FROCEEDINGE OF THE INTERMATIONAL COMFEREMNCE
ON FIFTH GENERATION COMPUTER SYSTEMS (992,
edited by ICOT. ©@ ICOT, 1992

1051

Knowledge-Based Functional Testing For Large Software
Systems

UJwe Nonnenmann and John K. Eddy
AT&T Bell Laboratories
600 Mountain Avenue, Murray Hill, NJ 07974, U.5.A.

Abstract

Automated testing of large embedded systems is pechaps
one of the most expensive and time-consuming parts of
the software life cyele. It requires very complex and het-
erogeneous knowledge and reasoning capabilities. The
Knowledge-lased Interactive Test Script System (KITS5)
automates functional testing in the domain of telephone
switching software, KITSS uses some novel approaches
to achieving several desirable goals. Telephone feature
tesis are specified in English. To support this KITSS has
a statistical parser that is trained in the domain's tech-
nical dizlect. KITSS converts these tesis into a formal
representation that is audited for coverage and sanity.
To accomplish this, KITSS uses a customized theorem
prover-based inference mechanism and a hybrid knowl-
edge base as the domain model that uses both a static
terminological logic and a dynamic temporal logic. Fi-
nally, the corrected tesl is iranelated inte an in-house
antomated test language that exercises the switch and
its embedded software. This paper describes and moti-
vates the approach taken and also provides an overview
of the KITSS syslem.

1 Functional Testing Problem

There is an increasing amount of difficulty, effort, and
cost that is needed to test large software development
projects. It is generally accepted that the development
of large-scale software with sero defects is not possible.
A corollary to this is that accurate testing thal uncov-
ers all defects is also not possible [Myers, 1979]. This
is becanse of the many inherent problems in the devel-
opment of large projects [Brooks, 1987]). As just a few
examples, & large project provides support for many in-
teracting features, which makes requirements and spec-
ifications complex. Also, many people are involved in
the project, which makes it difficult to ensure that each
person has a common understanding of the meaning and
functioning of features. Finally, the project takes a long
time to complete, which makes it even harder to maintain
a common understanding because the fealures change

through time as people interact and come to undocu-
mented agreements about the real meaning of features,

The consequence of these problems 1= that programs
that do not function as expected are produced and there-
fore extensive and costly testing is required. Onee soft-
ware is developed, even more lesting is needed to main-
tain it as a product. The major cost of maintenance js in
re-testing and re-deployment and not the coding effort.
Estimates, as in [Myers, 1976] and [McCariney, 1091],
are that ai least 50%, and up to as much as 80%, of the
cost in the life cycle of a system is spent on maintenance.

We believe that the only practical way to drastically
reduce the maintenance cost is to find and eliminate sofi-
ware problems sarly and within ihe development process.
Therefore, we designed an antomated testing system thai
is well integrated into the current development process
[Nonnenmann & Eddy, 1991]. The focus of our system is
on functional testing” [Howden, 1985], It corresponds
directly to uncovering discrepancies in the program’s be-
havior as viewed from the outside world. In fanctional
testing the internal design and structure of the program
are ignored. This type of testing has been called Mack boz
testing because, like a black box in hardware, one is only
interested in the input and how it relates to the eutput,
The resulting tests are then executed in a simulated cus-
tomer environment. This corresponds o verifying that
the system fulfills its intended purpose.

KITSS achieves a good integration into the current
development process by using the same expressive and
unchtrusive input medivm (English functional tests) as
is used currently as well as generatling tests in the existing
automated test language as output. Additionally, KITSS
checks the tests for consistency with its built-in extensive
]-:nqwlt::'gc base of “trl:phuny".

Therefore, KITSS helps the test process by generaling
more tests of better quality and by allowing more fre-
quent regression testing through automation. Further-
maore, tests are generated earlier, i.e., during the devel-
opmeni phase not after, which should lead to detecting
problems earlier. The result is higher quality software at
a lower cost.

In this section, we motivated the need for the approach

1092

chosen in KITSS. In the next section, we will describe
KITSS in more detail.

