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Abstract

This paper shows, by presenting a number of Ma-
chine Learning (ML) applications, that the exist-
ing ML techniques can be effectively applied in
knowledge acquisition for expert systems, thereby
alleviating the known knowledge acquisition bot-
tleneck. Analysis in domains of practical interest
indicates that the performance accuracy of knowl-
edge induced through learning from examples com-
pares very favourably with the accuracy of best hu-
man experts. Also, in addition to accuracy, there
are encouraging examples regarding the clarity and
meaningfulness of induced knowledge. This points
towards automated knowledge synthesis, although
much further research is needed in this direction.
The state of the art of some approaches to Machine
Learning is assessed relative to their practical ap-
plicability and the characteristics of a problem do-
main.

1 Introduction

Machine Learning is one of the most active areas of
Artificial Intelligence. In the view of the technical
results of this area, and the well known knowledge
acquisition bottleneck in expert systems, sometimes
known as the Feigenbaum bottleneck, it is surpriz-
ing that Machine Learning has not had a stronger
impact on the practice of knowledge acquisition for
expert systems. Even some known authorities on
expert systems occasionally express a reserved view
regarding antematic knowledge acquisition through
machine learning. For example, Chandrasekaran
(1991) in a recent discussion posed the question: “It

is often proposed that a way to avoid teasing exper-
tise from experts is to automatically learn from ex-
amples. Have you found this a useful strategy?” The
answer from a leading practitioner from the com-
mercial side of expert systems technology was: “...
1 have yet to see a situation where that is an effective
way to go forward, especially when you re starting
with somebody who knows something, .

The practice of Al applications in some labo-
ratories and companies shows, however, thal this
expresses an overly pessimistic view. This paper
presents examples of ML applications in which ez-
isting techniques were effectively applied.

The paper does not aspire to be in any way a com-
plete survey of the state-of-the-art ML techniques
and their applications. However, the example appli-
cations and programs discussed are generally illus-
trative of the practically oriented ML research done
at many Al laboratories.

An early demonstration of the usefulness of Ma-
chine Learning from examples in knowledge acqui-
gition was induction-assisted knowledge base con-
struction for diagnosing soybean diseases (Chilausky
and Michalski 1976; Michalski and Chilausky 1980).
A comparison between a manually constructed
knowledge base and one constructed with the assis-
tance of an inductive learning program showed the
advantages of the latter approach.

Michie (1989) describes another early interesting
experience concerning the construction of a small ex-
pert system to decide whether a Space Shuttle pilot
should lend manually or automatically. The deci-
sion depends on the current information about the
stability, altitude and velocity estimates of the vehi-
cle etc. This project was an early demonstration of
the experts’ difficulty in explicitly formulating deci-
sion rules although all the relevant information was
in their heads. Experience shows that experts’ dif-
ficulty of this kind is a rather typical phenomenocn.
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Michie (1989) writes:

“Barly in 1984, to address a NASA requirement,
the autolander’s chief designer, Mr Roger Burke,
with engineering colleagues, atiempted to construct
a computer program to map the real-time values of
monitored variables to the alternative decisions use-
aufo and noaufo. Such a program running on an
on-board computer was needed to display continu-
ally updated advice to the pilot. After some months
of (noninductive) programming they concluded that
further effort would not be rewarding. The trouble
was later shown to have stemmed not from any in-
trinsic difficulty of the decision task but from the
disability from which every expert suffers in articu-
lating what he or she knows, whether about plant
pathology, about medical diagnesis, about process
control, about how to play lightening chess or about
the movements of the stockmarket,

Mr Burke and his colleagues then atiended a
course in inductive programing given by Radian Cor-
poration in Austin, Texas, based on the commer-
cial induction software RuleMaster (Michie et. al.
1984). Relieved from the struggle to read the needed
rules directly from inside their own heads, they were
able [ ... } to construct the solution .."

