PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
OM FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by [COT. © 1COT, 1992

799

Message-Oriented Parallel Implementation of Moded Flat GHC

Kazunori Ueda

Institute for New Generation Computer Technology
£.28, Mita l-chome, Minate-ku, Tokyo 108, Japan
uedadicot.or. jp

Abstract

We proposed in [Ueda and Morita 1990] a2 new,
message-oriented implementation technique for Moded
Flat GHC that compiled unification for data trans-
fer into message peassing. The technique was based
on constraint-based program analysis, and significantly
improved the performance of programs that used goals
and streams to implement reconfigurable data strue-
tures. In this paper we discuss how the technigue
can be parallelized. We focus on & method for
shared-memory multiprocessors, called the shared-goal
method, though a different method could be used for
distributed-memory multiprocessors. Unlike ather par-
allel implementations of conewrrent logic langnages
which we call process-oriented, the unit of parallel exe-
cution is not an individual goal but a chain of message
sends caused successively by an initial message send.
Parallelism comes from the existence of different chains
of message sends that can be executed independently
or in a pipelined manner. Mutual exclusion based on
busy waiting and on message buffering controls access
to individual, shared goals. Typical goals allow last-
send optimization, the message-onented counterpart of
last-call optimization. We are building an experimen-
tal implementation on Sequent Symmetry. In spite of
the simple scheduling currently adopted, preliminary
evaluation shows good parallel speedup and good ab-
solute performance for concurrent operations on binary
process trees.

1. Introduction

Concurrent processes can be used both for program-
ming compibation and for programming storage. The
latter aspect can be exploited in concurrent logic pro-
gramming to program reconfigurable data structures
using the following analogy,

records «+— (body) goals

pointers s streams (implemented by lisis)

where a (concurrent) process is said to be implemented

by & multiset of goals.

Masao Morita

Mitsubishi Research Institute
3-8, Otemachi 2-chome, Chiyeda-ku, Tokyo 100, Japan
moritadasdal .mri.co.ip

nt{r_'l,
L=[], k=[].
nt{ [search(K,V)[C2] K, V1,L,R} :- true |
V=Vi, nt{Cs,K,V1,L,R].
ot ([search(X,V)[Cs], K1, V1,L,R) :- K<K1 |
L=[search(K,V)[L1], nt(Cs ,K1,V1,L1,R)}.
nt([search(k,V)|cs] ,K1,Vi,L,R) :-K>K1 |
B=[search(X,V)|R1], nt(Ce K1 ,V1,L,R1).
nt([update(k,Vv)|Cal K, -, L,R) :=true |
ot {Cs,K,V,L,R).
nt { [update(K,V) |Cs],K1,V1,L,R) :- K<Ki |
L=[update(K,V}|Li], nt(Ca,E1,V1,L1,R).
nt{[update(K, V) |Cs] ,K1,V1,L,R) 1= E¥E1 |
R=[update(K,V) |R1], nt(Cs,Kt,V1,L,R1).

t{[] ¥ 1= true | true,

t{{search{_,VilCs]) := true |
V=undefined, t{Cs).

t([update(K,V) |Cs]) :- true |
nt(Cs,K,V,L,RE), (L), t{(R).

- -z LR} :=true |

Program 1. A GHC program defining
binary search trees as processes

An advantage of using processes for this purpose is
that it allows implementations to exploit parallelism
betwesn operations on the sterage. For instance, a
search operation on a binary search tree (Program 1),
given as a message in the interface stream, can enter
the tree soon after the previous operation has passed
the root of the tree. Programmers do not have to worry
about mutual exclusion, which is taken care of by the
implementation. This suggests that the programming
of reconfigurable data structures can be an important
application of concurrent logic languages. (The wver-
bosity of Program 1 is a separate issue which is out of
the scope of this paper.)

Processes as storage are almest always suspend-
ing, but should respond quickly when messages are
sent. However, most implementations of concur-
rent logic languages have not been tuned for pro-
cesses with this characieristic. In our earlier pa-
per [Ueda and Morita 1990], we proposed message-
oriented scheduling of goals for sequential implemen-
tation, which optimizes goals that suspend and resume

300

frequently. Although eur primary goal was to optimize
storsge-intensive (or more generally, demand-driven)
programs, the proposed technique worked guite well
also for computation-intensive programs that did not
use one-to-many communication. However, how to uti-
lize the technique in parallel implementation was yet to
be studied.

Parallelization of message-orented scheduling can
be quite different from parallelization of ordinary,
process-oriented scheduling. An obvious way of paral-
lelizing process-oriented scheduling is to execute differ-
ent goals on different processors. In message-oriented
scheduling, the basic idea should be to execute different
message sends on different processors, but many prob-
leins must be solved as to the mapping of computation
to processors, mutual exclusion, and so on, This paper
reports the initial study on the subject.