2 KITSS Overview

The Knowledge-based Imieractive Test Script System
(KITS5) was developed at AT&T Bell Laborataries to re.
duce the increasing difficulty and cost involved in testing
the software of DEFINITY®PBX switches'. Although
our system is highly domain dependent in its knowledge
base and inference mechanisms, the approach taken is &
general one and shouwld be applicable to any funciional
software testing task.

DEFINITY supports hundreds of complex features
such as call forwarding, messaging services, and eall rout-
ing. Additionally, it supports telephone lines, telephone
trunks, a varieiy of telephone sets, and even data lines.
At ATET Bell Laboratories, PBX projects have many
frequent and overlapping releases over their multi-year
life cycle. It is not uneommon for these projects to have
millions of lines of code.

2.1 Testing Process

Before KITSS, the design methodology involved writ-
ing test cases in English. They describe the details of
the external design and are written before coding begins.
The cases, which are written by developers based on the
requirements, constitute the only formal description of
the external functioning of a switch feature. The idea is
to describe how a feature works without having coding
in mind.

Figure 1 shows a typical test case. ‘Test cases are struc-
fured in part by a goel/action/verify format. The goal
statement is a very high-level deseription of the purpose
of the test. It is followed by alternating actionverify
statements. An action describes stimuli that the tester
has to execirte. Each stimulus triggers a switch response
that the tesier has to verify (e.g., a specific phone rings,
a lamp is lit, a display shows a message etc).

Owerall, there are tens of thousands of fest cases for
DEFINITY. All these test cases are written manually,
just using an editor, and are executed manually in a test
lab. This is an error prone and slow process that Fm-
ite test coverage and makes regression test intervals too
long.

Some 5% of the above test cases have been converted
into test scripts written in an in-house test mutoma-
tion language. Tests written in this langnage are run
directly against the switch software. As this software is
embedded in the switching system, testing requires large

1A PBX, or private branch exchange, switch is & real-Lime sys-
tem with embedded software that allows many telephone sets to
share o few telephone lines in & private company.

GOAL: Activate CF? using UF Access Code.
ACTION: Set station B without redirect
notification®. Station B goes offhook
and dials CF Access Code,
VERIFY: Station B reseives the second dial
tone.
ACTION: Station B dials station C.
VERIFY: Station B receives confirmation tone.
The status lamp associated with the
CF buiton at B is lit.
ACTION: Station B goes onhook.
Flace a call from station A s B.
VERIFY: No ring-ping (redirect notification) is
applied to station B.
The call is forwarded to station .
ACTION: Station C answers the call.
VERIFY: Stations A and C are connected.

Figure 1: Example of a Test Case

investments in test equipment {computer simulations are
not acceptable as they do not address the real-time as-
pects of the system). Running and re-ranning test scripts
becomes very time consuming and actually controls the
rate at which prejects are completed,

Although an improvement over the manual testing
process, test automation has several problems. The cur-
rent tools do not support any automatic semantic check-
ing. The conversion from test case to test script takes a
long time and requires the best domain experts. There
are only limited error diagnosis facilities available as well
as no automatic update for regression testing. Also,
Lest scripts are cluttered with test language initializa-
tion statements and are specific to switch configurations
and software releases. Test scripts lack the generality of
test cases, which are a template for many test scripts.
Therefore, test cases are easier to read and maintain,

2.2 KITSS Architecture

KIT55 takes English test cases as its input. It trans-
lates all test eases into formal, complete functional test
scripts which are run against the DEFINITY switch soft-
ware. To make KITSS a practical system required novel
approaches in two very difficult and different areas.
First, a very informal and expressive language needed

*CF in an acronym for the call-forwarding feature, which allows
the user to send his/her incoming calls to anather designated sta-
tion. The user can activate or deactivate this feature by pressing
a button or by dialing an access code,

*Hedirect notification is a feature Lo notify the user about an
incoming call when he/fshe has CF activated. Instead of the phone
ringing it issues & short *ring-ping” tone.

to be transformed inte formal logie. Test cases are wril-
ten in English. While English is undeniably guite ex-
pressive and unobtrigive as a reprezentation medinm, it
15 difficult to process into formal descriptions. [t also re-
quires theoretically unbounded amounts of knowledge to
satisfactonily resolve incompleteness, vagueness, ambigu-
ity, ete. In practice, however, test cases are wriften in a
style that is considerably more restrictive than most En-
glish text. The test case descriplions are eirenmseribed
in terms of the vocabulary and concepts to which they
refer. Syntactic and semantic variations do oceur, but
the language is a technical dialect of English, a naturally
occurring felephonese language that is less variable and
lzss complex. These limits to a specific domain and style
make it possible to transform the informal felephonese
representation into a formal one.

