PROCEEDINGS OF THE INTERMATIONAL CONFERENCE

OM FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by 1COT. @ 1COT, 1952

1052

On the Evolution of Objects
in a Logic Programming Framework

F. Nihan Kesim

Marek Sergot

Department of Computing, Imperial College
180 Queens Gate, London SWT 2BZ, UK
fnk@doc.ic.ac.uk, mjs@doc.ic.ac.uk

Abstract

The event calculus iz a general approach to the repre-
sentation of time and change in a logic programming
framework., ¥e present here a variant which main-
tains a historical database of changing objects. We
begin by considering changes to the internal state of
an object, and the creation and deletion of ohjects.
We then present separately the modifications that are
necessary to support the mutation of objects, that is
to say, allowing objects to change class and inter-
nal structure without loss of identity. The aims are
twofold: to present the modified event caleulus and
comment on its relative merits compared with the
standard versions; and fc raise some general issues
about object-orientation in databases which do not
come to light if dynamic aspects are ignored.

1 Introduction

There has been considerable research on combin-
ing logic-based and object-oriented systems, and rea-
soning with complex objects, Many proposals have
been put forward for incorporating features of object-
oriented systems into logie programming and dedue-
tive databases [Abiteboul and Grumbach 1988, Zan-
iolo 1985, Chen and Warren 1988, Kifer and Lausen
1989, Dalaland Gangopadhyay 1888, Maier 1086,
Bancilhon and Khoshaflan . 1986]. But opinions vary
widely as to what are the characteristic and benefi-
cial features of objects and comparatively little at-
tention has been given to the dynamic aspects of ob-
jects. Yet change in internal state of an object as it
evolves over time is cften seen as a characteristic fea-
ture of object-oriented programming; and the ability
of object-oriented representations to cope gracefully
with change has often been cited as & major advan-
tage of this style of representation. It is these dy-
namic aspects that we wish to address in this paper.

We are not concerned with object-oriented program-
ming, but with object-oriented representation of data
in {deductive) databases. We address such problems
as how chjects change state, how deletion and cre-
ation of objects can be described and how an evolving
object can change its class over time.

In order to avoid the discussion of destruective as-
signment, we formulate change in the context of a
historical database which stores all past states of ob-
jeets in the database, Historical databases are logi-
cally simpler than snapshot databases because change
is then simply addition of new input. A snapshot of
the historical database at any given time is an object-
oriented database in the sense that it supports an
object-based data model.

In this paper we present an object-based variant
of the event calculus[Kowalski and Sergot 1886] which
is a general approach to the treatment of time and
change within a logic programming framework. We
use this modified event calenlus to deseribe changes
to objects. The objectives of this paper are twofold:
to present the object-based variant of the event cal-
culus; and to raise some general issues about object-
orientation in databases that we believe do not come
to light if dynamie aspeets are ignored. These more
general points are touched upon in the course of the
presentation, and identified explicitly in the coneclud-
ing section.

In the following section we give a briefl summary
of the original event calculus. Section 3 presents the
basic data model that is supporied by the object-
based variant. In section 4 we present this object-
based variant and discuss how it can be applied to
describe changes in objects. In section 5 we address
the mutation of objects, where objects are allowed to
change their classes during their evolution. We con-
clude the paper by summarising, and making some
remarks about object-based representations in gen-
eral,

2 The Event Calculus

The primitives of the event calculus are evenis to-
gether with some kind of temporal erdering on them,
periods of time, and properties which are the facts and
relationships that change over time. Events initiate
and terminate periods of time for which properties
hold. The effects of each type of event are described
by specilying which properties they initiate and ter-
minate. Given a set of events and the fimes at which
they occurred, the event calculus derives {tomputes)
which facts hold at which times. As an example,
congider a fragment of a departmental database. An
event of type

promote(X, New)
initiates a period of time for which employes X holds
rank New and lerminates whatever rank X held at
the time of the promotion:

initiates(promote({X, New), rank(X,New)).

terminates{promote(X, New), rank(X,_}).
Given & fragment of data :

happens{promote(jim, assisiant), 1956).

happens{promote(fim, lecturer), 1988).

happenspromete{fim, professor), 1981),
the event caleulus computes answers to queries such
as :
T- holds_aifrank(Fim, R}, 1990).