Althongh a not very sophisticated tool was ap-
plied to a not very difficult problem, the NASA ex-
perience is very instructive. It illustrates the phe-
nomenon concerning the difficulty of eliciting ex-
plicit rules about a domain even if (1) there are
experts that can solve concrete problems in the do-
main quite well, and (2) there is nothing inhegently
difficult about the domain. Even so, extracting ex-
plicit rules from the user turns out te be difficult.
When the knowledge elicitation process is aided by
a learning tool, the process suddenly appears triv-
ial. Finally, when the actual simple looking solu-
tion becomes obvious, there is typically a somewhat
embarassing impression that “clearly, the problem
should have been possible to solve without the nse
of machine learning”. However, experience confirms
that often only when & machine learning tool is even-
tually applied, the problem solution emerges as ob-
vious,

Another early and similar example of this phe-
nomenon is W. Leech’s (1986) application of ML to
the synthesis of control rules for process control at a
Westinghouse nuclear fuel processing plant. Control
rules synthesised from examples using another early
ML tool ExpertEase improved the vield drammat-
ically. When analysing the project that led to this
innovation, the ecompany officially confirmed that

the discovery of the new control rules only oceurred
when ML was used and the discovery would have
been highly unlikely without it.

A review (Urbanéif, Kononenko and Krifman
1991) of Al applications done by my laboratory in
Ljubljana also eontains many applications with sim-
ilar scenario. Among over sixty Al applications in-
cluded in the review, almest half of them critically
rely on the use of ML techniques. One more or
less randomly chosen example among these appli-
cations, illustrating the same point as the NASA
and Westinghouse experience, is from the Jesenice
Steel Mill, Slovenia. Their problem was the con-
irol of the quality of the rolling emulsion for the
Sendzimir rolling mill. The quality of rolling crit-
ically depends on the properties of emulsion. An
expert therefore daily measured various parameters
of emulsion in the rolling mill {concentration of iron,
ashes, presence of bacteria, ete.) and decided on the
appropriate action (e.g. change emulsion, add anti-
bacteria oil, no action, ete.). When the expert was
expected to leave the company they attempted to
construct an expert system, extracting his decision
knowledge from him in the dialogue fashion. Only
when after half a year there was no clear progress,
they were prepared to apply a ML tool [Assistant
Professional in this case; Cestnik et al. 1987) us-
ing example decisions from the expert’s praclice as
learning examples. The resulting decision tree, im-
plemented as an expert system, is now used regularly
and completely substitutes the decisions that were
previously entirely made by the expert.

The most practically successful form of learning
has been atiribute-based learning exemplified by the
TDIDT approach (top-down induction of decision
trees, e.g. Quinlan 1986). The next section presents
results of applications of attribute-based learning in
various domains of medical diagnosis and prognosis.
These results are interesting also in that they en-
able a quantitative comparison of the performance
of human experts and ML-based diagnostic systems.
Although very effective in many domains of practical
interest, attribute-based learning has some clear lim-
itations, pointed out in Section 3. These limitations
are being overcome by the development of another
generation of learning systems, implementing rela-
tional learning, such as ILP (Inductive Logic Pro-
gramming, Muggleton 1991). Section 4 presents an
example application where the ability of relational
learning is essential. ILP, although less mature than
attribute-based learning, shows great potentials in
application problems that are hard to tackle with
attribute-based learning. Section 5 discusses the fu-



ture of ML with respect to knowledge synthesis.

2 Applications in medical do-
mains

Along with the development of various learning
methods in the Ljubljana Al Laboratories, these
methods were applied to a number of medical diag-
nosis/ prognosis problems. These applications also
served as a source of useful new ideas for further
improvements of the learning methods. Some of
our medical data (in particular the diagnosis in lym-
phography, location of primary tumer, and progno-
sis in breast cancer) were made available to other
researchers and were used by many for experimen-
tation and direct comparison of various learning al-
gorithms.

