PROCEEDINGS OF THE INTERNATIOMNAL CONFERENCE

OM FIFTH GENERATION COMPUTER SYSTEMS 1957,
edived by 1COT.) 00T, 1992

1084

Automatic Generation of a Domain Specific Inference
Program for Building a Knowledge Processing System

Takayasu Kasahara*, Naoyuki Yamada®, Yasuhiro Kobayashi®,
Katsuyuki Yoshino*®*, Kikuo Yoshimura®®
*Energy Research Laboratory, Hitachi, Lid., 1168 Moriyama-che, Hitachi-shi
Ibaraki-ken, Japan 316 Tel. (0294) 53-3111
**Sofiware Development Center, Hitachi, Ltd., 549-6, Shinano-cho, Totsuka-ku
Yokohama-shi Japan 244 Tel. (045) 821-4111

Absiract

We have proposed and developed an expert system tool
ASPROGEN (Automatic § carch Program Generator) having a
built-in the automatic peneration function of & domain specific
inference program. This function was hused on search-based
program specification and an abstract data type of search.
ASPROGEN has interfaces for domain knowledge using an
ohject-oriented approach and constraints which represcot
contrel knowledge, It is described by using domain knowledge
and it can cover a detailed problem solving strategy

We applied ASPROGEN to produce three kinds of
scheduling systems. These generated systems have equivalent
performance in comparison with knowledge processing
systems implemented by the convestional tool. Further, a two-
thirds reduction of the program step mombers required as
programmers’ input was realized.

I. Introduction

Current expert system tools based on production rule
andfor frame representation provide an environment to generate
expert systems through formalizing and describing problems
by production mules. They are powerful tools, asd many
practical expert systems have been produced by using them.
Industrial field applications of expert system tools have
sometimes met problems, the most important one being that
tools based on the production system only prepare a rale based
language, pot a problem solving strategy. So, mapping the
problem solving strategy to the production rules is difheult for
users who are not knowledge engineers.

Domain shells™, tools based on generic task method™,
half weak method™, and SOAR™ have been developed to
overcome this difficulty. Domain shells are expert system tools
which are restricted to the specified problem regions soch as
diagnosis, scheduling, and design. They have spread sheet
type user interfaces and problem-specific inference programs,
But, actual industrial problems include particuler conditions,
constraints, or problem solving knowledge, and domain shells
do not have enough flexibilities to cover all of them. This leads
1o & conflict between tool flexibility and sasy use, In general,
the too] becomes more specific to some regions, so it becomes
easy to use it, but loses fexibility.

The generic task method and balf weak method also
have this conflict. The generc task method classifies problem
solving methods into several types which are called genenc
tazks, and prepares generic task tools to provide them. Tool
users select an appropriate generic task and supply domain
knowledge to develop the knowledge processing system. The
half weak method regards problem solving as a search and
provides pre-defined search modules. Tool users select an
appropriate search module apd add domain knowledge to the
module, However, these methods, based on classification, do
not necessarily give directions for systematic preparation of
building blocks of knowledge processing systems. So, tool
ugers must reformulate the problem definition aecording to the
prepared building blocks.

SOAR has mere flexibility for defining the problem
solving strategy. [t can generate a search program by defining
several search control rules. But, lack of functions to relate the
search program and domain knowledge restricts the
applicability of SDAR to toy problems.

Then, we developed ASPROGEN(Automatic §earch
Program Generator). ASPROGEN is an expert system tool
having & boilt-in sutomatic geseration function of a domain
specific inference program was built. To specify the problem to
be solved, it has interfaces for describing the problem solving
strategy &5 a search strategy, domain knowledge in an object-
oriented way, and the detsiled problem solving strategy as
constraints among the attribute values of the domain objects.

2. Overview of ASPROGEN
2.1 Buliding expert systems based on search

ASPROGEN has no embedded inference mechapism.
Instead, as shown in Figl, ils parts include the search
program and sesrch program geoeraling mechanism which
produces inference programs according to user sp-amﬁnuu.n.-a
of the search progmam, domain knowledge, and detailed
constraints,

The reason why we use search as the infercnce
program specification is that it covers almost every inference
mechanism required for expert systems, and it is simple. Bul, 4
gearch is not easy to describe por is it easy to prepare controls
tightly direcied to a particular problem by the search strategy.