Second, incomplete lest cases needed to be extended.
Even theugh humans find it easier to write test cases
in natural language as opposed to formal language, they
still have difficulties specifying lests thal are both com-
plete and consistent. They alse have difficulties iden-
tifying all of the interactions that can occur in a com-
plex system. This is analogous to the difference between
trying to define a word and giving examples of its use.
Creating a good definition, like creating a complete test
case with all the details, is usnally the more challenging
task; giving word-usage examples, like describing a test
case in general terms, is easier. Therefore, the input test
cases need to be translated into a formal representation
and then analyzed to be corrected and for extended,

Both tasks have been attempted for more than a
decade [Balzer ef ol 1977] with only limited success.
Most difficulties anise becanse of the many possible types
of imprecision in unrestricted natural language specifi-
cations, as well as by the lack of a suitable corpus of
formaliged background knowledge to guide astomated
reasoning tools for most application domains.

To addeess these two difficulties (see also
[Yonezaki, 1089]), KITSS provides a natural language
processor that is trained on examples of the telephonese
sub-language using a statistical approach. It also pro-
vides a completeness and interaction analyzer that andits
test coverage. However, these two modules have been
feasible only due to the domain-specific knowledge-based
approach taken in KITSS {Barstow, 1985]. Therefore,
both modules are supported by a hybrid knowledge-base
(the “K” in KITS5) that contains & model of the DEFIN-
ITY PBX domain. Concepts that are used in telephony
and testing are available to both processes to reduce the
complexity of their interpretive tasks. If, for example,
a process gets stuck and cannot disambignate the pos-
sible interpretations of a phrase, it interacts (the “I" in
KITSS) with the test author. T4 presents the context in
which the ambiguity oceurs and presents its best guesses
and asks the author to pick the correct choice. Finally,

1093

EQHPLETENF,QS &
CTION AN

il |Filcraclion
ol Trums foemmistion

Figure 2: KITSS Architecture

KITSS alse prevides a translator that generates the ac-
tual test seripts (the "T5" in KITSS} from the formal
representation detived by the analyzer,

The two needs described above led to the architec-
ture shown in Figare 2. [t shows that KITSS consists of
four main modules: the domain model, ihe natural lan-
guage processor, the completeness and interaction ana.
lyzer, and the translator. The domain medel (see See-
tion 3} 25 in the center of the system and supports all
three reasoning modules (see Seclion 4_}.

3 Domain Knowledge

A domain model serves as the knowledge base for an ap-
plication system. Testing iz a very knowledge intensive
task. It involves experience with the switch hardware
and testing eguipment as well as an understanding of
the switch software with its several hundred features and
MENY More interactions. There are binders full of papers
that describe the features of DEFINITY PBX software,
but no concise formalizations of the domain were avail-
able before KITSS. One of the core pieces of KITSS is
its extensive domain model. The focus of KITSS and the
domain model 15 on an end-user's point of view, t.e., on
[physical and software) objects that the user can manip-
ulate,

The KITS5 domain model consists of three mu.ju-r fune-
tional pieces {sez Figure 3):

Core PBX model: Tt 15 spht into two major parts.
The static model is used by all reasoning modules. The
dynamic model is used mainly by the analyzer.

