteralinC.

(b} Bay is a substitution whose variables are variables that
oecur both in A and (C—{A}).

{c) rr' iz an inverse existential substitution whose terms
are terms that oocur in (C={A}).

{d} (C-{ABam~! is a subset of R[]

{e} & is a Skolem substitution whose variables are-all-the
varigbles that only occur in A.

(f) D[d] is the clause D=((R-T)u{ A)08410), d=rul,
where I'=s(C-[A ]84 m-L

The clause Dud is called a most specific inverse

reselvent of K and C.

Given R and C, there are only lwo sowrces of
indeterminacy, namely: A and 84 ). Consequently, given R,
C, A and B4 there is a unigue most specific inverse
resobvent D,

Example: Let B=(re—q) and C=(p(x)+q). Then the
unique most specific inverse resolvent of R and C is the
clause Dud=(rep(k),q) where k is a Skolem functions
(representing an existentially quantified variable). This is
true, since ¥ x(re=plx),q) I= (re=plt).q), and (re=p(0.q) =
Jx(re—p(x),q) for any term t.

Let Dgldp] a be definite program clause and P a definite
program. A most specific inverse linear derivation
from Dg[dg] and P consists of a sequence Dgldg],.Dq[dq]....
of definite program claoses and a sequence Cj,Cg,... of
variants of definite program clauses in P such that each
Djr1ldis1] is most specific inverse resolved from Ciyg and
D;[d;]. A most specific inverse linear derivation of Dy[dy]
from Dyldg] and P is denoted:

(Doldpl:C1) Him (P1[d11ECa) Lk ... LR Dildy]
or for short (Dgldpl;F) =Lm® Dyfdy].
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Each result of an inverse lincar derivation can be obtained
from the result of some most specific inverse linear
derivation, if we apply an inverse substitution, an existential
substitution, and drop a subset of the optional literals.

Example: Suppose we have the following clanses
R=(re—g), C1=(p(x)¢q), Co=(se—p(a)), C3=(t{b)«p(b)},
D=(resa(x)plc)) and D[d]={rs.t(b)[p(k)al). Then
(R {C1,C2,Ca)) —m* D and
(R {C1,C2.Ca}) b=Lig* DdT.

The clause D can be obtained from D'[d'] by application of
the inverse substitation {(b,{<3,1>]})x} and the existential
substitution {kfc), and by dropping the optional literal q.
The most specific inverse linear derivation of Dd"] looks
as follows:
(RC) Bl ((re—pk)[a]hCo) -l
((re=s.[p(k).alkiCa) FLir (ré=st{b).[plk).ql).
That n~L, in the two lzst steps are [{z,<1,1>}k} and
[(b,<1,1=)/k}, and that k then can be replaced by a third
term ¢, may seem inconsistent, but it is not. Consider the
corresponding inverse linear derivation of D from R and
1€1,C2,C3):
((re~q}C1) R ((re-q,p()%C) IR
((re—q,p(b},p(e)}C1) R ((re—p(a),p(b),p(c))Ca) HIR
({re=s,p(bl.p(c))Ca) g (ré=s,t0),ple)).
Mote that since k has been wsed as three different terms {(a, b
and c} in the most specific inverse linear derivation, threa
inverse resolution steps are needed to compensate for the
step where k is introduced. Note also that Bao={x/c} in the
first, Bas={%/b} in the second and Bay={x/a} in the third
inverse resolution step. Te choose exactly those
substitutions is hard, but in a most specific inverse linear
derivation it is not necessary.

3.3 Truncation Generalization

A clause Cy @n-subsumes a clause Ca if there exisis a
substitution § and an existential substitution 1| such that
C18=Con. If C; B1-subsumes O then C) b= Cyp,

To perform a 8n-truncation is to apply some arbitrary
existential substitution 1), apply some arbitrary inverse
substitution 8-1, and drop some arbitrary literals. The
generalizarion technigue @n-truncation corresponds to 6n-
subsumption,

Let P be a definite program (an incomplete theory) and E
a definite program clause which should but does not follow
from P (P I# E), let D be the set of definite program clauses

D such that (E;P) l~mg* D, and let H be the set of definite
program clauses H such that PL{H) = E. Since resolution
is not complete [Rob6S] I is a subset of H (D c H). In
particular each definite program clause [ that Br-subsumes
some clause D, where D e D, will be in H, This i true
since PU{D} = E, and D' |= D, gives us Pu{D'} I= E.
Consequently, we can perform any 1-truncation on the
result D of a most specific inverse linear derivation and still
have an indective conclusion.