To deseribe detailed control stratesies, ASPROGEN includes
an imterface for domain knowledge. Using the domain
knowledge, the detailed controls or problem solving strategy
can be described as constraints between attribute values of
domain knowledge. The detailed control programs are
complicated in the case of & scheduling system or CAD
systems, and it is important to support their genemation. In
general, domain specific inference programs which have
functionsl opemtors have complicated conpstraints.

ASFROGEN combines these constraints to global search
strategies, and generates domain specific inference programs.

ASPROGEN users develop expert systems by following this
procedure:

Wroraindge predeibag ok by

Fig. 1 Ovendew of ASPROGEN

(1)Users specify a problem solving stmalegy from the
viewpoint of a search strategy.

{2)Users input the search strategy by selecting the classification
items of the search classification tree which the tool
prepares. This step is executed with the help of the ool
nterface.)

(3)Users input domain knowledge and constraints with the
help of the tool interface,

(4IASPROGEN generates a domain specific inference program
and data straeturss for domain knowledge,

Although (1} is an interesting problem, we limit the

present discussion to (2)-(4).

2.2 Specification of problem solving sirategy

To specify the problem solving strategy as 2 search, we
define & classification tree for the search stratepy and a template
of the search program.

Figure 2 shows the classification tree. It comes from
analyzing search trees wsed in variows kinds of problem
solving. A search lree comsists of nodes and operators. We
retrieve the classification items from the charmcteristics of the
nodes and operators, The first classification item comes from
the characteristics of the operators. There are two operator
types, One 15 4 functional operator which creates new nodes
from parent nodes and adds them to the search tree. In the
scheduling search program, a functional operator is used. The
other type is a link operstor. The link cperator is used in the
diagnosis search program which selects svitable diagnosis
nodes for the observed state.

The second classification ifem comes from the
characteristics of the nodes. They are evaluation functions to

1085

select nodes in the search procedures, pruning functons,
establishment conditions, and so on. The evalustion functions
define a global search strategy, for example one which prefers
the deepest nodes of the search tree corresponds to the depth
first search. The characteristics of the search nodes are
described by specification values of the nodes in the search tres
which are depth, breadth, parent relations, sibling relations,
and node attributes values, Their values are retrieved from the
structure of the search tree, and we can prepare these
specification values or functions to calculate them. On the other
hand, pode atnbute values cannot be retrieved from the
structure of the search tree, and it is difficult o cover all
attribute values of the nodes 1o specify the problem solving

strategy,

Global search information |
Unkn:.]-\-m Knlnm
Heurietic search Knowledge-base retrieval
1
1
Link Operator type funciion
| Goal type

given as conditions given as inslalce node

| Selution type

Satisfactory Upbanel

Initial node type

given as conditions given as instalnna node

™ Node evaluation function type |
niot fixed Thnd
|

[Node evaluation function parameter |
search Tree parameter domain knowledge
[
Mot prune _P{une

I Prunig function parameter |
search ree parameter

pruning

Fig. 2 Search classification tree

To mitigate this difficulty, we mnk the aitribute valuss
from the viewpoint of their relation to the search tres operators.
The attributes which search for the operator directly are called
first-order attributes, For example, in the scheduling system
starting time and ending time of each job are first onder, and the
resource constraints are not, if search operalors are functions
which adjust job scheduling. To describe programs in detail,
not only first-order attributes but also multi-order attributes or
vaniables are required. The first-order attributes and the multi-
order attributes are domain koowledge. We do not embed
detailed domain knowledge in ASPROGEN, instead an

1086

interface 15 prepared to describe the domain knowledge and
constraints of attributes of domain knowledge and global
search strategy. By combining the global search strategy,
described as & search strategy, and domain koowledge,
ASPROGEN covers not only toy problems, but also
applications for industrial uses,

2.3 Represeniation
consrraints

ASPROGEN has an interface for describing the domain
knowledge, Domain knowledge is described by objects and
attributes, sttribute value ranges, and attnbute constraints.
There are two types of objects. One is a class ohjects which
defines atiributes, and relations berween other objects, The
other tfype is an instance object which has instantiated attribute
values.

Figure 3 shows a representation scheme of domain
knowledge for ASPROGEN. Nodes of the search tree are also
objects. Node objects are related 1o other objects. The relations
among objects are of thres hypes.