The rest of the paper is organized as follows:
Section 2 reviews Moded Flat GHC, the subset of
GHC we are going to implement. Section 3 reviews
message-onented scheduling for sequential implemen-
tation. Section 4 discusses how to parallelize message-
ariented scheduling, Of the two possible methods sug-
gested, Section 5 focuses on the shared-goal method
suitable for shared-memory multiprocessors and dis-
cuszes design izsues in more detail. Section 6 shows
the result of preliminary performance evaluation. The
readers are assumed to be familiar with concurrent
logic languages [Shapire 1989].

2. Moded Flat GHC and Constraint-Based Pro-

gram Analysis

Moded Flat GHC [Ueda and Morita 1890] is a subset
of GHC that introduces a mode system for the compile-
time global analysis of dataflow eaused by unification.
Unification executed in clause bodies can cause bidi-
rectional dataflow in general, but mode analysis tries
to guarantes that it is assignment to an uwninstantiated
variable effectively and does not fail (except due to oc-
cur check).

Our experience with GHC and KL1 [Ueda and
Chikayama 1990] has shown that the full functional-
ity of bidirectional unification is seldom wsed and that
programs using it can be rewritten rather easily (if not
automatically) to programs using unification as assign-
ment. These languages are indeed used as general-
purpose concurrent languages, which means that it is
very important to ophlimize basic operations such as
unification and to obtain machine codes close to those
obtained from procedural languages.

For global compile-time analysis to be practical,
it is highly desirable that individual program meod-
ules can be analyzed separately in such a way that
the results can be merged later. The mode system of
Moded Flat GHC is thus constraint-based; the mode

of a whole program can be determined by accumulat-
ing the mode constraints obtained separately from the
syntactic analysis of each program clanse. Another ad-
vantage of the constrmint-based system is that it allows
programmers to declare some of the mode constraints,
in which case the analysiz works as mode checling as
well as mode inference.

The modularity of the analysis was brought by the
rather strong assumption of the mode aystemn: whether
the function symbeol at some position (possibly deep in
a data structure) of a goal ¢ is determined by g or by
other goals running concurrently is determined solely
by that position specified by a path, which is defined
as follows, Let Pred be the set of predicate symbals
and Fun the set of function symbols. For each p& Pred
with the arity np, let N, be the set {1,2,...,n,}. Ny
is defined similarly for each f € Fun. Now the sets
of paths Py (for terms) and P, (for atoms) are defined

using disjoint union as:

Po=() Mgy, Pa=(), Np)xPu

FEFun PEPred

An element of Py can be written as a string {p,2){f1,
J1) oo frsdn),-that is, it records the predicate and the
function symbols on the way as well as the argument
positions selected. A mode i3 a function from F, to
the set {in, out}, which means that it assigns either of
in or eut to every possible position of every possible
instance of every possible goal, Whether some position
is in or eut can depend om the predicate and function
symbols on the path dewn to that position. The func-
ticn ean be partial, because the mode valoes of many
uninteresting positions that will not come to exist can
be left undefined.

Mode analysis checks if every variable generated in
the course of execution will have exactly one out oceur-
rence (occurrence at an eut position) that can deter-
mine its top-level value, by aceumulating constraints
between the mode values of different paths.

Constraint-based analysis can be applied to analyz-
ing other properties of programs as well. For instance,
if we can assume that streams and non-stream data
structures do not oceur at the same position of differ-
ent goals, we can try to classify all the positions into

(1) those whose top-level values are limited to the list
constructors (cons and nil) and

{2) those whose top-level values are limited to symbols
other than the list constructors,

which is the simplest kind of type inference. Other
applications include the static identifieation of *single-
reference’ positions, namely positions whose values are
not read by more than one goal and hence can be
discarded or destructively updated after use. This
could replace the MRB (multiple-reference bit) scheme
[Chikayama and Kimura 1987], a runtime scheme

adopted in current KLI implementations for the same
purpose,

3. Message-Oriented [Sequential) Implementa-
tion

In & process-oriented sequential implementation of con-
current logic languagpes, poals ready for execulion are
put in & queue {or & stack or a deque, depending on
the scheduling). Once a goal is taken from the queue,
it is reduced as many times as possible, using last-call
optimization, until it suspends or it is swapped out. A
suspended goal is hooked on the uninstantiated wvari-
able(s) that cansed suspension, and when one of the
variables is instantiated, it is put back into the gueue.