Test execution model: It includes details about
the current switch configuration and all the necessary

1094

(D 0 M A 1 N M 0 D E L)
STATIC MODEL | { DYNAMIC MODEL)
* Major hardware + Predicates
COMPENENLS + Primitive stimui
CORE = Static data _» Abstract stimuli
FBX » Ph + Ohservabl
MODEL EnamEna | servables
* Processes
+ Lopgical resources + Integrity constraints
- livariants
! - Rules

TEST » Confipuration model
EXECUTION| « Automaied jest -
MODEL language madel

LINGUISTIC| = Tebephonese statistics
MODEL | + Tekephonese concepls

TEMEORAL LOGIC

TERMINCLOGICAL LOGIC

Figure 3: KITSS Domain Model

specifics of the automated test language. This model is
used mainly by the translator.

Linguistic model: It iz specific to the mput language
{telephonese) and is used mainly by the natural language
PIOCEssOT,

From a knowledge representational point of view,
we distinguish between static properties of the domain
model and dynamic ones [Brodie et al., 1984). Stalic
properties include the objects of a domain, atiribules
of cbjects, and relationships between objects. All static
parts of the domain model are implemented in a ter-
minclogical logic (see Section 3.1). Dymamic propertics
include operations on objects, their properties, and the
relationships between operations. The applicability of
operations is constrained by the attmibutes of objects.
Integrity constraints are also included to express the reg-
ularities of a domain. The dynamic part of the core PBX
model is represented in temporal logic (see Section 3.2).

3.1 Static Model

This part of the domain model represents the static as-
pects of KITSS. By static we mean all objects, data, and
conditions that do not have a temporal extent but may
have states or histories.

The static PBX model includes ihe following pieces:

s Major hardware components, such as telephones and
switch administration consoles as well as smaller
subparts of theses components, e g., buttons, lamps,
and handsets.

¢ Slalic data, e.g., telephone numbers, routing codes
and administrative data such as avalable features,
and eurrent feature settings.

¢ Phemomena, such as tones and flashing patterns
which are occurrenees ai points in time,

o Processes, such as static definition of types of calls
(e.g. voice calls, data calls, priority calls) and types
of sessions (e.g. calling sessioms, feature sessions).

s Logical resources, such as lines and trunks required
by processes.

The test execution model is divided as follows:

» The configuration model describes the current test
setup, i.e., how many simulated phones and irunk
lines are available or which exiension numbers be-
long to which phones/lines, ete. It also contains the
dial plan and the default festure assignments.

o The automated lest language model defines the vo-
cabulary of the test script language.

The linguistic model supports iwo pieces:

s Telephonese stalistics, which are frequency distribu-
tions of syntactic structures, help the natural lan-
guage processor by disallowing interpretations of
phrases and concepts that are possible in English
but not likely in telephonese,

¢ Telephonese concepts make it easier to paraphrase
KITSS" representations for user interactions.

We used CLASSIC [Brachman ef al | 1989] to repre-
sent Lhe knowledge in our domain. OLASSIC belongs to
the class of terminclogical logics (e.g. KL-ONE). It is
a frame-based description system that is used to define
structured concepis and make assertions about individu-
als. CLASSIC organizes the concepts and the individuals
into a hierarchy by classification and subsumption. Ad-
ditionally, it permits inheritance and forward-chaining
rules. CLASSIC is probably the most expressive ter-
minological logic that is still computationally tractable
|Brachman ei al., 1990]. Queries to CLASSIC are made
by semmantics not by syntac.

The siatic mode] incorporates multiple views of an ob-
ject from the various models into one (e.g., a station
might have one name in the English test case, another
in the automated test language and a third in the actual
configuration). Thus, although each reasoming module
might have a different view on the same object, CLAS-
SIC will always retrieve the same concept correctly.

3.2 Dynamic Model

This unique part of the domain model represents all dy-
namic aspects of the switch’s behavior. It basically de-
fines constraints that have to be fulfilled during testing
as well as the predicates they are defined upon.

The dynamic PBX model includes the [ollowing
pieces:

» Predicates, such as offhook, station-busy, connected,
or on-hold, define a state which currently holds
for the switeh. The different phases of a call
are described with predicates such as requesting-
connection, denied-connection, or call-waiting-for-
timeout. Each of the predicates has defined sorts
thet relate to objects in the static medel. Synonyms
{e.g., on-hold is a synonym for call-suspended) are
allowed as well,

» Stimuli can be either primitive or abstract. Stimuli
appear in the action statements of test cases.