(I) Cless=instance relations: Instance objects have the same
attnbutes as class objects, and the values of the attnbutes are
inherited from the class ohjects.

{2} Attribute-value relations: The value region of the attributes
can be described by he class objects. Thus, the attribute value
region is a sel of instance objects of the class objects,

(3) Attribute-object relations: The attributes of the objects can
be deseribad by the class objects. Thus, the atifibutes of the
nodes are instance objects of the class chjects, and atiribute
values are those of the instance objects.

of domein knowledge and

—m AlDUte-object relation
e Abuté-value relation
—= Class-instance relation

Fig. 3 Scheme of knowledge reprsentation in ASPROGEN

On the basis of these definitions of domain knowledge,
ASPROGEMN wusers describe constraints. ASPROGEN
preperes a simplified language which can describe constraints
by using object names and attributes,

2.4 Generation of problem-directed inference
program
The inference progeam penerated by ASPROGEN
consists of two parts, the search program which comesponds

to the global problem solving stategy, and comstraint
satisfaction programs which correspond fo the domain
konowledge. Figure 4 shows an outline of the inference
program. The control program is embedded into ASPROGEN,
and the global search program and constraint satisfaction
programs are geaerated according to user mput. If the inference
program is completed, it behaves as follows. Using the global
search strategy, the inference program activales an operator and
generates or selects new node, Then, the constraint satisfaction
programs activate and adfust the attribute values of the objects
for every constraint. According to the result of the constraint
satisfactions, the operator is sctivaled again. This process
continges untl termination condifions are sabtisfied. The
generating process of the inference program consists of thres
steps.

{1) Generate the search program which represents a

global search strategy

ASPROGEN has & general search program which is
independent of domain and includes six search sub-functions
as shown in Fig. 5. When completed, it becomes the global
search program of Fig. 4. Constraint satisfaction programs are
activated in the sub-fanction of ‘Apply operator’. The
difference between each search stratepy is reflected in the
difference of the six element functions.

ASPROGEN prepares two reference tables and abstract
data types for search™". Parent function parentick) which
returns the parent of the node k of scarch tree ¢, and
Left_most_childic k) which returns a child node which was
first generated or selected are examples of abstract data types
for search. Here, an abstract data type of search makes up the
functions for the search program. The first reference table is a
table intended for genemation of search element functions.

Apply wunctien and
o Seld mult-order awibuin
! g wvalues by CEFs
obal search program Fenat active node by

fBeurding tunctisne

T | Yo

C3P; Conslran! sstlaction rogram X Terminnsad
Fig. 4 Dutine of tve lalerencs program

Search element functions are program parts of sub-funclions
and Fig.6 shows some. They consist of the abstract data type
of search and domain-dependent search functions. Examples
fupetions are node evaluation funetion for domain dependent
comresponding search element functions to the userspecified
problem solving strategy.

Figure 7 shows the generating process of the problem-
directed inference program. Referring to the problem solving
strategies using the reference table, the system decides the
search element function. This is done by domain dependent
search control functions such as evaluation function for node.

Fig & Ganeral search pragram

Then, the same as in the definition process, sub-functions are

{11} Chenpe_sin_1.5k)
(12} Sesrch stateie,k)

(13} Jumping(ek}
(14) Back_trucking(e,k)
(15} Tedtialie.k)

(16 Killfe k)

{17) Active_eik)
(18) Gealfe k)

(19}
Cond_pode(s_t.2.x)

(20} Cond_node_type(
n_te_te.k)
{21} Establish{cX)

defined by shstract data types of the search free.
Fanci : : o -
(3} parestick) rreturns parest of & in ssarch tree ko
(2} Leftezoze_child{e k) weturns eldest soa of ¢ in s=arch tres k.
{3} Right_sibling(c,k) irelrns pext younger beother in scarch tree k.
{(4) Labealiek) wreturns [nbel of ¢ in sesrch tree k.
(%) Root{k) imeluras rool pode of k.
(&) Clean(k) :makes ssanch tres & pull set
(7} Deepic,k) cretores depth of o in search tres k.
(%) Heighaie k) returns hedght of ¢ in search free k.
(%) Laaf{o k) :if ¢ bas no children relurns yas;
otherwise, retum oo,
Eugslicns concersing seech Wee operationsisesrch clemeont fuections)
(10) Braluabeds k) wevaluaie ¢, sod refurns evaluation valoe,