This seclion presents some results obtained in
Ljubljana with various learning systems in several
medical domains. Most of this work in medical ap-
plications was done with the Assistant system al-
though other programs were also used, including
GINESYS (Gams 1988) and LogArt (Cestnik and
Bratko 1988). Assistant belongs to the TDIDT fam-
ily of learning programs (top down induction of de-
cision trees, Quinlan 1986). Assistant is a successor
of Quinlan’s D3 (Quinlan 1979} with a number of
addidional mechanisms. Early experiments with a
version of ID3 in learning of diagnostic rules for lym-
phatic cancers (Bratko and Mulec 1979) provided
encouragement that led ns to further exloration and
substantial refinements of this approach that were
implemented in Assistant. The new mechanisms,
motivated and discovered through experiments in
medical domains, include: automatic selection of
good examples for learning, handling partially spec-
ified objects (missing data), forward pruning of de-
cision trees, post pruning (Niblett and Bratko 1986,
Cestnik and Bratko 1991), binarisation of attributes
(Kononenko et. al. 1985; Bratko and Konomenko
1987). It should be noted that these techniques
among some other important improvements to the
basic TDIDT learning were contributed or indepen-
dently discovered by other researchers, for exam-
ple in the C4 program (Quinlan et al. 1989) and
the CART system (Breiman et al. 1984). Mingers
(1989a; 1989b) reviews various related techniques
and makes an attempt at their comparison.

TDIDT programs belong to atiribute-based learn-
ing. They accept learning examples in the form of
attribute-value vectors. Similarly, both GINESYS
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and LogArt are attribute-based learning programs.
GINESYS generates il-then rules. The innovation
of GINESYS was confirmation rules that accom-
pany the *main” rule and enable the system to ex-
ploit redundancy in the attribute-value data. Re-
dundancy is in principle useful in noisy domains,
such as medicine, as a means for filtering out errors.
The idea of exploiting redundancy (rule bases with
redundancy) was later accepted as generally useful
in learning in noisy domains, but GINESYS (Gams
1989) was probably the first to build explicitly on
this principle in Machine Learning.

Unlike most other systems, LogArt (Cestnik and
Bratko 1988) generates elimination rules. The rules
are ordered according to their stafistical credibil-
ity. In diagnosis, rules are applied in this order to
eliminate all but one of the diagnostic possibilities.
When this is not possible and there are more than
one residual diagnostic possibilities, the Bayes clas-
sifier is employed as a tie-breaker. The credibility of
induced rules is measured simply as the mumber of
confirming observations in the learning data. These
rules are extremely simple and thus also useful for
straightforward explanation of the diagnostic deci-
sion. Despite this almest unbelievable simplicity,
LogArt compares extremely well with other learning
systems in respect of diagnostic accuracy. The key
to LogArt's performance lies in high number of sim-
ple elimination rules for each application which, sim-
ilar to GINESYS, facilitates the use of redundancy.
This makes LogArt very robust with respect to noise
in the learning data and also enables it to cope eas-
ily with missing data, that is unspecified attribute
values. On the theoretical side, it was shown that
LogArt's classification procedure can be viewed as a
special strategy of evaluating the Bayes classification
rule without the atiribute independence assumption
(Cestnik and Bratko 1988). LogArt's classification
procedure tends to use those conditional probabili-
ties for whose estimation the learning data provides
most evidence.

Table 1 summarises the properties of eight med-
ical domains in which these learning systems have
been applied. The domains are characterised by:
the number of known examples (patients}, the num-
ber of classes (that is: possible diagnoses), the num-
ber of attributes, the average number of possible at-
tribute values per attribute. More detailed descrip-
tion of these applications can be found for exam-
ple in (Bratko and Kononenko 1987), (Pirnat et al.
1989) and (Roskar et al. 1986).

Table 2 shows results of these applications in
terms of diagnostic accuracy of learned diagnostic



1210

majority average eniropy
domain examples classes class attributes no. values (bit)
lymphography 1 148 4 55 % 18 33 1.23
lymphography 2 150 7 46 B 18 33 21
primary tumor 339 22 25 % 17 2.2 3.64
breast cancer 288 2 B0 % 10 2.7 0.72
hepatitis 155 2 T9% 19 36  0.74
thyroid B84 4 56 % 15 15.7 1.59
rhenmathology 355 ] 66 T a2 9.1 1.70
urinary tract m 1843 9 2% 44 38 201
urinary tract { 3580 9 %% 45 65 2.5

Table 1: Properties of the medical application domains.