R=lecturer
- holds_for{rank{jim,lecturer), P).
P=1388-1051

The original presentation of the event calculus
showed how a computationally useful formulation can
be ‘derived from general axioms about the properties
of periods. It gave parlicular attention to the case
where events (changes in the world) are not necessar-
ily reported in the order in which they actually oceur,
For the purpose of this paper, it is sufficient to con-
sider only the simplest case, where the assimilation of
events into a database is assumed to keep step with
the oceurrence of changes in the world, and where
the times of all event occurrences are known. Under
these simplifying assumptions, the event calculus can
be formulated thus:

holds.ot{R, T) —
happens(Bv, Ts), Ts < T,
initiates(Ev, R},
“not broken(R, Ts, T).

broken(R, Ts, T) —
happens{Ev, T},
Ts<T* < T,
terminates/Ev®, R).

1053

We have omitted the clanses for helds_for which are
gimilar. The interpretation of net as negation by fail-
ure in the last condition for holds_at gives a form of
default persistence: property R is assumed to hold at
all times after its initiation |.'r,)f event Ky unless there
is informaticn to the contrary.

The event calculus has been developed and ex-

tended in various different ways (see for instance [Sri-

pada 1951, Eshghi 1988]). But what is important for
present purposes is to stress that the underlying data
model in all of these applications is relational. The
properties that eventa initiate and terminate are facts
like rank(fim,professor). In database terms they are
tuples of relations; in logic programming terms they
are ground unit clanses or ground atoms or standard
first order terms, depending on what is taken as the
semantics of holds_.af. A snapshot of the historical
database at any given time is a relational database.
In this paper we modify the event caleulus in order
to describe changes to a database which supports an
object-criented data model.

Before moving on to present this modification, we
wish to make cne further remark about the repre-
sentation of events. One of the most common meo-
tivations for introducing object-oriented extensions
to logic programming languages [Chenand Warren
1989, Ait-Kaci and Nasr 1986, M. Kifer and Wu 1990]
is to overcome the restrictions imposed by the fixed
arity of predicates and functors. These resiric-
tions are particularly evident in the representation
of events: Jim was promoted to professor in 1080,
Jim was promoted from lecturer, Jim was promoted
by his department in 1889 could all be descriptions
of the same promotion recording different amounts
of information about the event. In general, it is diffi-
cult or impossible to devise a fixed arity representa-
tion for events, because these representations cannot
cope gracefully with the range of descriptions that
can be expected even for events of the same type,
{The philosopher Kenny refers to this phenomenon
as the 'variable polyadicity’ of events.) The stan-
dard way of dealing with 'variable polyadicity' is to
employ binary predicates. Thus [Kowalski and Sergot
1986] represents events in the following style:

eventjel),

actfel, promote).

objectfel, jim).

newrank(el, prof).

happensiel, 1983).

Chen and Warren [Chen and Warren 1989] have devel-
oped this usage of binary predicates and have given it
a formal basis. Their language C-logic allows the use
of structured terms which can be decomposed into
subparts. These terms are record-like tuples with

1054

named labels. In the syntax of C-logic (also resem-
bling the syntax of LOGIN [Ait-Kaciand Nasr 1986
and O-logie [Maier 1986]) the event el can be de-
seribed thus:
happensfevent : elfacl = promote, object = jim,
newrank = prof], 1989).
el is an identity which uniquely determines the event,
and the labels are used to complete the specifica-
tion of the event. Chen and Warren give a semantics
to C-logic directly, and also by transformation to an
equivalent first-order {Prolog) formulation that uses
unary predicates for types and binary predicates for
attributes. In this paper we use C-logic syntax as a
convenient shorthand for describing events, and we
exploit C-logic's transformation to Proleg by mixing
C-logie and standard Prolog syntax freely. Thus we
shall also write, for example,
event:elfaci=promote, object=» fim, newrank=rproff.
happensiel, 19838
Chen and Warren's transformation to Prolog make
all of these formulations equivalent.