Message-criented implementation has much in
common with process-oriented implementation, but
differs in the treatment of stream communication: It
compiles the generation of stream elements inte pro-
cedure calls to the consumer of the stream. A stream
is an unbounded buffer of messages in principle, but
message-criented implementation tries to reduce the
overhead of buffering and unbuffering by transferring
control and messages simultanecusly to the consumer
whenever possible. To this end, it tries to schedule
goals so that whenever the producer of a stream sends
a message, the consumer is suspending on the stream
and 15 ready to handle the message. Of course, this
is not always possible because we can write & program
in which a stream must act as & buffer; messages are
buffered when the consumer is not ready to handle in-
CONINE Messages.

Process-oriented implementation tries to achieve
good performance by reducing the frequency of costly
goal switching and taking advantage of last-call opti-
migation. Message-criented implementation tries to re-
duce the cost of each goal switching operation and the
cost of data transfer betwean goals,

Suppose two goals, p and g, are connected by a
stream & and p is going to send a message to g that
is suspending on 5. Message-oriented implementation
represents s as a two-field communicefion cell that
points to {1} the instruction in ¢'s code from which the
processing of g is to be resumed and (2) ¢'s goal record
containing its arguments (Fig. 1). {Throughout the pa-
per, we assume that & suspended goal will resume its
execution from the insiruction following the one that
caused suspension, not from the first instruction of the
predicate.) To send & message m, p first loads m on
a hardware rcg.ia‘c.cr called the communication :|r'|.-g|'.a'£|:'|"1
changes the current goal to the one pointed to by the
communication cell of 5, and calls the code pointed to
by the communication cell of 5. The goal g gets m
from the communication register and may send other
messages in its turn. Confrol retums te p when all
the message sends caused directly or indirectly by m

BO1

L] {3 i)

LT

sender's receivers [
goal . goal
record | P get record
mea.":I"" mes.
COMM. reg.
{hardwara)

Fig. 1. Immediate message send

code for buffering
(p) (5) _]'_- (@)

sender's | I receiver's [~
qoal goal
record I] recond
comm. req. _
(hardwara) queue of !
buffer {
descr L— buffered elemeants |

Fig. 2. Buffered message send

have been processed. However, if m 15 the last mes-
sage which p can send out immediately (i.e., without
waiting for further incoming messages), control need
not return to p but can go directly to the goal that
has outstanding message sends. This is called last-send
optimization, which we shall see in Section 5.4 in more
detail.

We have ebserved in GHC/KL] programming that
the dominant form of interprocess communiecation is
one-to-one stream communication. [t therefore de-
serves special treatment, even though other forms of
communication such as broadeasting and multicasting
become a little more expensive. One-fo-many commu-
nication is done either by the repeated sending of mes-
sages or by using non-stream data structures.

Techniques mentioned in Section 2 are used to ana-
lyze which positions of a predieate and which variables
in & program are used for streams and to distinguish
between the sender and the receiver(s) of messages.

When a stream must buffer messages, the commu-
nication cell representing the stream points to the code
for buffering and the desenptor of & buffer. The old en-
tries of the communication cell are saved in the descrip-
tor (Fig. 2). In general, a stream must buffer incoming
messages when the receiver goal is not ready to han-
dle them. The following are the possible reasons [Ueda
and Morita 1990]:

802

‘update’ and ‘search’
commands from the driver

Fig. 3. Binary search tree as a process

{1} (=elective message receiving) The receiver is wait-
ing for a message from other input streams.

{2) The receiver is suspending on non-stream data
{possibly the contents of messages). .

{3} The sender of a message may run ahead of the e
ceiver,

{4} When the recéiver r belongs to a circular process
sbructure, a message m sent b}' Iy PDESih].'_'f ar-
rive at » 1tself or may canse another message to be
gent back to r. However, uniess rm has been sent
by last-send optimization, r 18 not ready to receive
it

The receiver examines the buffer when the reason
for the buffering disappears, and handles messages (if
any) in it.

Process-oriented implementation often caches {part
of } a goal record on hardware registers, but this should
nok be done in message-orented implementation in
which process switching talkes place frequently.

4. Parallelization

How can we exploit parallelism from message-oriented
implementation? Twe quite different methods can be
considerad:

Distributed-goal method. Different processors take
chavge of different goals, and each processor handles
messages sent to fhe goals it is taking charge of
Consider = binary search tree represented using goals
and streams (Fig, 3) and suppose three processors take
charge of the three different portions of the tree. Each
processor performs message-oniented processing within
itz own portion, while message transfer between por-
tions is compiled into inter-processor communication
with buffering,

Shared-goal method, All processors share all the goals.
There is a global, output-restricted deque [Knuth 1973]
of outstanding work to be done in parallel, from which
an idle processor gets a new job. The job is usually to
execute a non-unification body goal or to send & mes-
sage, the latter being the result of compiling & unifi-
cation body goal involving streams. The message send

will usually cause the reduction of a suspended goal, If
the reduction penerates another umification poal that
has been compiled into a message send, it can be per-
formed by the same processor. Thus a chain of message
sends is formed, and different chains of message sends
can be performed in parallel as long as they de not in-
terfere with each other. In the binary tree example, dif-
ferent processors will take care of different operations
sent to the root. A tree operation may ecanse subse-
quent message sends inside the tree, but they should
be performed by the same processor because there is
no parallelism within each tree operation.