rules by the three systems. The performance of
medical experts is also included for comparison in
the cases when their performance has been experi-
mentally estimated on the same data as used by the
systems. In one case (lymphography), the physi-
cians’ performance is an expert's own estimate and
was not experimentally confirmed. It is probably
an oplimistic over-estimate. Systems’ accuracy on
new data was estimated in the usual way: T0% of
the available data was randomly chosen for learn-
ing, and the remaining 30% was diagnosed by the
learned rule. The sysiem’s diagnoses on the “new”
data were then compared with the known physi-
cian’s diagnoses. This was repeated several times
(usually ten times, to reduce statistical fluctuation)
and the figures in Table 2 are the average of these
repeated experiments. For compatison, the perfor-
mance of “naive Bayes” (that is Bayes classification
under the assumption of attribute independence) is

also included. It should be noted that this straight-

forward application of Bayes has the disadvantage
that it does not support the usual style of expla-
nation in expert systems. It is therefore avoided in
expert systems, although Michie (1990) describes a
way to overcome this difficulty.

Some accuracy results in Table 2 are surprizing
as in some cases the system’s or expert’s accuracy
are lower than the percentage of the majority class.
For example, in the breast-cancer domain the spe-
cialists’ performance is 64% and Assistant’s perfor-
mance is 77%. These performances are both below
the 80% percent likelihood of the majority class, so
an almost uninformed clasifier, always just predict-
ing the majority class, would score better than both
human experts and the learning programs. This re-
flects a drawback of simple accuracy measure as the
criterion of success of a elassifier. The accuracy cri-
terion does not take into account the relative dif-
ficulty of predicting particular classes and is there-

fore misleading, particularly in domains where the
probahilities are extremely unequally distributed be-
tween classes, as in the breast cancer domain. This
problem with aceuracy as a performance measure
is discussed in (Kononenko and Bratko 1991), and
an information-based criterion is proposed. There-
fore classifiers’ information scores (in bits) are also
given wherever they were available. The informa-
tion scores are in all cases positive, indicating that
the clasifiers are in fact always doing better than
an uninformed classifier (which would, always elas-
sifying into the majority class, by definition of the
information-based performance measure score zero).

One conclusion indicated by Table 2 iz that the
knowledge bases induced from no more than a few
hundreds of examples of patients in some narrow di-
agnostic domain, perform better than medical doe-
tors, including best specialists. Such a conclusion
has been empirically confirmed by several other
studies. This result should, of course, be taken with
some qualifications. Namely, the criterion of per-
formance here is only in terms of classification acu-
racy (or information score) under the condition that
both the human expert and the induced classifier
are given the same information. In practice, the
human expert might be able to use extra informa-
tion. Also, the medical doctor would typically have
a much better global understanding of the problem
and be capable of deeper explanation of the partic-
ular cases,

3 Attribute-based learning
vs. relational learning

Applications of Machine Learning described above
all rely on the use of attribute-based learning. Both
learning examples and induced concept descriptions
employ global attributes of objects and not rela-



doctors doctors naive
domain LOLEPEL. specialists Assistant GINESYS LogArt  Bayes
Iymphography 1 6% 84% 9%
lymphography 2 60% (D) 85% (D) 65% (A) T0% (C) 67%
primary tumor  32% , 0.95 bhit 42% , 1.22 bit 44% ,1.38 bit 52% (C) 44% (B) 49% , 1.59 bit
breast cancer  64% ,0.03 bit 64% ,0.05bit 77%,0.07 bit 74% (C)  78% (B) 70%, 0.06 bit
hepatitis 83% 85% 84%
thyroid 64% , 0.59 bit 73% , 0.86 bit 68% , 0.70 bit
thenmathology 56% , 0.26 bit  61% , 0.46 bit 57% , D.28 bit
urinary tract m T0% (A) 67%
urinary tract f BO% (A) 79%
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Table 2: Performance in terms of classification accuracy and information score (in bits) on new data of the
three learning systems, physicians (specialists and non-specialists), and the Bayes classifier evaluated under
the assumption of attribute independence. Labels A, B, C, D in the table mean: A - old implementation of
Assistant on DEC-10; B - in the case that more than one class remain un-eliminated by rules, naive Bayes
is applied as tie-break; C - original data preprocessed so that unknown attribute values in data are replaced
by the maost likely value; D - expert physician’s estimate (not measured experimentally).