sehmnge svalustion funclion of node 1ype n_t to 5.
uif ¢ i5 a0 open mode returns: Current;
if e is & removed node retusas Finished;
oibtrwise returas Yel,
wrelums ithe node, when ¢ s established,
weluins be node, when ¢ 15 pot estublished,
fif moda ¢ s initialized sote retores yes,
atberwise returss oo,
iretidves mode ¢ from the sctive oode.
sreturms active node of search trescl k.
tif e B & goal node returns yes.
iif node ¢ satisfiss estoblish condiion of nods
type
of n_1, returms yos,
atherwise returas oo.
A0 pode ¢ amisfies esinblish conditions of node
type of no_t, refures yas, othewise retumns no.
<l ¢ is established relerns yes,
olherwisa refums ao.

Fig. & Search element functions

1087

generating process, which exewmplifies the pode evaluation
function. According to the user-input problem solving shrategy
that the depth of the tree has a high evaluation value, the tool
selects the depth function from abstract data types and
completes the node evaluation function,

Reference teble
classification
item
solution type

selectied

" walue
matiafactory -

Lopginas i depth (g, k) 4

L— 1

Evaluate (g, k)
(
raturn
vwaer_define_fune +
dapth (g, R: =

atatement

1
Fig. 8 Generation Example for search element functions

Figure 9 shows an example of a sub function
generating process, which exemplifies function (a) in Fig.5
which is named SUCCES_END(ck) here. Since the optimal
solution is requested in the problem-solving strategy, the tool
generates the checking successful termination function which
terminates the inference program only if an optimul solution is
found.

Reference table

classification
item

selected
value

atatezent

solution type

matisfactory

optimin T hetive_cio, k) ==[) B8 J—

Fuaztm-ashi g 5ol ogy

Terryiat o goeral
saaicli am

mEgpian

| Gocmsied nismace 1

Fig. 7 Gassmting tungion of program-dincind
" inleronce program

Figure & shows an example of the element function

number af GOAL_RUN

N

SUCCES_ERD {e, k)
{
tf ﬁtiva_ﬂ (c,k) == [} B& |=
BOAL_e(z, k) *= EELJ“‘J“_'
return (TROE) ;
else return (FALSE) ;)

Fig. 8 Generation Example for search sub-functions

(2) Generate the constraint satisfaction programs,
according to the user specifications in simplified
language

The object names and attribute names of the ohjects
which the tool users input are registered in the ASPROGEN as
key words for simplified language constraints deseription. We
call the language, SCRL (Simple Constraint Representation

1088

terminal symbols. The SCRL compiler accepts only the
following style sentence,

[value clause] [comparing key words] [value clanse]

A value clause consists of object name, attribute name
and object relation key words.

Table 1 lists key words and therr meamng in SCRL.
There are set operation key words, companison key words, and
object relation key words such as ‘of. Fi 10 shows an
example of a consiraint described by S in which the
number of persons required for each time span is less than the
available personnel number.

Constraint name: personnel

sum(iime_span of job}, person)
=

fime_span of avairable person

Fig. 10 Example of constraint
Table 1 Example of key words of the SCRP

Set operation keywords

~ Ainclude B: A2 B

- Ahavee: e B

« SUM(A,B): sum up attribute value of B
of all instance object of A

Co ing ke
]
'i-‘-‘li'
abject relaftion key words

- A of y: value of atrribute y of object A.

[
fos 1= <TIE_SPAK_HUM; esj]
o = e _HUL; Fra]

{- ConrEEn name: pareinne AL Comaiar

purmifima_szo ol jobi], persen b Ll sumedma_man(]-=njparen:
Hzam
*
me_iaan ol gyiralia_parsen b=

Fig. 11 Generating process of constralnt salisfaction program

ASPROGEN generates constraint satisfaction programs
from the kemnel of the constraint satisfaction programs. This
kernel of the constraint satisfaction programs comes from the
relation of attributes and their value range. The sllotting
mechanism of theattribute values is built to ASPROGEMN. The
mechanism selects values from the valve range. If constraints
are not salisfied, other values are selected. ASPROGEN

generates each constraint sabisfaction program by setting the

ohiject attribute values and their range,

Figure 1l shows an example of the constraint
satisfacfion program generating process, The constraint is like
in Fig, 10, a personnel constraint. First, the seatence is pursed
into the C language by the SCRL compiler (code C in Fig. 11).
And attnbute value range and code C zre set to the allotting
function which ASPROGEN prepares, and the copstraint
satisfaction program is completed.