Unlike the shared-goal method, the distributed-
goal method can be applied to distributed-memory
multiprocessors as well as shared-memory ones to
mnprove the throughput of message handling. On
shared-memory multiprocessors, however, the shared-
goal method is more advantageous in terms of latency
(i.e., responses to messages), because (1) it performs no
inter-processor communication within a chain of mes-
sape sends and (2] good load balancing can be attained
easily. The shared-goal method requires a locking pro-
tocol for goals as will be discussed in Section 5.1, but
it enables more tightly-coupled parallel processing that
covers & wider range of applications. Because of its
greater technical interest, the rest of the paper is fo-
cused on the shared-goal method.

5. Shared-Goal Implementation

In this section, we diseuss important techmiealities in
implementing the shared-goal method. We explain the
method and the intermediate code mainly by examples,
Space limitations do not allow the full description of
the implt;mcntaﬁnn,_ ‘t.hm:gh we had to solve a number
of subtle problems related to concurrency control.

5.1 Locking of Goals

Consider a goal p(¥s,¥s) defined by the following
single clause:
p([al¥%s1],¥e) = true |
Ye=[a|¥s1], p(¥s1,¥sl).

In the shared-goal method, different messages in
the input stream Xs may be handled by different pro-
cessors that share the goal p{¥s,¥s). Any processor
sending a message must therefore try to lock the goal
record (placed in the shared memory) of the receiver
first and obtain the grant of exclusive aceess to it. The
receiver st remain locked until it sends a message
through Ya and restores the dormant state.

The locking operation is important in the following
respect as well: In message-oriented implementation,
the order of the elements in a stream is not represented

spatially as a list structure but as the chronological or-
der of message sends. The locking protocol must there-
fore make sure that when two messages, o and f§, are
sent in this order to p(Xs,¥s), they are sent to the
receiver of Y5 in the same order. This is guaranteed by
locking the receiver of ¥s before p(is,¥s) is unlocked.

5.2 Busy Wail vs. Suspension

How should 2 processor trying to send a message wait
until the receiver goal is unlocked? The two extreme
possibilities are (1) to spin (busy-wait} until unlocked
and (2} to give up (suspend) the sending immediately
and do some other work, leaving a notice to the receiver
thaf it has a message to receive., We must take the
following observations into account here:

{a) The time each reduction takes, namely the time re-
quired for a resumed goal to restore the dormant
state, is usuelly short (several tens of CISC in-
structions, say), though it can be considerably long,
sormetimes.

{b) As explained in Section 5.1, & processor may lock
mere. than one goal temporarily upen reduction.
Thizs means that busy wait may cause deadlock
when goals and streams form a circular structure,

Because busy wait incurs much smaller overhead
than suspension, Observation (a) suggests that the pro-
cessor should spin for a period of time within which
mest goals can perform one reduction. Howewer, it
should suspend finally because of (k).

Upon suspension, a buffer is prepared as in Fig, 2,
and the unsent message is put in it. Subsequent mes-
sages go to the buffer until the receiver has processed
all the messages in the buffer and has removed the
buffer. As is evident from Fig. 2, no overhead is in-
curred to check if the message 5 going to the buffer
or to the receiver. The receiver could notice the ex-
istence of ouitstanding messages by checking its nput
streams upon each reduction, but it incurs overhead to
(rormal) programs which do not require buffering. So
we have chosen to avold this overhead by letting the
sepder spawn and sehedule a speecial routine, ealled the
retransmitier of the messages, when it ereates a buffer.
The retransmitter is executed asynchronously with the
receiver. When executed, it tests if the receiver has
been unlfocked, in which case it sends the first message
in the buffer and re-schedules itself,

For the shared resources other than goals (such as
logic variables and the global deque), mutual exclu-
sion should be attained by busy wait, becanse access to
them takes a shart period of time. On the other hand,
synchronization on the values of non-stream variables
{due to the sernantics of GHC) should be implemented
using suspension as usual.