tions among their parts. Well known families of
such learning programs are TDIDT (e.g. Quinlan
1986), AQ (e.g. Michalski 1983), CN2 (Clark and
Niblett 1989). Attribute-based learning is a rela-
tively simple approach to learning and is therefore
most widespread and widely used. The following ad-
vantages of attributional learning contribute to its
success in practical applications:

s Computational efficiency

o Attributional learning is relatively well under-
stood

» Attributional learning process is easy to under-
stand by the users and it is straightforward to

apply

¢ The attribute-value language is natural in many
domains and many users are used to this repre-
sentation

¢ It is well understood how to handle noisy and
incomplete data in attributional learning; there
are methods that handle noize very well

However, attribute-based learning also has strong
limitations:
» Background knowledge can be expressed in

rather limited form

o Lack of relational descriptions makes the con-
cept description language inappropriate for
some domains

Attribute-based descriptions are essentially equiva-
lent to propositional logic. This is not sufficiently
expressive for describing concepts in some applica-
tion areas. An example of such a problem area is
the finite-element mesh design which is described in
detail in the next section.

The realization of the limitations of attribute-
based learning led to a number of recent develop-
ments towards learning at the level of first-order
predicate logic, including programs CIGOL (Mug-
gleton and Buntine 1988), FOIL (Quinlan 1990),
GOLEM (Muggleton and Feng 1990) and LINUS
(LavraZ, DZeroski and Grobelnik 1991). This led
to the establishment of a special area of Machine
Learning, named by Muggleton (1990) Fnductive
Logic Programming (ILP; see also Muggleton 1992).
The learning problem in ILP is formalised as: given
some background knowledge B expressed as a set
of predicates, some examples ¥ and some negative
examples N, find a logic formula H, such that:

BAHFE

and

BAHYN

The following section describes an application that
illustrates the suitability of this approach.

4 Application of ILP
to finite-element mesh de-
sign

Dolsak and Muggleton (1991) describe an applica-

tion of ILP to a problem for which the attribute-
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Figure 1: A cylindrical object partitioned by mesh
suitable for the finite element computation. {Dolsak
1991)

based learning is unsuitable, and the relational rep-
resentafion appears natural. Here we illustrate this
application with more recent results reported in
(Dolsak 1991).

The problem of finite-element mesh design arises
in numerical eomputation. Given, for example, a
machine part and forces acting on it, the problem is
to compute the pressure and deformations through-
out the object. The finite-element methed invelves
the partitioning of the given obhject into finite ele-
ments. Figure 1 shows an example. The resulting
partition is called a finite element mesh.

For each element of the mesh, constraints in the
form of equations are stated. The constraints ap-
proximately state the physical laws modelling the
behaviour of the individual elements. These approx-
imations are sufficiently accurate if the elements are
sufficiently small. Generally, the finer the mesh, the
smaller the error. However, a dense mesh results
in a large number of equations, leading to a lengthy
computation when solving the corresponding system
of equations. The complexity of computation is of-
ten measured in days or weeks of CPU time and can
easily become prohibitive. The problem, then, is to
find a suitable compromise between the density and
coarseness of the mesh.

Normally some regions of the object require
denser mesh whereas in other regiois a coarser
mesh still suffices for good approximation. There is
no known general method that would enable auto-
matic determination of optimal, or reasonably good
meshes, However, expert users of finite element
methods are capable of making good guesses about

proper density of the mesh in various regions of the
objects. Unfortunately, the experts have difficulties
in forming general rules that would enable the au-
tomation of such guesses,

In general, the mesh depends on the geometric
properties of the object and forces acting on it. As
pressure is transmitted between adjacent elements,
the mesh density in a region of the object depends
also on the adjacent regions. These general con-
siderations were captured in Doldak’s application as
background knowledge for the ILP learning in the
form of properties and relations, such as:

short( Edge)

usnal _length( Edge)

loaded{ Edge)

net_leaded( Edge)
twe_side_fixed( Edge)
neighbour_xy( Edgel, Edge2)
neighbour_xz( Edgel, Edge2)

The meaning of these relations is straightforward.
For example, an edge is “two_side_fixed” if it is fixed
at both ends. neighbour xy( Edgel, Edgel)
means that the edges are adjacent and they are in
the xy-plane.