3 The Data Model

Qur objective in this paper is to focus atfention on
the dynamic aspects of objects. For this purpese, we
take a very simple data model which exhibits only
the most basic features associated with object orien-
tation. As will be illustrated, this simple data model
already raises a number of impoertant problems; fur-
ther elaborations of this data model are mentioned in
the concluding section of the paper.

The basic building block of the model is the con-
cept of an object. An object corresponds to a real
world entity. Each object has a unique identity to dis-
tinguish it from other objects. The objects have at-
tributes whose values can be other objects (i.e. their
identities). We assume that all attributes are single-
valued,

Objects are organized into class hierarchies, defined
explicitly by is_a relationships among classes. A class
denotes a set of object identities; the class-subclass
relation (is.a) is the subset relation, A class describes
the internal structure (state} of itz instances by at-
tribute names. The state of an instance is determined
by the values assigned to these attributes. A subclass
inherite the structure {attribute names) of its super-
class(es). As an example consider the following class

hierarchy : person

(atiributes:name, address)

studen employee
(attributes:section, supervisor) (attributes: depd, rank)

The instances of the class student have the internal
structure deseribed by the attributes name, address,
section and supervisor. Similarly the state of an em-
ployee instance is described by name, address, dept
and renk The class hierarchy is represented by is_a
relations as:

is.afstudent, person).

is_afemployee, persomn).

The relation between a class and its instances is rep-
resented by the instance_of relation. The instances of
a class are also instances of the superclasses of C,
The instance_of relation can be represented thus:

instance_offtom, student).
instance_offmary, employee). efc.
together with
instance_off X, Class) —
is.a{Sub, Class), instonce.offX, Sub).

These definitions will be adjusted in later sections
when we consider time dependent behaviour.

Multiple inheritance without overriding can be ex-
pressed by the isa and instance.of relationships.
This type of multiple inheritance causes no additional
difficulty and is not mentioned again.

4 Object-Based Event Calculus

Database applications require an ability to model a
changing world, The world changes as a result of the
occcurrence of events and hence it is very natural to
describe such a changing world using a description of
events. Given a description of events, it is possible to
construct the state of the world using the the event
calenlus.

4.1 State Changes

One way of dealing with the evolution of an object
over time (as suggested to us by several groups, inde-
pendently) is to view the changing object as a collec-
tion of different though related objects. Thus, if we
have an emplayee object jim in the database, which
changes over time, fim at time 1y, jim at time 15, fim
at time 3 are all different objects. Their common
time-independent attributes are inherited from jim
by some kind of 'part_of” mechanism. This approach
has a certain appeal, but a mornent’s thought reveals
it must be rejected for practical reasons. Each time
an object is modified & new object is created. This
new object becomes the most recent state of the ob-
ject with a different identily. In this case, all other
objects referring to the modified object should also be
modified to refer to the new version. However updat-
ing them means creating other new objects in turn,

which resulis in an explosion in the number of objects
in the database. In [M. Kifer and Wu 1990] a system
of this type is described. They have to use equal-
ity in order to make certain denotations (i.e. object
ids) in fact refer to the same object and provide some
navigation methods through versions in order to get
appropriate versions of an object. _
The alternative is to have one object jim and to
parametrize its attributes with times at which these
attributes have various values. A state change in an
object now corresponds to changing the value of any
of its attributes. For instance if a person moves to a
new place, the value of the address attribute changes;
if an employee is promoted the rank attribute changes
accordingly. Formulation of this idea in the spirit of
the event calenlus is straightforward. Instead of
happens{promole(fim,professor), 1881},
it is convenient to separate out the object that has
been affeeted by the event :
happens(fim, promote(professer), 1891),
Now events are indexed by object; every object has
associated with it the events that affacted it. Events
initiate and terminate periods of time for which a
given attribute of a given cbject takes a particular
value :
initigtes{ Obj, promole{NewRank), rank, NewRank).
Given a set of event descriptions which are indexed
by object identities, the modified event caleulus con-
structs the state of an object. We can ask queries to
find out the value of an attribute of an object at a
gpecifie time or we can access the state of an objedt
at any time by querying all of its attributes :
?- holds_at(jim, rank, R, 1983),
1= holds_atfim, Atir, Val, 1989).
The following is the basic formulation of the object-
based event caleulus used to reason about the chang-
ing state of objects :

holds_atf Obj, Attr, Val, T) «
happens{Obj, Ev, Ts), Ts < T,
initictes{Obj, Ev, Attr, Val),
not broken(Okj, Atir, Val, Ts, T).