{3) Synthesize oll constraint satisfaction programs
and the search program

Finally, ASPROGEN synthesizes all the constraint
satisfaction programs and the search programs, and generates
the domain specific inference program. The key point of the
synthesiz is to ensure consistency of the attribute values of the
objects which the ool wsers define. To make the argument
elear, we define the identity of the search node and scope of
the attribute values.
Identity of the search node

The identity of the node is defined by equality of the
value set of the first-order attnibutes {ef. Section 2.2), Search
tree operators operate them directly. So, it is possible that the
inference programs generate different results, though the
problem solving strategies are the same,
Scope of the attribute values

We define scope of the attribute values in the search tree
node. The atimbuie value of the objects should have a
consistency ia the tree node, and the change of the attribute
values in the process of the constraint satisfaction must
propagate to other constraints.

T

Sot first-order aribute values

—_—
Fick constraints which restricts
first-order afiribute values

K3

Allot values according to
consraint

|e consraint satisfed?

Mes

& every combinatiar
red?

A

Fig. 12 Simplified procedure for constraint satistacion

By search operater
F1=10
Consfraints
C1, w+y +1 =30 T
+f2 <158 niial s&
Go. Jom e R(x}=|5,10,15,20}
Regior of values Riy)=14.8}
X € [5.10,15,20 R{Z}=13.5]
y £ [48] 1
Z £ |36 By C1
x,y,2: muli-erder atributes Rix)=[10,15,20]
{1,f2: first-order atributes Rly)=[4.8,16]
Ris): suitable value set for a. RZ)=|3.6§
ale
By C2
A{=}={10,15,20]
Riy}={4l
R{Zi=i3)
By C3
R{x)=ip
Riy)=[4]
R{Z)=(3

Fig. 13 Example of filtering process

I-‘Egme 12 shows a simp]iﬁud mechanism to assure
consistencies of the attribute values, At first, using the search
tree operator, first-order attribute values are instantiated. In the
next step, atiributes which are constrained by the first-order
attributes are instaptiated by the allolting mechanism of the
attributes. This process continues to survey all constraints. If
the set of attribute values is found, then the first-order attribute
get i sutable, and 1f not so, the node s unsuitable. But, this
simple algorithm has a fatal defect, i.e. ineffectiveness of the
allotting process, If global consistency among the constraints
does not exist, the algorithm searches for every combination of
the attributes until no solution is found. -

To avoid this ineffectiveness ASPROGEN deals with
attributes as a sel. In the first stage, using the search tree
operator, first-order attbute values are instantiated. Then the
available value set of molti-order atiributes are filtered by the
constramnts, Figure 13 shows a simple example of the filtenng
process, At first the region of the attributes value set is a
candidate for solution. Fillenng by the constraints, inconsistant
valoes are retrieved from the camdidate set, The process
continues until no retrieval value existsor no suitable value
exisls for some attnbutes.

4. Example and Result

Using ASPROGEN, we built three kinds of scheduling
systems. They were & maintenance scheduling system
{(Problem A), construction scheduling system (Problem B),
and jobshep scheduling system (Problem C).

Problem A is & scheduling system for maintenance
scheduling of a nuclear power plant™. The gencrated program
produces a schedule under constraints of maintenance
personnel] limitations and interferences between tasks, Problem

10g%

B is a plant construction scheduling program. The generated
program produces a schedule under previous relations between
tasks and personnel limitations. Problem C is a jobshop
scheduling system. The generated program produces =

schedule under coostrints of resource limitations and
appoimnted date of delivery.
Tuble 3 Test problems
Charscleristics| Evalualinn . Wariety of
. af solutiog fuaction Coastealate resorces
Mainieasnce . - sk
scheduling || PO interference z
Construclion . warking
scheduling | "eNefactory pime |- tesk !
execution
labshop —— arter
sche salisfaclacy 3

The problems are shown in Table 2. Table 3 summaries the
problem solving strategy for each scheduling problem. These
problems differ regarding solution type and resource numbers.