803

5.3 Scheduling

Shared-goal implementation exploits parallelism be-
tween different chains of message sends that do not
interfere with each other. For instance, a binary search
tree (Fig. 3) can process different operations on it in
a pipelined manner, as long as there is no dependence
between the operations (e.g., the key of a search op-
eration depending on the result of the previous search
npr:mﬁnn}. When there 1a l'].(:l',l|:::|'.Lr1t:|:u:3,rT]:I.DWI.".'\"CTr par-
allel exmcution can even lower the performance becanse
of synchronization overhead.

Another example for which parallelism does not
help is a demand-driven generator of prime numbers
which is made up of cascaded goals for filtering out
the multiples of prime numbers. The topmost goal re-
ceiving a new demand from outside filters out the mul-
tiples of the prime computed in response to the last
demand. However, until the last demand has almest
been processed, the topmost goal doesn't know what
prime’s multiples should be filtered out, and henee will
be blocked.

These considerations suggest that in order to aveid
ineffective parallelism, it is mest realistie to let pro-
grasmers apecify which chains of message sends should
be done in paralle]l with others. The simple method we
are using currently is to have (1) a global deque for the
work to be execuied in parallel by idle processors and
(2) one local stack for each processor for the work to be
executed sequentially by the current processor. Each
processor obtains a job from the global deque when its
local stack is empty. We use a global deque rather than
a global stack because, if the retransmitter of a buffer
fails to send a message, it must go to the tail of the
deque 20 1t may not be retoed soon. .

Each job in 2 stack/deque is uniformly represented
as a pair {code,env), where code 15 the job's en-
try/resumption point and enw is its environment. The
job iz usually to start the execution of & goal or to re-
sume the execution of a clause body. In these cases, enw
points to the goal record on which code should work.
When the job is to retransmit buffered messages, env
points to the communication cell pointing to the buffer.

When a clause body has several message sends to
be exeeuted in parallel, they will not put in the deque
separately. Instead, the current processor executing
the clause body performs the first send (and any sends
caused by that send), putting the rest of the work to
the deque after the first semd succeeds i locking the
receiver. Then an idle processor will get the rest of
the work and perform the second message send (and
any sends caused by that send), putting the rest of the
rest back to the deque. This procedure is to gnarantee
the order of messages sent through a single stream by
different. processors. Suppose two messages, o and S,
are sent by a goal like X2alo, F]Xs1]. Then we have
to make sure that the processor trying to send & will

804

not lock the receiver of Xs before the processor trying
to send o has done so.

5.4 Reduction

This section outlines what a typical goal should do dur-
ing one reduction, where by ‘typical’ we mean goals
that can be reduced by receiving one message. As an
example, consider the distributor of messages defined
as follows,

pllAl¥s] ,¥s,25) :- true |
Yes[&]Vsi], Za-_DHZBl] . PfIa,TBl,EEL‘J :

where we assume & is known, by program analysis or
declaration, to be & non-stream datum. (Otherwise
a somewhat more complex procedure is necessary, be-
cause the three oceurrences of & will be used for one-to-
two eommunication.) The intermediate code for above
program is:

antry{p/3)
rov_valualAl)
get_cr(ig)
send_call{A2)
put_cr{Ad)
send_call (A1)
executa

The Ad's are entries of the goal record of the goal
being executed, which contain the arguments of the
goal and temporary variables. Other programs may use
Xi's, which are (possibly virtual) general registers local
to each processor, and GAd's, which are the arguments
of a new goal being created. The label entry(p/3)
indicates the initial entry point of the predicate p with
three arguments.

The instruction rev_value(Ai} waits for & mes-
sage from the input stream on the first arpument. I
messages are already buffered, it takes the first one and
puts it on the communication register. A retransmitter
of the buffer is put on the deque if more messages ex-
ist; otherwise the buffer is made to disappear {Section
5.7} If no messages are buffered, which is expected to
be most probable, rev_value unlocks the goal record,
and suspends until a message arrives. In either case,
the instruction records the address of the next instrue-
tion in the communication cell {or, if the communica-
tion cell points to a buffer, in the buffer descriptor).
The goal is usually suspending at this instruction.

The instruction get_cr(A4) saves into the goal
record the message in the communication register,
which the previous rev_valua(41) has received. Then
send_call(A2) sends the message in the communica-
tion register through the second stream. The instrae-
tion send_call(A2} tries to lock the receiver of the
second stream and if suceessful, transfers control to
the receiver, If the receiver is busy for a certain pe-
riod of time or it 180t busy but is not ready to handle

or send. jmp{A3) .

the message, the message is buffered. The instruction
send_call deoes not unlock the current goal record.
When control eventually returns, put_cr(A4) restores
the communication register and send_call({A3) sends
the next message.