broken(Obj, Attr, Val, Ts, T) —
happens(Obj, Ev*, T},
Ts<T*< T
terminates(Qbj, Ev®, Attr, Vai).

terminates(Obj, Ev®, Attr, _} —
" initiates(Obj, Ev®, Attr,).
Informally, to find the value of an attribute of an ob-

ject at time T, we find an event which happened be-
fore time T, and initiated the value of that attribute;

1055

and then we check that no other event which termni-
nates that value has happened to the object in the
meantime. The last clavse for terminates is to satisfy
the functionality constraint of the attributes. Since
we are comsidering only single-valued attributes we
can simply state that the value of an attribute is ter-
minated if an event initiates it to another value, (The
usage of the anonymous varizble "' in this clause is
not a mistake).

The original event calculus can compute the peri-
ads of time for which a property holds, We can have
the same facility for the attributes of objects, The
following ecmpute the periods of time for which an
attribute takes a particular value :

helds_for(Obj, Attr, Val, (§ - E)} ~—
happens{Obj, Ev, 5),
initiates(Obj, Bv, Atir, Val),
terminated(Ob), Attr, Val, 5§, E).

terminated{Obj, Atir, Val, 5, E) »~—
happens{Obj, Ev, E),
terminates(Obf, Ev, Attr, Val), § < E,
not broken(Obj, Alir, Val, 5, E}.

kolds_foris used to find the period of time for which
an attribute has a particular value. The time pericd
is represented by its start (5) and end (E) points, We
also require another clause for kolds_for to deal with
periods that have no end-point (l.e. an attribute is
initiated but there is no event which terminated its
value). This can be written in a similar style, which
we omit.

Since objects are organized into classes, it is nat-
ural and convenient to structure the specification of
the effects of a given event according to the class of
object it affects. If an event is defined to affect the
instances of & class, then the same event specification
applies to the instances of subclasses. For example,
comsider a departmental database in which objects
are organized according to the class hierarchy given
in section 3. We can specify the effects of these events
in the following way
initiates{Obj, move{Address), address, Address) ~—

instance_af{Obj, person).
initiales(Obj, promote(NewRank), rank, NewRank) —
instance_off Obj, employee }.
The effzets of changing the address are valid for all
persons (i.e. all students and employees as well).
However promotion is a type of event which can hap-
pen to employee abjects only. In the formulation as
presented here, it is possible to assert that an object
of class person was promoted - but this event has no
effect (does not initiate or terminate anything) unless
the object is also an instance of class employes. An

1056

alternative is to arrange for event descriptions to be
checked and rejected at input if the class conditions
are not satisfied. This alternative requires more ex-
planation than we have space for; it is peripheral to
our main points, and we omit further discussion.

We have discussed how event calculus can be used
to describe changes to the values of attributes of ob-
jects. Apart from the events that cause state changes
of existing objecta, there are other kinds of events
which cause the creation of new objects or deletion
of objects.

4.2 Creation of Objects

The creation of a new object of a given class means
adding new information about an entity to the
database. In the real world being modeled, there are
events which create new entities. Birth of a person,
manufacturing of a vehicle or hiring a new employee
are examples of such events. We ean think of deserib-
ing object creation by events whose specification will
provide the necessary information about the initial
state of the object.