4 The Method

In this section a method, which in an easy way realizes
inverse linear derivations, will be described. Instead of
performing an inverse linear derivation from the example
clause E, a variant of ordinary resolution derivation is

performed from the complement E of E.

4.1 Complement

A definite program clause complement set (dpcc-set)
is set of clauses containing exactly one unit goal and a
number of unit clauses,

Let C be a definite program clause (A«B,....Bp), gg-!
an inverse Skelem substitution including all Skolem
functions in C, and g a Skolem substitution including all
the universally quantified wariables in C. Then the
complement C of C is the definite program clause
complement set {{e=A),(Bje),... . (Bye=)los-lop. Let §
be a dpec-set [(«=A),(B1¢),....(Bpe)}, o) an inverse
Skolem substitution including all Skolem functions in §,
and dg a Skolem substitution including all the oniversally
quantified variables in 5. Then the complement 5 of § is
the definite program clause (A+By,...Bploc-log. Thus,
the complement of a dpec-set is a definite program clanse
and vice versa,

Example: Let C be the clause (p(a,x)+q(k.x,¥)). Then
the complement C of C is the definite program clause
complement set I{c—p{a,k,}},{q(xk,k,,kyji-—}}, which is
obtained By application of the inverse Skolem substitution
{kfxk} and the Skolem substitution {x/ky,yfky} on the set of
clanses {(e—p(a,x)).(q(k.x,¥)¢-)}. The complement C' of

C is the definite program clavse (p{a,xbe—qik'x",v")),
which is obiained by application of the inverse Skolem
substitution {ke/x".ky/y'} and the Skolem substitution



{xp/k’} on the elanse (plakyd—qlxpkeky)). The clanse T
is a variant of C, since C'=C8 where © is the renaming
substitotion {x/x'w/y'}.

4.2 Clause Set Resolution

The notion of optional cleuses will be used a similar
same way as optional literals. A set of clauses
{(C1,....Ck,Crs1,se...Cn ). in which the clauses
{Cxsls.r-.Cn} are optional, is denoted
Slsl={C, o Ok [Cre100en T} where §={Cy,...,Cg} and
5={ChiteCp ). Consequently, if s=& then S[5]=5.

An elementary clause set L is a set of clauses
contzining at most one clause, that is £= or Z={C] where
Cis a clause.

Let 5;[5;) be a clause zet and £ an elementary clavse set.
Then Sic1lsi+1] 15 clause ser resolved from 5ifs;] and
%, denoted (5i[5i];E) l-csg Siv1lsis1], if the following
conditions hold:
(a} C'isa variant of a clause Cin 5[5 E.
(by Drisaclause in Si[s.
(cy Risaresolvent of C and D.
{d) A is the elementary clause set of unit clavses in (C,0}.
() Sip1lsie1] is the clavse set Si=(5i-{C. D[R},

S+ 1=5{A.

If £ is a definite goal then R will alse be a definite goal,
and we say that Si41(si+1] is backwardly clause set
resofved from Si[si] and Z. If both C and D are definite
program clauses then R will also be a definite program
clause, and we say that 5iy1[si+1] is forwardly clause
gef resolved from 5[] and Z.

Let Sp[sg] be a clause set and P a definite program. A
clause set derivation from 3g[sg] and P consists of a
sequence Splsol.S1(51]-. of clause sets, and a sequence
%1,23,... of elementary clause sets, such that each Ejisa
subset of P and each clause set Siw1lsis1] is clause set
resolved from Sifsi] and Zjy. A clause set derivation of
Silsk] from Sglsg] and P is denoted:

(Sols0l:E1) Fesr (S1fs1):Z) oSk <. F-osr Selsy] or
{Solsol:P) osr* Sklsi.