A primitive stimulus defines an action being per-
formed by the uwser {e.g., dials-extension, goes-
offhook) or by the switch (e.g., timeout-call). The
necessary pre- and posiconditions (before and after
the stimulus) are also specified. For instance, for
a station to be able to go offhook the precondifion
is that the station is not already offhock and the
posteondition is that the station is offhook after the
stimulus®.

An abstract stimulue is not an atomic action but may
have pre- and postconditions like a primitive stimu-
lus. However, there are several primitive stimuli nec-
essary to achieve the goal of a single abstract stim-
ulus (e.g., place-call, busy-out-station, or activate-
feature). The steps necessary for an abstract stim-
ulus are defined in one or many abstract stimulus
plans, The abstract stimulus defines the conditions
that need to be troe for the goal to succeed whereas
the abstract stimulus plans describe pessible ways
of achieving such a goal.

o Observables are states that can be verified such as
receives-tone, ringing, or status-lamp-state. Observ-
ables appear in the verify statements of test cases.

Additionally, the dynamic model includes two different
types of integrity constraints:

s [nvariants are assertions that are true in all states.
These are among the most imporiant pieces of do-
main knowledge as they describe basic telephony be-
havior as well as the look & feel of the switch, The
paraphrases of a few of the invariants are as follows:

#Nate the difference between the stads of being offhook and the
action goes-offhook.

1095

“Only offhock phones receive tones” or “You only
get ringing of any kind when you are alerting” or
€5 forwarded call always alerts at the forwardee,
never at the forwarder” ar “You ean’t be be talking
to an on-hold call®,

s Rules also deseribe low-level behavior m telephony.
These are mainly state transitions in signaling be-
hawior like “A tone must stop whenever another be-
gins” or “Stop dial-tone after dialing an extension”
or "An idle phone starts to ring when the first -
coming call arrives".

Representing the dynamic model we required expres-
sive power beyond CLASSIC or terminological logics.
For example, CLASSIC is not well-suited for represent-
ing plan-like knowledge, such as sequences of actions to
achieve a goal, or to perform extensive temporal rea-
soning [Brachman et al.,, 1080]. But this is required for
the dynamic part of KITSS (see above examples). We
therefore used the WATSON Theorem Prover (see See-
tion 4.2), a linear-time first-order resclution theorem
prover with a weak temporal logic. This non-standard
Iogic has five modal operators helds, occurs, sssues, be-
gins, and ends which are sufficient to represent all tem-
poral aspecis of our domain. For example, the abstract
stimulus plan for activating a feature is represented in

temporal logic as follows.

{abstract-stimmlus-plan activate-featura-1
((:plan-goel activate-feature)
{:sorts
{(statiem =21} (feature f} (station s2)})
{:preconditions
{(holds (cnhock =1})))
(:plan-steps
{{{occurs (initiate-feature-sessiecn s1 f})
(begins (recaives-teone =1
gecond-dial-tone)))
({occurs (dials-destination s1 82))
(igzues (receives-tone s1
confirmation-tone)))
{(occurs (terminate-feature-session sl f))

i

The theorem proving is tractable due to the tight inte-
gration between knowledge representation and reasoning.
Therefare, we specifically designed the analyzer using the
WATSON Theorem Prover and targeting them for this
domain. The challenging task in building the dynamic
model was Lo understand and extract what the invari-
ants, constraints, and rules were [Zave & Jackson, 1991].
Representing them then in the temporal logic was much
easier.

1096

3.3 Domain Model Benefits

In choosing a hybrid representation, we were able to in-
crease the expressive power of our domain medel and to
increase the reasoning capabilities as well. The integra-
tiom of the hybrid pleces did produce some problems, for
example, deciding which components belonged in which
piece. However, this decision was facilitated because of
our design choice to represent all dynamic aspects of the
system in our temporal logic and to keep everything else
m CLASSIC.

There were other benefits to building a domain model.
It ensures that a standard terminology is used by all of
the test case authors. The domain model also simplifies
the maintenance of test seripls. In automated testing
environments without a demain model, the knowledge is
scattered throughout thousands of scripts, With the do-
main model a change in the functioning of the software
is made in only one place which makes it possible to
cemtralize knowledge and therefore centralize the main-
tenance effort. Additionally, the domain model provides
the knowledge that reduces and simplifies the tasks of
the natural language processor, the analyzer, and the
translator modules.