For creation, we need to say what the class of an
object is and specify somehow its initial state. In
a practical implomentation, generation of a unique
identity for a newly created object can be left to the
system; conceptually, all object identities exist, and
the 'creation’ of an object is simply assigning it to a
chosen class. Assigning the new identity to the class
imitiates a period of time for which the new object
is a member of that class. This makes it necessary
io treat class membership as & time-dependent rela-
tionship. We introduce a new predicate assigns to
describe instance addition to classes. For the time
being we assume that onee an object is assigned to a
class it remains an instance of this class throughout
its lifetime. Class changes are discussed separately in
section 5.

We can handle creation of objects by speciflying
which events assign objects to which classes. We use
the same event description to initialize the state of
the object. As an example consider registration of a
student ali, which causes the ereation of & new stu-
dent object in the database. The specification of the
event and the necessary rules to describe creation are
as follows ;

event ; 23 [fact = register,
object = ali,
section = Ip,
supervisor = bob].

assigns(event: Efact=>register, object=> Obj],
Ok, student).

initiates{0bj, E , section, 5) —

event : Efaci=regisier, object= Obj, section=-5].
indtiates(Obj, E, supervisor, 5} —

event : Efaci=sregister, object= Obj, supervisor=: 5],
The assigns statement is used to assign the identity
of the object Obj to the class sfudent; the iniliafes
statemnents are used to initialize the object's state.
Now the occurrence of the event is recorded by :

happens{e£3, 1991).
To specify that the event has happened to the object
ali we use the rule:
happens{0bj, Bv, T) —
happens(event: Bvfaci=register, objeci= Obj],T).

Note that we have two happens predicates: one binary
{for asserting that events happened at a given time),
and one ternary (to index events by objects affected).
We have to notice also that creating a new object
of class C, creates a new instance of the superclasses
of as well. There are several ways to formulate this.
The simplest is to write:
assigns{Ev, Ok, Class) —
is_afSub, Class), assigns{Ev, Obj, Sub).

4.3 Deletion of Objects

There are two kinde of deletions that we are going to
discuss in this paper. One is absolute deletion of an
object where the object is removed from the database.
The other one deletes an object from its class but
keeps it as an instance of another class, possibly one
of the superclasses. The second case is related to
mutation of objects as they change class, which will
be discussed in section B.

For the purposes of this section, we assume that
when an object is deleted it is removed from the set
of instances of its class and the superclasses, and that
all its attribute values are terminated. For example,
if a person dies, all the information about that per-
son is deleted from the database. We use a new predi-
cate destroys to specify events that delete objects and
write the following :
terminates{Obj, Ev, Aitr,) — destroys{Ev, Obj).
This rule has the effect that all attributes Aftr defined
in the class of the object and also those inherited from
superclasses are terminated. If an event destroys an
object O which is an instance of class O, then that
event removes O from class C and all superclasses of
C.

There is one point to consider when deleting ob-
jects in object-oriented databases. If we delete an ob-
ject z, there might be other objects that have stored

the identity of z as a reference., The deletion there-
fore can lead to dangling references. A basic choice
for object-oriented databases is whether to support
deletion of abjects at all [Zdonik and Maier 1990]. We
choose to allow deletion of objects and we eliminate
dangling references by adding ancther rule for the
broken predicate:

broken{Obj, Atir, Val, Ts, T) —
happens(Val, Ev*, T*),
Ts<T* < T,
destroys{Ev, Vall.

We cbtain the effect that the value Val of the at-
tribute A#fr is ferminated by any event which de-
strovs the object Val

4.4 Class Membership

As we create and delete objects the instances of a
class change. Class membership, which is described
by the instance_of relation, is & dynamic relation that
changes over time. We can handle the temporal be-
havieur by adding a time parameter. We now have
events that initiate and terminate periods of time for
which an object iz an instance of a class O The
inslance_of relation is affected when a new object is
assigned to a class or when an object is destroyed.
By analogy with holds_at, the following finds the in-
stances of a class at a specific time :

instance.off Obj, Class, T} —
kappens{ By, Ts), Ts < T,
assigns{Ev, Obj, Class)},
not removed(Obj, Class, Ts, T}

removed{Obj, Class, Ts, T) +
happens{Obj, Ev*, T*), Ts < T* £ T,
destroys{Ev*, Obj).