In an experiment to learn a characterisation of the
density of a mesh in terms of these relations, five
meshes known to work well were used as sources of
examples for learning (Figure 2). The relation to be
learned was:

mesh( Edge, ¥)

where Edge is the name of an edge in the struc-
ture, and /N is the recommended number of finite
elements along this edge. The target definition of
this relation is to be learned in terms of the proper-
ties and relations in the given structure. All the five
mieshes used comprised altogether 278 edges, that
is 278 positive examples for learning, The number
of finite elements along the edges varied between 1
and 17. In edges with high partition, say 10, it was
assumed that a similar partition would still make
a good mesh, so 10 + 1 was considered acceptable
and sometimes used as another positive example.
Negalive examples were generated according to the
closed-world assumption: if the given partitioning of
an edge was 3, say, then partitionings such as 4, 5,
etc. were taken as negative examples. This finally
gives the following number of facts for learning in



Figure 2: Two of the five meshes used for learning
(Doliak).
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this experiment {Doldak 1991):

357 positive examples
2840 negative examples
2132 background facts

Several relational learning algorithms were tried on
this data: GOLEM (Muggleton and Feng 1980), L1-
NUS (Lavraé, Dzeroski and Grobelnik 1991) and
FOIL (Quinlan 1990). The results obtained with
GOLEM were judged to be the most satisfactory.
GOLEM generated a large number of rules, some of
them being practically irrelevant. For example, al-
though logically correct, they were computationally
useless when applied to classifying new edges. On
the other hand, some rules appeared useful. Forfu-
nately it was possible to formalise the criteria for
distinguishing useful rules from the others. These
criteria were implemented as a short Prolog program
(Dolsak 1991} for postprocessing the rules generated
by GOLEM.

The so resulting set of rules were of interest to
expert users of the finite element methods. Accord-
ing to their comments. these rules reveal interesting
relational dependences. The following is an exam-
ple of such a generated rule (the generated syntax is
that of Prolog clauses):

mesh( Edge, 7) :-
usual_length( Edge),
neighbour_xy( Edge, EdgeY),
two_side_fixed( EdgeY),
neighbour_zx( EdgeZ, Edge),
not_loaded{ EdgeZ).

This rule says that an appropriate partitioning of
Edge is 7 if Edge has a neighbour EdgeY in the xy-
plane so that EdgeY is fixed at both ends, and Edge
has ancther neighbour EdgeZ in the xz-plane so that
EdgeZ is not loaded.

The following is a recursive rule also generated by
GOLEM:

mesh{ Edge, N) :-
equal{ Edge, Edge2),
mesh{ Edge2, ).

This observes that an edge's partition can be deter-
mined by looking for an edge of the same length and
shape in the same object. Of course, for this rule
to be computationally useful, at least some of such
equivalent edges has to have its partition determined
by its own properties and those of its neighbours.
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The accuracy of the induce knowledge base was
estimated by a cross-validation mehod. Thereby a
subset of 10 % of the example edges was effectively
removed from the training set. The remaining 90 %
of the data was used for rule induction, and the so
induced rules were applied to the removed 10 % of
the data now used as a test set. This was repeated
ten times.

The results can be summarised as follows. On the
average, the classification on the test set was correct
in 78 % of the tested edges, incorrect in 2 % of the
edges, and the edge remained unclassified (partition
unknown) in 20 % of the test edges. An edge remains
unclassified if there is no induced rule covering the
edge.
In ancther, more practically realistic evaluation
attempt, the generated knowledge base was applied
to determining a mesh for a completely new struc-
ture, one not used for learning {shown in Figure 1).
In this case, 67 % of the edges were classified cor-
rectly, 22 % incorrectly, and 11 % remained unclas-
sified.