4 Reasoning Modules

4.1 Natural Language Processor

The existing testing methodology used English as the
language for test cases (see Figure 1) which is also
KITS5" input. Hecent research in statistical parsing
approaches [Jones & Eisner, 1891] provided some an-
swers Lo the diffienlty of natural language parsing in re-
stricted domains such as testing languages. In the KITSS
project, the parser uses probabilities (based on training
given by telephonese examples) to prune the number of
choices in syntactic and semantic structures. Unlikely
structures can be ignored or eliminated, which helps to
speed up the processing. For instance, consider the syn-
tax of the following two sentences®:

Flace a call to stafion troops in Saudi Arabia.
Place a call to station “[625" in two minufes.

Both examples are correct English sentences. Al
though the second sentence on the surface matches in
many parts the first one, their structure is very different.
In ihe first sentence “station” is a verb, in the second &
noun; “to” is an infinitive and a preposition respectively.
“In Saudi Arabia” refers to a location whereas "in two
minutes” refers to time. It is hard to come up with cor-
rect parses for both but by resiricting curselves o the

*This example was given by Mark Jones,

telephonese sublanguage this is somewhat easier. In tele-
phonese, the struclure of the first sentenee is statistically
unlikely and can be ignored while the second sentence is
a common phrase.

The use of statistical likelihaods to limit search during
natural language processing was used not only during
parsing but alse when assigning meaning to sentences,
determining the scope of quantifiers, and resolving ref-
erences. When choices could not be made statistically,
the natural language processor could query the domain
maodel, the analyzer, or the human user for disambigua-
tion. The final output of the natural language proces-
sor are logical represeniations of the English sentences,
which are passed to the analyzer,

4.2 Completeness & Interaction
Analyzer

The completeness and interaction analyzer represents
one of the most ambitions aspects of KITSS. It is based
on experience with the WATSON research prototype
[Kelly & Nonnenmann, 1991]. Originally, WATSON was
designed as an automatic programming system to gen-
erate executable specifications from episodic descriptions
in the telephone switching software domain. This was an
extremely ambitions goal and could only be realized in
a very limited profotype. Te be able to scale up to real-
world use, the focus has been shifted to merely check-
ing and augmenting given tests and maybe generating
related new ones rather than generating the full specifi-
cation,

Based on the natural language processor output, the
analyzer groups the input logical forms into several
episodes. Each episode defines a stimulus-response-cyele
of the switch, which roughly corresponds to the ac.
tion/verify statements in the original test case. These
episodes are the input for the following analysis phases.
Each episode is represented as a logical rule, which is
checked against the dynamic model. The analyzer uses
first-order resolution theorem proving in a temporal logic
as its inference mechanism, the same as WATSON.

The analysis consists of several phases that are specifi-
cally targeted for this domain and have to be re-targeted
for any different application. All phases use the dynamic
model extensively. The purpose of each phase is to yield
a more detailed understanding of the original test case.
The following are the current analysis phases:

¢ The structure of a test case is analyzed to recog-
nize or attribute purpose to pieces of the test case.
There are four major pieces that might be found:
administration of the switch, feature activation or
deactivation, feature behavior, and regression test-
mg.

s The test case is searched for connections among con-
cepts, e.g., ithere might be relations between system
administzation concepts and system signaling that
need to be understood.

e Hountine omissions are inserted ints the test case
Testers often reduce (purposefully or not) test se-
quences to their essential aspects. However, these
omissions might lead to errors during testing and

therefore need to be added.

Based on the abstract plans in the dynamic model,
we can enumerate poesible specializations, which
yield new test cases from the input example.