When control returns again, execute performs the
recursive call by going back to the entry puoint of the
predicate p. Then the rev_valuef{Al) instruction will
either find no buffered messages or find some. In the
former case, rev_value(dl) obviously suspends, In
the latter case, & retransmitter of the buffer must have
been scheduled, and so rov_value{il) can suspend
umntil the retransmitter sends a message. Moreover, the
resumption address of the rev_valua(iil) instruction
has been recorded by its previous execution. Thus in
either case, axecute effectively does nothing but un-
locking the current goal. This is why last-send opti-
mization can replace the last two instructions into a
single instruction, send_jmp(43).

The instruction send_jup(A3) locks the receiver of
the third stream, unlocks the current goal, and trans-
fers control to the receiver without stacking the return
address. Last-send optimization enables the current
goal to receive the next message earlier and allows the
pipelined processing of message sends. Note that with
last-send optimization, the rev_value(Al) instruction
will be executed only once when the goal starts ex-
ecution. The instructions executed for each incom-
ing message are those from get_cr(A4) through send_
jmp{a3).

The zbove instruction sequence performs the two
message sends sequentially,. However, a vadant of
send.call called send_fork stacks the return address
on the global deque instead of the local stack, allowing
the continuation to be processed in parallel. Note that
gsend_fork leaves the continuation to another proces-
sor rather than the message send itself for the reason
explained in Section 5.3.

We have established a code generation scheme for
general cases including the spawning and the termi-
nation of goals (Section 5.5), explicit control of mes-
sage buffering (Section 5.6), and suspension on non-
streamn variables. Several optimization techniques have
been developed as well, for instance for goals whose
input streams are koown to carry messages of lim-
ited forms (e.g., non-root nodes of a binary search
tree (Fig. 3)). Finally, we note that although process-
oriented scheduling and message-oriented scheduling
differ in the flow of contrel, they are quite compati-
ble in the sense that an implementation can use both
in running a single program. Our experimental im-
plementation has actually been made by modifying a
process-oriented implementntim_:.

5.5 An Example

Here we give the mtermediate code of a najve reverse

The pragram: (1) nreverse{[HIT],0} :- true
[2] nreversa{[], 0) :- true
(3) append([1]J],K,L} := true
(4) append([}, E,L) :- true
entry(nreverse/2)
rovovalua(al)

803

append{D1, [A],0), nreverse(T,01).
o=[].

L=[T1M], append(J,K,M).

K=L.

recefve @ message from the lat arg

(the program 45 usually wailing for incoming messages here)

check_not_sos(101)

if the message 15 eos then colleet the current comm. cell and goto 101
save the message H in the comm, req. fo the regiater of the current PE

create o goal record for § args and record the name

get_cr(X3)

commit Clouse 1 is selecied (no operation)
put.cc(Xa) ereate g comm. cell with o buffer
push_value(X3) put the mesaage H imio the buffer
push_aos put eos into the buffer
g-zetuplappend/3,3}

put.value(AZ GA3) set the Jvd arg of append to O

1t _value (X4, GA2)
put_com_variable{A2 ,GAl)

set the #ad arg of append 4o [H]
create a locked veriable 01 end sef the 2nd ary of nreverse and the

13t arg of append e the pointer to D1,
gssuming thet append will turn 01 inde o comm. cell soon

unlock the curvent goal and do the job on the loeal stack fop

send gos in the comm. reg. to the receiver af 0

if the message is eos then collect the current comm. cell and gote 102

g-call ececule append until i suspends
raturn
labei{101)
commit Clause 2 15 selected (no operation)
zend. callfA2)
proceed deallocate the goal record and return
antry(append/3)
deref {43) dereference the frd arg L
rovovalue(Al) recetve o message from the [al arg.
check_not_=os{102}
commit Clause § is selected Mno operation)

sendn_jmp(A3)

send the received message to the receiver of L, where

‘0! means thet the instruction asaumes thaé L has been dereferenced

label{102)
commit

send_unify_jmp(A2,A3)

Clause § is selected mo operation)
make sure that mesanges sent throuwgh ¥ ore

forwarded to the recefver of L, and refurn

Fig. 4. Intermediate code for naive reverse

program (Fig. 4). In order for the code to be almost
gelf-explanatory, some comments are appropriate here.

Suppose the messages my, ..., m, are sent to the
goal nreverse(In,Dut) through In, followed by the
eos {end-of-stream)) message indicating that the stream
is closed. The nreverse goal generates one suspended
append goal for each m;, creating the structure in
Fig. 5. The ith eppend has as itz second argument
& buffer with two messages, my and eos. The final eos
message to nreverse causes the seeond clause to for-
ward the eos to the most recent append goal holding
. The append holding m,, in response, lets different
(if available) processors send the two buffered messages
g and e0s to the append holding myp.-1. The message
Ty, is transferred all the way to the append holding m;
and appears in but. The following ess causes the next
append goal to send my,—; and another ees.