These results were input into a commercial au-
tomatic mesh generator as a partial specification of
the mesh. The partial mesh was then completed
automatically by the mesh generator, resulting in
the mesh shown in Figure 3a. This mesh is close
to the known good mesh of Figure 1, but unfor-
tunately not quite acceptable with respect to the
resulting numerical errors. Figure 3b shows the
mesh generated by the commercial generator with-
out any guidance from the user. This mesh is cer-
tainly fine enough with respect to the numerical er-
rros, but completely unacceptable with respect to
the computational complexity it requires. Figure 3c
is again generated by the commercial generator, only
this time guided by the user's advice regarding the
“global” size of the elements in the mesh. This is
again a deficient mesh which illustrates the genera-
tor’s inability to adjust the density of the mesh in
various regions of the object according to the criti-
cality of the region. Comparing the meshes in Fig-
ures Ja-c it becomes clear that the induced knowl-
edge base does “understand” the criticality of varios
regions of the object and tries to adjust the density
accordingly.

The mesh resulting from the induced knowledge
base can actually be easily improved. There is a
well known rule of thumb in mesh design that in a
rectangular mesh the ratio between the length and
width of elements should not exceed 2. Applying
this rule to mending the mesh of Figure 3a in fact
results in the very good mesh of Figure 1.

Figure 3: (a) A mesh generated by the induced
knowledge base and completed by a commercial gen-
erator. (b) The mesh generated by the automatic
mesh generator completely autonomously, without
any guidance from the user. (c) A mesh, generated
by the mesh generator, guided by the user’s advice
recommending the “global granularity” of 150 mm.
(Dolsak 1991)



5 Towards knowledge synthe-
sis

As illustrated by the applications described in this
paper, and concluding from many other applica-
tions, ML techniques have proved to be a useful tool
for efficient construction of expert systems for tasks
like classification, prediction, decision making etc.
In our experience, for example in the medical do-
mains, employing ML il was possible to inductively
construct competent diagnostic systems in the mat-
ter of months, weeks or even days (including time for
defining the problem, choice of attributes, prepara-
tion of learning data, etc.) when it would take much
longer without learning.

Mugeleton (1991) and Clark et al. (1991} de-
scribe another comparison between dialogue-based
and induction-based knowledge acquisition for large
expert systems with thousands or tens of thousands
of rules. That comparison showed that in projects
employing ML ihe knowledge acquisition effort in
man years (relative to the number of rules) was one
or-two orders-of magnitude lower than in dialogue-
based acquisition. It should be admitted that the
basis for comparison was simply the number of rules
in the knowldge-base per man-year invested. The
quality of rules was not considered. Although the in-
ductively constructed knowledge bases perform ac-
curately, the question still remains whether auto-
matically synthesised knowledge represents symbol-
ically meaningful information. That is, does it tell
the humans something about the problem domain
in a transparent way that also fits nicely into the
human's normal understanding of the domain. In
other words, whatever has been induced from ex-
amples, does it deserve to be called knowledge?

In ML there has been strong awareness of the
importance of this comprehensibility criterion (for
example Michie 1986 and 1988). There exist same
standard techniques that help in this respect. For
example, tree pruning in induction of decision trees,
in addition to supressing noise, often improves the
transparency of induced trees enormously by simply
reducing the tree size to, say, 10% of its original size.
It should be admiited, however, that compaciness
is only one measure that is usually correlated with
meaningfulness. Human experts often prefer less
compact, possibly redundant descriptions, because
thay better correspond to the way the problem do-
main is structured in their heads, or to the way that
the knowledge is to be used. The use of knowledge
may require not only classification, but for example
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the achievernent of certain goals, explanation, plan-
ning, or making decision on the basis of incomplete
information. Criteria to decide whether given infor-
mation deserves to be called knowledge are intricate.
O course, these criteria do not exactly correspond
o simple measures of accuracy or compactness of
induced rules. Identifying and formalising these cri-
teria is an important research topic. 5till, there has
already been some success in the direction of aute-
matically inducing meaningful information. Knowl-
edge has been generated through ML that was of
interest and revealing to human experts.