Plausible generalizations are found for objects and
actions as a way to absiract tests into classes of
tests,

During the analysis phases, the user might interact
with the system. We try to expleit the user’s ease af
verifying or falsifying examples given by the analyzer.
At the same time, the initiative of generating the details
of o test lies with the system. For example, some test
case might viclate the look & feel of the system, ie.,
there is a conflict with an invariant. However, the user
might want this behavior intentionally which will lead to
a change in the look & feel itsell

The final cutput of the analyzer is a corrected and
augmented test case in temporal logic. As an example of
the analyzer’s representation after analysis, the follow-
ing shows the logical forms for the first few episodes.in
Figure 1. Notice that the test case is expanded since the
analyzer applied abstract stimuolus plans,

{{DCCURS {GOES-DFFHOQK E))

{EEGINS (RECEIVES-TONE B NORMAL-DIAL~TONE))}
((DCCURS (DIALS-CODE B

{ACTIVATE-ACCESS-CODE CF)))

(BEGINS (RECEIVES-TONE B SECOND-DIAL-TONE)))
((0CCURS (DIALS-EXTENSION B C))

{ISSUES (RECEIVES-TONE B CONFIRMATION-TONE))
{BEGINS (STATUS-LAMP-STATE B (BUTTON CF)

STEADY) })

This representation is passed to the translator.

4.3 Translator

To make use of the analyzer's formal representation,
the translator needs to convert the test case info am
executable test language. This language exercises the
switch's capabilities by driving test equipment with the
goal of finding software failures. One goal of the KITSS
project was to extend the life of test cases so that they

1097

could be wsed as many times as possible. To agcomplish
this, it was decided to make the translator support two
types of test case independence.

First, a test case must be test machine independent.
Each PBX that we run our tests on has a different con-
figuration, KITSS permits a test author o write a test
case without knowing which particular machine it will be
run on and assurming unlimited resources. The translator
loads the configuration setup of a particular switeh into
the tesi execution mnodel It uses this to make the test
ease conerete with respect o equipment used, system ad-
ministration performed, and permissions granted. Thus,
if the functional description of a test case 1s identical in
two distinct environments, then the logical representa-
tion produced by the earlier modules of KITSS should
also be identical.

Second, a test case must be independent of the auto-
mated test language. KITSS gemerates test cases in an
in-house test language. The translaior’s code is small
because much of the translation information is static
and can be represented in CLASSIC. If & new test lan-
gnage replaces the current one then the translator can
be readily replaced without loss of test cases, with min-
imal changes to the KITSS code, and without a rewrite
of most of the domain model.

5 Status

The KITSS project is still o prototype system that has
not been deployed for general use om the DEFINITY
project. It was built by a team of researchers and de-
velopers. Currently, it fully translates 3B test cases
(417 sentences) into automated test scripts. While this
is a small number, these test cases cover a representa-
tive range of the core features. Additionally, each test
ease yields multiple test scripts after conversion through
KITSS. The domain model consisés of over 300 concepts,
over 1,500 individuals, and more than B0 temporal con-
straints. The domain medel will grow somewhat with
the number of test cases covered, however, so far the
growth has been less than linear for each feature added.

All of the modules that were described in this paper
have been implemented but all need further enhance-
ments. System execution speed doesn’t seem to be a
bottleneck at this point in time. CLASSIC's fast classi-
fication algorithm's complexity is less than linear in the
size of the domain model. Even the analyzer's theorem
prover, which is computationally the mest complex part
of KITSS, is currently not a bottleneck due to continued
specializalion of its inference capability. However, it is
not clear how long such optimizations ean avoid potential
intractahility.

The current schedule is to expand KITSS to cover a
few hundred test cases. To achieve this, we will shift our

10938

strategy towards more user interaction. The version of
KITSS currently under development will intensely ques-
tion the user to explain unclear passages of test cases. We
will then re-target the reasoning capabilities of KITSS
to cover those areas. This rapid-prototyping approach is
only feasible since we have already developed a robust
core system. Although secaling-up from our prototype to
a real-world system remains a hard task, KITSS demon-
strates that our knowledge-based approach chosen for
functional software testing is feasible.