A backward clouse sef derivation 1 4 clavse set
derivation where each 5i[si] is backwardly clause set
resalved, and & forward clapse sel derivalion is a
clause set derivation where each 5i[si] is forwardly clavse
set resolved.
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Example: Let Sg={ (¢«p(k}).(q(k)+) (r(k}+)}} and
C=(p{x)e—r(x),5(x}). Then we have the following backward
clause set derivation:

(S0:{C)) esr (k) s(k)).(qlde ) (rk)e) 1) Fesr
{ (s, (gl =)L (k)]

4.3 The Algorithm

Let P be a definite program and E a definite program clause
which shoueld but docs not follow from P (P l# E). Our
algorithm w produce an inductive conclusion H looks as
follows.

Completion of Refutation Proof Algorithm:

1. Compute the complement E of E, which is a dpcc-set.

2. Perform a clause set derivation from P and E of a dpee-
set HThT.

3. Compute the complement Hh'] of Hh', which is a
definite program clause.

4. Perform a 8n-truncation of H'Th'] to obtain H.

The generalization performed in steps 1-3, is called a
reformulation generalization, which in fact is
equivalent to performing a most specific inverse linear
derivation,

Reconsider the definition of most specific inverse lincar
resolved in section 2. Let (A, Apl=C-[A] and
[B1,..Bpl=R-{Al,...Am )04 17~). Then the clause
D{d}={B1,....Ba){ ABA1OS2U[{ AL, Am)BATN ] is
most specific inverse resolved from
R={ Al Am 1B~ By,....Bg | and
C={AJU{AL.An).

The corresponding reformulation generalization looks as
follows:

1. The complement R of R is the dpce-set

({ Atdel Am118am-10{{ Bilool Ba)hosi-lor
where gg-! is an inverse Skolem substitution including all
Skolem functions in R and o is a Skolem substitution
including all universally quantified variables in R.
2. The following clause set derivation is performed:
( R;{C]) bcsg* DId] where

D=({{ Bilol Ba}Jo{{A}Ba;1} and

d=[{{ A1lid Am}1Bam-1)os1-log.
3. The complement D[d] of DId] is the definite program
clause
({B1,...Badul A}8a10520[{ AL, Am }BAIM~1])0
where @57 is a Skolemn substitation including all universally
quantified variables in D[d]os) and @ is the renaming
substitution 8= ~lopogr-105].
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Consequently, a most specific inverse linear derivation
(DoldolF) Lir® Dyldy]
is equivalent to the clause ser derivation
(Solsol:F) l-osr* Sklsgl,
where Splsp]l= Doldpl, Dk[dkl= Sk[sx]® and 8 is a
renaming substitation,

Example: Let R=(r(a,z)+q(2)), C1=(p(x,y)e—q(y)),
Ca=(s{w,yh—p(b.y)), Di=(r(x,z)s(c,z)), Da=(r{x,z)+)
and D[d]=(r{2,z)es{ky.z).[p(kx.z).q{z)]) Then
(Ri{C1,Ca}) HLr* DId], and
(R;{C1,.C2]) br* Dy
Although Dt iz not inverse linear derivable, it is still an
inductive conclusion, since {Cy,Ca.Da) I=R.

With our algorithm D'[d], Dy’ and Dy, which are equal to
D{d], Dy and D32 up to variable renaming, are constructed in
the following way:

1. The complement R of R is the dpce-set
{ler(aka){glks)e) ).
2, The following clause set derivation is performed:
( B{C1D lcsr .
({l=r(a.kz)).(plx ky) =), [(glkz)e=)11:{C2)) bosp  DId],
where

DId]=( (-rfa,kz)), (s(w k=), [(plx,ky )= ), (k)] ).
3. The complement D[d] of D[d] is the definite Program
clause
(r{a,z")—s(kw.z'} [plks,2")a(z)]).
4. By application of the inverse substitution
{(a.{<1,1>]})/x) and the existential substitution {ky/c) and
by dropping the optional literals, Dy'=(r{x,z")¢s(c,z)) is
obtained.
If the last negative literal in Dy" alse is dropped then
Da'={r{x,z}+) is obtained.

Steps 2 and 4 in the completion of refutation proof
algerithm are indeterministic. The use of a preference hias
can make them deterministic. Such a preference bias must
specify which clawse set is the most preferable result of the
clause set derivation (reformulation bias), and which
generalization should be done in the 81-truncation
{truncation bias),

The algorithm is implemented in a system, called CrP1,
in which a depth first search is used to find the best dpec-set
H'[h'] according to some given preference bias.