Figure 14 shows the domain model of each problem.
They are the basis of ASPROGEN input. The framework of
these problems is the same. This means that global search
strategies are the same. First-order atinbute values are the
starting and ending times of each jobs. Preference of the node
is total scheduling time. There are interference constraints that
some jobs cannot be executed simultapecusly. Domain
knowledge differs. For example, problem A and problem B
have personnel limitations, and problem C has machine
constraints.

Tabkc 3 Specification of Lhe ien problem-s tesk specific koowledas

Deflnition of problem solving method

ftemas

maintenooce | comsirsciion jobshop
schaduling schediling sobeduling
MNumber of gasl | all 1
[mitinl oumber 1 1 1
Gicbal seanch
information nLome nane nome
Trpe of aperalar fumction of adjustinp schedule

Type of initial slate stte of representing woek schedule

Tvpe of gosl slate coodilions that salisfies all constrainis

Solwion type aptimst eatiefhctary salisfnclory
Estabiish conditions
aboul bee configuration nane nome —
Evaluntion fuaction fixed fixed fEned

Figure 15 shows program step numbers which
programmers mput. Companng the infersnce programs
implemented by using a conventional tool™, equivalent
performance is realized with two-thirds reduction in number of
program steps required as programmer input. Of course, the
reduction rate depends on the applications, for example,
a diagnosis system has more domain knowledge, snd the
reduction rate may be smaller than for a scheduling system.
But, overall some reduction of programmers load will result by
the tool.

1090

(1) Prabiem A

{2) Problem B

Fig.14 Domain model of the problems

[: asprocGen
: Convengonal tool based on
. preduciion sysiem
PR 11} S - -
=
E i
é waek | I Inference program
E.g ' i
gE LTl o7 . 1; :. Froblem solving strategy
- a
gg gE ’f'% 7 ITask imelementation
-1 gl ‘é _.4 | RN
Freblem Problem Problerm
A] c

Froblem A 1 Mainiznance schaduling
Problem B 1 Censtrustion scheduling
Problem C i Jobshop schedvling

Fig.15 Program step numbers which programmers input

4. Conclusions

We have proposed and developed an expert system tool
ASPROGEN{Automalic 8 earch Program Generator) in
which the automatic generation furction of a domain specific
inference program was built in. This function was based on
search-based program specification and an abstract data type of
search. ASPROGEN has interfaces for domain knowledge
uzing an object-orented approach and constraints which
represent control knowledge. It is descnibed by wsing domain

knowledge and it can cover & detailed problem solving strategy

We applied ASPROGEN to produce thres kinds of
scheduling systems. These generated systems have eguivalent
performance in comparison with knowledge processing
systems implemented by the conventional tool, and two-thirds
reduction of the program step numbers required a5 programmer
input was realized by ASPROGEN. !

We have applied ASPROGEN oaly to scheduling
systems, we are now going to check its applicability 1o CAD
systems and disgnosis systems.

References

[1] K. Okuda et al: Model Based Process Monitoring and
Diagnosis, Proc. of IEEE Pacthic Rim International
Conference on Artificial Intelligence'90,pp.134-139,
Nagoya, Japan (1990).

[2] B. Chandrasekaran: Towards Functional Architecture for
Intelligence Base on Generic Information Processing
Tasks, Invited Talk of DCAI-87(1987).

[3] T. McDermott: Using Problem-Solving Methods to Impose
Structure on Knowledge, Proc. of IEEE International
Workshop on Artificial Intelligence for Industrial
Applications, pp.7-11 Hitachi, Japan(1988).

[4] J.Laird, et al.: Universal Subgoaling and Chunking, Klur
Academic Publishess(1987).

[5] E. W. Dijakstra et al. : Structured Programming, Academic
Press, London(1579).

[6] A.V. Aho, et al.: Data Structure and Algorithms, Addison-
Wesley Publishing Company, Inc., Reading Mass.(1983).

[7] T.Kasahara, et al.: Maintenance Work Scheduling Aid for
Muclear Power Plants, Proc. of IEEE [nternational
Workshop on Artificial Intelligence for Industsial
Applications, pp.161-166 Hitachi, Japan{198&8).

i8] 5. Tano, et al: Eureka-l A Programming Tool for

Knowledge-Based Real Time Control Systems,
International Workshep on Adificial Intelligence for
Industrial ~ Applications, pp.370-378, Hitachi,
Japan(1988).