6 Conclusion

As we have shown, testing is perhaps one of the most
expensive and time-consuming steps in product design,
development, and maintenance. KITSS uses some novel
approaches to achieving several desirable goals. Features
will continue to be specified in English. To support this
we have incorporated a statistical parser that is linked to
the domain model as well as to the analyzer. Addition-
ally, KITSS will interactively give the user fesdback on
the test cases written and will convert them to a formal
representation. To achieve this, we needed to angment
the domain model represented in a terminological logic
with a dynamic model written in a temporal logic. The
temporal logic inference mechanism is customized for the
domain. Tests will continue to be specified independent
of the test eguipment and test environment and the user
will not have to provide unneeessery details,

Such a lesting system as demonstrated in KITSS will
ensire project-wide consistent use of terminology and
will allow simple, informal tests to be expanded to for-
mal and complete test scripts. The result iz a better
testing process with more test automation and reduced
mainténance cost.

Acknowledgments

Many thanks go to Van Kelly, Mark Jones, and Bob Hall
who also contributed major parts of the KITSS system.
Additicnally, we would like to thank Ron Brachman for
his support throughout the project,

References

[Balser et al, 1977] Balzer R., Goldman N., and Wile
D.: Informality in program specifications. In FProcesd-
ings of the 5th IJCAI Cambridge, MA, 1977,

[Barstow, 1985] Barstow, D.R.: Domain-specific auto-
matic programming. JEEE Transactions on Software
PEngineering, November 1985.

(Brachman et al, 1989] Brachman, R.J., Borgida, A.,
McGuinness, D.L., and Alperin Resnick, L.: The

CLASSIC knowledge representation system, or, KL-
ONE: The next generation. In preprints of Workshop on
Formal Aspects of Semandic Networks, Santa Catalina
Island, CA, 1088,

[Brachman et al, 19%0] Brachman, R.J., McGuinness,
D.L., Patel-Schneider, P.F., Alperin Resnick, L., and
Borgida, A.: Living with CLASSIC: When and how
to use a KL-ONE-Lke language. In Formal Aspects of
Semantic Networks, J. Sowa, Ed., Morgan Kanfmann,
1990, '

[Brodie et al, 1984] Brodie, M.L., Mylopoules, J., and
Schmidt, J.W.. On conceptual modeling: Perspectives
From Arlificial Intellipence. Springer Verlag, New York,
MY, 1084,

Brooks, 1887] Brocks, F.P.: No silver]I;m]let..‘ Essence
and accidents of software engineering. Compuler, Vol,
20, No. 4, April 1987,

[Howden, 1985) Howden, W.E.: The theory and practice
of functional testing. /EEE Software, September 1985.

[Jomes & Eisner, 1991] Jomes, M.A., and Eisner J.: A

probabilistic chart-parsing algorithm for contexi-free
grammars. ATET Bell Laboratories Technical Report,
1981,

[Kelly & Nonnenmann, 1991] Kelly, V.E., and Nonnen-
mann, U.: Reducing the complexity of formal specifi-
cation acquisition. In Awtomating Software Design, M.
Lowry and R. MeCartney, eds., MIT Press, 1991.

[McCartney, 1991] McCartney, R.: Knowledge based
software engincering: Where we are and where we arc
going. In Aulomating Software Design, M. Lowry and
R. McCartney, eds., MIT Press, 1991,

[Myers, 1976] Myers, G.J.: Seftware Reliability. John
Wiley & Sons, New York, NY, 1976.

[Myers, 1979) Myers, G.J.: The Art of Software Testing.
John Wiley & Sons, Inc. New York, NY, 1979,

[Nonnenmann & Eddy, 1991] Nonnenmann, U., and
Eddy J.K.: KITSS - Toward software design and test.
ing integration. In Auwtomating Software Design: In-
teractive Design - Workshop Notes from the 9th AAAL
L. Johnson, ed., USC/ISI Technical Report RS-91-287,
1991.

[Yonegaki, 1989] Yonezaki, N.: Natural langnage inter-
face for requirements specificition. In Japanese Per-
spectives In Software Engineering, Y. Matsumoto and
Y. Ohno, eds., Addison-Wesley, 1985,

[Zave & Jackson, 1991] Zave, P, and Jackson, M.: Tech-
niques for partial specification and specification of
swilching systems. In Proceedings of the VDM'91 Sym-
posium, October 1991.