The performance of nreverse hinges on how fast
each append gozl can transfer messages. For each im-
coming message, an append goal checles if the message
is not eos and then transfers both the message and con-
trol to the receiver of the ontput stream. The message
remains on the communication register and need not
be loaded or stored.

The send_unify.jmp{r;,rz) instruction is used
for the unification of two streams. Arrangements are
made so that next time a message is sent through ry,
the sender is made to point directly to the comemini-
cation cell of ry. If the stream v has a buffer (which is
the case with nreverse), the above redirection is made
to happen after all the contents of the buffer are sent
to the receiver of ra.

It is worth noting that the multiway merging of
streams can transfer messages as efficiently as append.

806

mfr]
mic+1]

1 2 2 2
21 81 3 1 a O ;
inrmrarsa I—-Iﬂmﬂndl—-Iﬂm'EHdI—-{ammdl—-l
Fig. 5. Process structure being created by
nrevarse([m;,... ,m,],0ut)

5.0 Buffering

As discussad in Section 5.2, the producer of a stream s
creates a buffer when the receiver is locked for a long
time, However, thiz iz & rather unusual situation; a
buffer is usually created by &'s receiver when it remains
unready to handle incoming messages after it has un-
locked itself. Here we re-examine the four reasoms of
huﬂ‘r_'ring in Seclion 3:

{1) Selective message receiwing. This happens, for in-
stance, in & program thet merges two sorted streams
of integers info a single sorted stream:

omerga([A]X1],[BIY1] 2} :- &< B |
Z=[8]21], omerge(X1,[BiY¥1],21).

omerge([AlX1],[BIY1],2) :- A»=B |
Z=[B|Z1], omexge([AlX1],¥i,21).

Two n11mb-ETH1 ane from each Enput stream, are neces-
sary for a reduction. Suppose the first number & ar-
vives throwgh the first stream. Then the goal omerge
checks if the second stream has a buffered value. Since
it doesn't, the goal cannot be reduced. So it records
A in the goal record and changes the first stream to a
Luffer, because it has to wait for another number B to
come Llnn'.lgh the second stream. Euppose BI:} A.:I ar-
rives and the first clause iz selected. Then the second
stream should become a buffer and B will be put back.
The first stream, now being a buffer, is checked and a
retransmitter is stacked if it contains an element; other-
wise the buffer1s made to disappear. Finally A is sent to
the receiver of the third stream. The above procedure
is admittedly complex, but this program is indeed one
of the hardest ones to execute in a message-oriented
manner. A simpler example of selective message re-
ceiving appears in the append program in Section 3.5;
its second input stream buffers messages until the non-
recuraive clause is selected.

(2) Suspension on non-stream date. The most likely
case is suspension on the content of a message [eg.,
the first argument of an update message to a binary
search tree). When a goal receives from a stream s
A message that is not sufficiently instantiated for re-
duction, it changes s to a buffer and puts the message
back to it. A retransmitter is hooked on the uninstan-
tiated variable{s) that caused suspension, which will be
invoked when any of them are instantiated.

(3) The sender of o streamn running ahead of the re-
cetver. [t is not always possible to guarantee that the
sender of a stream does not send a message before the
receiver commences execution, though the scheduling
policy tries to avoid such a situation. The simplest so-
lution to this problem 15 to mutialize each stream to an
ernply buffer. However, creating and callecting a buffer
ineurs certain overhead, while a buffer created for the
ahove reason will receive no messages in most cases, So
the current scheme defers the creation of a real buffer
until & message is sent. Moreover, when the message is
guarantesd to be received soon, the put_cem_variable
instruction (Fig. 4} is generated and lets the sender
busy-wait until the receiver executes rov_value.

(4) Circuler process structure. When the receiver sends
more than one message in response to an incoming
message, sequential implementation must buffer subse-
quent incoming messages until the last message is sent
out. In parallel implementation, the same effect is au-
tomatically achieved by the lock of the goal record, and
hence the explicit control of buffering is not necessary.