With this time variant class membership we can ask
queries to find the instances of a class at a specific
time, For example:

T- instance_of{Obj, employee, 1980).

We can also write the analogue of kelds_for to com-
pute periods, which we omit here,

In the example we have been using, we have repre-
sented the rank of an employes object by including an
attribute rank whose value might change over time.
But suppose that instead of using an atiribute rank,
we had chosen to divide the class of employees into
various distinct subclasses:

is_aflecturer, employee).
isa{professor, employee).

1057

It iz et least conceivable that this alternative rep-
resentation might have been cheosen, assuming that
all employee objects have roughly the same kind of
internal structure, Is the choice between these two
representations simply a matter of personal prefer-
ence? Mot if we consider the evolution of ohjects aver
time. The first representation allows for change in
an employee's rank straightforwardly, since this just
changes the value of an attribute, The second does
not, since no object can change class in the formula-
tion of this section. The only way of expressing, say,
a promotion from lecturer to professor, is by destroy-
ing (deleting) the lecturer object and creating a new
professor object. But then how do we relate the new
professor object to the old lecturer object, and how
do we preserve the values of unchanged attributes
across the change in class? In the next section we
will examine the problem of allowing the class of an
individual ohject to change.

5 Mutation of
Changing the Class

Objects:

The ability to change the class of an object provides
support for object evolution [Zdonik 18890]. It lets an
object change its structure and behaviour, and still
retain its identity. For instance, consider an object
that is currently a persen. As time passes it might
naturally become an instance of the class student and
then later an instance of emplogee. This kind of mod-
ification is usually not directly supported by mosi
systems. It may be possible to create another ob-
jeet of the new class and copy information from the
old cbject to it, but one loses the identity of the old
object.

We want to describe this kind of evelution by event
specifications. For example graduation causes a stu-
dent to change class. If we delete student alf from
class student, then he will lose all the attributes he
has by virtue of being a student, but retain the at-
tributes he has by virtue of being a person. The ef-
fects of this event can be described by removing ali
only from class student and terminating his attributes
selectively. The attributes that are going to be ter-
minated can be derived from the schema information.
For dealing with this type of class change we use a
new predicate removes in place of the predicate de-
stroys of section 4.3:

removes{event: Evfact = graduale, object = O],
Obj, student).

terminates{Obj, E, Atlr, _) —
eveni:Evfaci=> graduate, object= Okjj,
attributestudent, Atir),

1058

The clauses for the time-dependent inslance_of re-
lation must be modified too, to take removes into
account:

removed Obj, Class, Ts, T) —
happens{Obj, Ev*, T*), Ts<T* < T,
removes{Ev*, Ob, Class).

The graduation of the student eli corresponds to
moving him up the class hierarchy. Now consider
hiring ali as an employee. This will correspond to
moving down the hierarchy, The specification of an
event causing such a change will likely include val-
ues to initialize the additional attributes associated
with the subelass, So the effects of hiring aff will be
to assign him to the employee class and initiate his
employee attributes. The event might be:
event ; eflfact = hire,

albject = ali,
depl = es,
rank = lecturer]

And we can declare the following:

assigns{eveni; Efaci=>hire, object= Obj], Obj, employee).

initiates(Obj, B, dept, D) +—

event Efact=rhire, objeci= Ok, depi=D].
initiales{Obj, B, rank, R} —

event: Efaci=hire, object=s Obj, rank=:R].
Note that in changing class first from student to per-
son, then from person to employee, ali retains all the
attributes he has as a person.

We have described this class change by two sep-
arate events: graduation and hiring. We can also
imagine a single event which would cause an object
to change its class from student to employee directly,
say hire-sfudent event. We conld then deseribe the
changes using the description of this event:

removes(event: Efaet = hire-siudent,

object = Obj], Obj, student).
assigns{event: Efact = hire-student,

object = Obj], Obj, employee).
The initial values of the additional attributes will
again be given in the event specification. As in the
case of having two separate events, we have not lost
the values of the attributes as a person, and we have
not removed the object from class person.