[ will illustrate this by an example from the KAR-
DIC project (Bratko, Mozeti¢ and Lavraé, 1989).
In KEARDIO, a deep gualitative model of the heart
was compiled for efficiency reasons inte a large shal-
low diagnostic knowledge base. This was then com-
pressed, using ML techniques, into a small number
of equivalent prediction and diagnostic rules. It was
interesting to compare these mechanically synthe-
sised descriptions with human-synthesised descrip-
tions that can be found in the medical literature.

Here is an example of a synthesised prediction rule
which tells what are the characteristic features in
the ECG signal in the case of the disorder called AV
bleck of the third degree (avb3 for short, possibly
combined with any number of other defects in the
heart):

[av_conduct = avb3] is characterised by
[rhythm QRS = regular] and
[relation_P_QRS = independent_P_QRS]

This rule is in the VL1 formalism, normally used in
the AQ family of programs (Michalski 1983). The
propositions have the form [attribute = value].
Figure 4 illustrates what essentially happens in the
case of the avb3d defect.

For comparison, one of the classical books on ECG
{Goldman 1976) describes this arrhythmia as fol-
lows: “In this condition the atria and ventricles
beal entirely independently of one another.
The ventricular rhythm is usually quite regular
but at a much slower rate (20-60)." Some words
here are in bold face to help the comparison be-
tween (loldman's description and the machine syn-
thesised description. It is easy to notice strong sim-
ilarities between both descriptions. It is nice that
even the same gualitative deseriptors, such as inde-
pendent or regular appear in both descriptions.
Goldman notices that the ventricular rate is usu-
ally much lower (20-60) which is not mentioned in
the machine generated description. This is in fact
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Figure 4: The mechanism of the heart disorder
called av-block of the third degree. In the normal
heart, the atrial signal reaches the ventricles through
the AV-conductance and affects the QRS complex.
In the case of the av-block, the atrial signal cannot
propagate to the ventricles and has no effect on the
QRS complex,

the only essential difference between both descrip-
tions. The reason that the ventricular rate is not
mentioned in the machine-generated description is
that it is redundant with respect to distingnishing
between those conditions of the heart in which avh3
appears, and those in which it does not. Another
authority on ECG, Phibbs (1973) describes avh3 as:
“(1) The atrial and ventricular rates are differ-
ent: the atrial rate is faster; the ventricular rate is
slow and regular. (2) There is no consistent re-
lation between P waves and QRS complexes.”
Again, some descriptors are in bold face to facilitate
comparison with the machine-generated deseription.
The comparison is rather straightforward in this case
as well.

The example above shows how well some of the
synthesised descriptions correspond to those in the
standard medical literature. On the other hand,
some of the synthesised descriptions are consider-
ably more complex than those in the literature.
Machine-generated descriptions in such cases give
much more detail that may not be necessary for an
intelligent reader with a physiclogical background.
Such a reader can usually infer the missing de-
tail from the background knowledge. Making in-
duced descriptions appealing to humans requires
adding some redundancy or leaving out some in-
formation that can be usually recovered from back-
ground knowledge. How to add and leave out just

the right amount is an open research problem.

6 Conclusions -

A large number of ML applications confirm the
practical importance of this technology. Experience
shows that inductive knowledge-acquisition is typ-
ically an iterative process whereby the representa-
tion, background knowledge and example sets are
gradually refined through experiments and feedback
obtained from the domain expert. ML tools are re-
peatedly applied. Induction from examples can be
viewed as a way of compiling a high level specifica-
tion where the specification consists of examples and
background knowledge. The practical advantage of
this approach lies in the fact that it is often easier
to obtain examples (e.g. from the domain expert)
than to extract from the expert explicit general laws
about the domain.

Until now, attribute-based learning has enjoyed
most success in practice. However, the recent impor-
tant developments in inductive logic programming
(ILP} go beyond the limitations of the atiribute-
based learning. Recent applications of ILP include,
in addition to the mesh design described in this pa-
per, the prediction of protein secondary structure
(Muggleton et al. 1992). Another exciting area fa-
cilitated by ILP is automated construction of quali-
tative models from observed behaviours. Work that
has been done in this direction includes {Mozetit
1987a,b; also described in Bratko et al. 1389),
(Coiera 1989), (Bratko et al. 1991) and (Krann et
al. 1991}
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