4.4 Integrating Top down and Bottom up
Induction

Backward inverse linear derivations correspond to top down
induction, and forward inverse linear derivations correspond
to bottom op induction. In our method, backward clause set
derivations correspond to top down induction, and forward
clause set derivations correspend to bottom up induction,
Each step in a clause set derivation can be either backwardly
or forwardly clanse set resolved. Consequently, in our
method (and in the system CRP1) top down and bottom up
induction are completely integrated. :

Example: Let E=(p+—q,t.u) and P={{peq,r),(setu)}.
Then the inductive conclusion Hy=(retu) is inferable by
top down induction (backward inverse linear derivation),
but not by bottom up indwetion (forward inverse linear
derivation). The inductive conclusion Hy=(p¢q,s) is
inferable by bottom up induction, but not by top down
induction. The inductive conclusion Ha=(r«s) can only be
inferred by a method that combines top down and bottom up
induction. With oor algorithm the clause Hj is constructed
as follows:

1. The complement
{(e=pllqe=){te=)(ue=) ).
2 The following clause set derfvation is performed:

( E:{(peq0b) csw

({(equhige)(te)(ue) ;D) Icsr

({{e=r) (=), (ue) [(ge=)] }o{ (Gt} }) Fosr
(H{=n(se—u)(ue= )l (1) (qe)] i) bcsp  Halha]
where  H[hal={(&r),(s¢=),[(ue),(1e=),(ge)])

3. The complement Hilha] of Hs[hz] is the definite
program clavse (res,[u,tg]}.

E of E is the dpce-set

4. By dropping the optional literals Hy=(r¢—s) is obtained.
The first two steps in the clause set derivation are
backwardly clause set resolved (top down induction) and the
last two steps are forwardly clause set resolved (bottom up
induction).

5 Concluding Remarks

Some extensions to the inverse resolution framework and a
new inverse resolution method have been presented. This
methad subsumes the previous methods based on inverse
reselution and completely integrates top down and bottom
up induction.



Recongider the definition of inverse resolved in section 2.
If we let A be a positive literal, B47=0 and T={C—{A])18,4
then it is a definition of the absorption operator [Muggelton
and Buntine 1988]. If we let A be a positive literal, B2=57,
M= and Op=1=1F then it is a definition of elementary
saturation [Rouveirol and Puget 1990]. The saturation
operator [Rouveirol and Puger 1990] is equal to an
exhaustive forward inverse linear derivation, in which each
step is restricted according to elementary saparation. If we let
A be a positive literal, Bae=, I'=(C—{ A8, and 85~ 1=
then it is a definition of the leaming procedure called
generalize in [Banerji 1991]. If we let A be a negative literal,
Ban=F and F=({C-{A})8 4 then it iz a definition of the
identification operator [Muggelton and Buntine 19881

Since our method performs inverse linear derivations
without any restrictions on A, @43, T or 8g-1, all the
methods menticned above can be seen as special cases of
our method.

Our notion of optional literals is the same as in
[Rouveirol and Puget 1990]. Our &n-irencation is similar to
the truncation generalization in [Rouveirol and Puger 199(]
and the truncation operator in [Muggelton and Buntine
1988], which both correspond to §-subsumption,

Wirth [Wirth 1989] and Rouveirol [Rouveirol 19917 have
both pointed out the advantages of combining top down and
bottom up induction. In [Wirth 198%], a system called LFPZ,
which uses both top down and bottom up inducton is
prescnted. However, the different induction strategics are
separated into different parts of the system. The first part
(top down) is based on completion of partial proof trees,
while the second part (bottom up) is based on operators
performing inverse resolution. The second part uses the
result from the first part, and different types of bias are used
in the different parts. Our method has the major advantage
that the two different induction strategies are completely
integrated, which not only eliminates the restrictions that
they imply when separated, but also makes possible the use
of an overall preference bias.

The main contributions of this research are:

1. A complete integration of top down and bottom up
induction.

2. Intreduction of existentially quantified variables, which
makes it possible to uniguely determine the most
specific inverse resolvent,

3. A method to perform inverse resolution for full Hom
clanse logie by using resolution,
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