We have illustrated three kinds of class changes:
changing from a class &' to a direct superclass of C,
changing from € to a direct subclass of Cand chang-
ing from C to a sibling class of ' in the hierarchy.
In general, changing an object from class O to class
C# involves removing from C1 and assigning to (2
and specifying in the event deseription how the ini-
tial values of Cf attributes are related to the values
of old Cf attributes,

6 Concluding Remarks

We have presented a variant of the event calculus
which maintains an objeci-based data model where
the standard versions maintain a relational one. See-
tion 4 considered state changes of objects in this
framework, and the creation and deletion of objects.
Section § discussed the modifications that are neces-
sary to support also the mutation of objects - change
of an object’s class and its internal structure without
less of its identity.

There are other object-oriented features that can
usefully be incorporated into the object-based data
model. Removing the restriction that attributes are
all single-valued causes no great complication. We
are currently developing other extensions, such as
the inclusion of methods in classes for defining the
valne of one atiribute in terms of the values of other
attributes, and we are investigating what additional
complications arise when the schema itself is subject
to change.

In object-oriented terminology, event types - like
promote, change-address, and so on - correspond to
methods: their effects depend on the class of object
that is affected; the predicates indiafes and lermi-
nates for attribute values, and assigns, destroys and
removes for objects and classes are uszed to imple-
ment the methods (they would be replaced by de-
structive assignment if we maintained only a chang-
ing snapshot detabase). Of course, execution of this
event calculus in Prolog does not yield an object-
criented style of computation. At the implementa-
tional level, objects are not clustered (except by Pro-
log's first argument indexing), and the computation
has no element of message-passing. The implementa-
tion and the computational behaviour can be given
a more object-eriented flavour by using for example
the techniques described by [Chen 1990] for C-logic,
or the class templates of [McCabe 1988]. We are cur-
rently investigating what added value is obiained by
adjusting these implementational and computational
details,

The object-oriented version of the event caleulus of-
fers some (computational) advantages over the stan-
dard relational versions, that we do net go into here
for lack of space. Whatever the merits of the object-
based variant of the event calculus, we believe that
its formulation forces attention to be given to impor-
tant aspects of object-orientation that are otherwise
ignored. We limit ourselves to two general remarks:

1) In the literature, the lerms iype and class are
often used interchangeably. Sometimes type is used
in its technical sense, bui then it is common to see
illustrative examples resembling 'Mary is of type stu-

dent’. If we consider the dynamies of object-oriented
representations, then these examples are either badly
chosen or the propesals are fundamentally flawed.
‘Mary’ might be a student now but this will not
hold forever. We could surely not contemplate an
approach where an update to a database requires a
change to the type system, and hence to the syntax of
the representational language. These remarks do not
apply to object-oriented programming where there ie
no need to make provision for updates that change
the type of an object.

The static notion of a type corresponds to the
treatment of a class we presented in seetion 4: an ob-
ject may or may not exist at a given time, but when it
exists it is always an instance of the same class. If we
wish to go beyond this, to allow objects to mutate,
then a dynamic notion of class is essential. This is
not to say that types have no place in object-oriented
databases. A student can become an employee over
time, but a student cannot become a filing cabinet,
and a filing cabinet cannot become an orange. Both
static types and dynamic notions of class are useful,
The consideration of the dynamies of objects - how
they are allowed to evolve over time - suggests one
immediate and simple criterion for choosing which
notion to use: the type of an object cannot change.

2) In section 4.3, we assumed that all attributes
of an object are terminated when the object is de-
stroyed; in section 5, removal of an object from the
class terminates all attributes the object has by
virtue of being an instance of the class C. The rea-
soning behind this assumption is this: attributes are
used to represent the, possibly complex, internal state
of an object. When an object ¢ceases to exist, it is not
meaningful to speak any more of its internal state.
Of course, some information about an object persists
even after it ceases to exist. It is still meaningful to
speal of the father of a person who has died, but it
is not meaningful to ask whether this person likes or-
anges or is happy or has an address. The development
of these ideas suggests that we should distinguish be-
tween what we call ‘internal attributes’ and "external
relationships’. Internal attributes describe the state
of & complex object, and they cease to hold when the
object ceases to exist or ceases to be an instance of
the class with which these attribules are associated.
External relationships continue to hold even after the
object ceases to exist. We are being led to a kind of
hybrid data model together with some tentative cri-
teria for choosing between representation as attribute
and representation as relationship with other objects.
The znalysis given here is rather superficial, but it
indicates the general directions in which we are plan-
ning to pursue this work.

1059

Acknowledgements. F.N. Kesim would like
to acknowledge the financial support by TUBITAK,
the Scientific and Research Council of Turkey.

References

[Abiteboul and Grumbach 1988] 5. Abiteboul and
8. Grumbach. COL : A logic-based language for
complex objects. In niernetional Conference on
Ertending Datobase Technology- EDET 88, pages
271-993, Venice, Italy, March 1985.

[Ait-Faciand Nasr 1886] H. Ait-Kacl and R. Nasr.
Login: A logic programming language with built-
in inheritance, The Journal of Legic Program-
ming, 1986,

[Bancilhon and Khoshafian 1986] F. Bancilhon and
8, Khoshafian. A caleufus for complex objects. In
Proceedings of the 5th ACM-SIGACT-SIGMOD
Symposium on Principles of Database Systems,
pages §3-59, Cambridge, Massachusetts, March
19846.

[Chen 1980] Weidong Chen. A General Logic-Based
Approach to Siruciured Date. PhD thesis, State
University of New Yerk at Stony Brook, 1090,

[Chen and Warren 1080] W. Chen and D. Warren.
C-logic of complex objects. In Proceedings of
the 8th ACM SIGACT-SIGMOD-SIGART Sym-
postum on the Principles of Dafabase Spstems,
1084,

[Dalal and Gangopadhyay 1984
M. Dalal and D. Gangopadhyay. OOLP: A trans-
lation approach to object-oriented logic program-
ming. In The First International Conference on
Deductive and Object-Oriented Databases, pages
565-568, Kyoto Japan, December 4-G 1989,

[Eshghi 1988] K. Eshghi. Abductive Planning with
the Event Caleulus. In Pree. Sth Mnfernafional
Conference on Logic Programming,] 988,

[Kifer and Lausen 1988] M. Kifer and G. Lausen. F-
logic: A higher-order language for reasoning
shout objects, inheritance, and scheme, In Pro-
ceedings of the ACM-SIGMOD Symposium on the
Management of Data, pages 1341486, 18890,

[Kowalski and Sergot 1986] R.A. Kowalski and
M. Sergot. A logic-based calculus of events, New
Feneration Computing, 4:67-95, 1086,

1060

[M. Kifer and W 1990] G. Lausen M. Kifer and
J. Wu. Logieal foundations of chject-oriented
and frame-based languages, Technical report, De-
partment of Computer Science, SUNY at Stony
Brook, June 1990.

[Maier 1986] D. Maier. A logic for objects. In Pro-
ceedings of the Workshop on Foundations of De.
ductive Databases and Logic Programming, pages
6-26, Washington D.C., August 1986,

[McCabe 1988] F.G. McCabe, Logic and Objects:
Language Apphcation and Implemeniation, PhD
thesis, Department of Computing, Imperial Col-
lege, 1988,

[Sripada 1991] 5. M. Sripada. Temporal Reasoning
in Deductive Dafabases. PhD thesis, Department
of Computing, Impenial College, 1991.

[Zaniclo 1885] C. Zaniolo. The representation and
deductive retrieval of complex objects. In Pro-
ceedings of Very Large Dafabases, page 458,
Stockholm, 1985,

[Zdonik 1990] S. B. Zdonik. Object-oriented type
evolution. In F. Bancilhon and P. Buneman, ed-
itars, Advances in Dotabese Programming Lan-
grages, pages 2T7T-288. ACM Press, 1994,

[Zdonik and Maier 1890] S. B. Zdonik and D. Maier,
editors, Readings in Object-Oriented Database
Systems, chapter 4, page 239. Morgan Kaufmann,
1990.