The retransmission of a buffer created due to the
reason (1) or {3) is explicitly controlled by the receiver.
When a buffer iz created due to the reazon {2) or by
the sender of a stream, a retransmitter of the buffer is
scheduled asynchronously with the reeeiver,

5.7 Mutual Exclusion of Communication Cells

The two felds of a communication eell representing a
stream may be updated both by the sender and the
receiver of the stream. For instance, the sender may
create a buffer and conmect it to the cell when the re-
ceiver is locked for a certain period of time. The re-
ceiver may set or update the cell by the rev_value
instruction, may create or remaove a buffer for the cell
when buffering becomes necessary or unnecessary, may
execute send_unify_jmp and connect the stream to
another, and may move or delete the goal record of its
OWTIL.
This of course calls for some method of mutual ex-
clusion for communication cells. The aimplest solution
would be to lock a communication cell whenever up-
dating or reading it, but locking both a goal record
and a communication cell for each message send would
be too costly. It is highly desirable that an ordinary
message send, which reads but does not update a com-
munication cell, need not lock the communication cell.

However, without locking upon reading, the fallow-
g sequence can happen and inconsistency arises:

{1) the sender follows the pointer in the second field
{the environment) of the communication cell,

{2) the receiver starts and completes the updating of
the communication cell {under an appropriate lock-
ing protocol), and then

807

Table 1. Performance Evaluation (in seconds)

binary process tree
{5000 operations)

naive reverse

{1000 elements)

Language Processing {zearch) (update)

GHC 1 PE (no locking) 1.25 1.83 2.23 (225 LRP5)*
1PE 1.38 210 3.27 (154 kRPS)
2 PEs 0.78 115 2.43 (207 kRPS)
3 PEs 0.55 0.81 171 (294 kRPS)
4 PHs D44 0.63 1.33 (377 kRPS)
5 PEs 0.36 0.53 L0 E!EB kRPS)
& PEs 0.33 0.46 0.96 (523 kRPS)
T PEs 0.33 0.39 0.85 (591 kRPS)
8 PEs 0.33 0.36 0.77 (652 kRPS)

C (recursion} ce -0 0.71 0.72

C (iteration) cc -0 0.32 0.35

(* kilo Reductions Per Second)

(3) the sender locks the (wrong) record r (the geal
record for the receiver or a buffer for the communi-
cation cell) obtained in Step (1) and calls the code
pointed to by the first field (the code) of the up-
dated communication cell.

This can be avoided by not letting the receiver up-

date the second field of the communieation cell. The

receiver instead stores into the record v the pointer p
to the right record. The receiver accordingly sets the
first fleld of the communication cell to the painter o a
code sequence (to be called by the sender in Step (3))
that notifies the sender of the existence of the pointer
3

The sender can now access the right record pointed
to by p via the wrong record r, but it is still desirable
that p is finally written into the second field of the com-
munication cell so that the right record can be accessed
directly next time. This update of the communication
cell must be done before the sender is unlocked and the
control is campletely transferred to the receiver.

For this purpose, we take advantage of the fact that
the 1-byte lock of a record can take states other than
locked' and "unlocked’. When the lock of a record has
one of these other states, a special routine correspond-
ing to that state runs before the goal record of the
sender 15 unlocked, This feature is being used for up-
dating the second field of a communication cell safely.

6. An Experimental System and Its Perfor-
mance

We have almost finished the initial version of the
abstract machine insiruetion set for the shared-goal
method, An experimental runtime system for per-
formance evaluation has been developed on Sequent
Symmetry, a shared-memory parallel computer with
20MHz 80386's. The system is writien in an assem-
bly language and C, and the abstract machine instruc-
tions are expanded into native codes automatically by

a loader. A compiler from Moded Flat GHC to the
intermediate code is yet to be developed.

The current systerm employs 2 smple scheme of
parallel execution as described in Section 5.3. When
the syatem runs with more than one processor, one
of thern acts as & masier processor and the others as
slaves. They act in the same manner while the global
deque is non-empty, When the master fails to obtain a
new job from the degue, it tries to detect termination
and exceptions such as stack overflow. The current sys-
tem does not care about perpetually suspended goals;
they are treated just like garbage cells in Lisp. A slight
overhead of counting the number of goals in the sys-
tem will be necessary to detect perpetually suspended
goals [[namura and Onishi 1980] and for to feature the
shoen construct of KL1 [Ueda and Chikayama 1990],
but it should scarcely affect the result of performance
evaluation described below.

Locking of shared resourees, namely logie variables,
goal records, communication cells, the global degue,
ete,, iz done using the xchg (exchange) instruction as
usual.

Using Program 1, we measured {1) the processing
time of 5000 update operations with random keys given
to an empty binary tree and (2} the processing time
of 6000 search operations (with the same sequence of
keys) to the resulting tree with 4777 nodes. The num-
ber of processors was changed from 1 to & For the one-
processor case, a version without locking funlecking op-
erations was tested as well. The numbers include the
execution time of the driver that sends messages to the
tree. The result was compared with two versions of {se-
guential) C programs using records and pointers, one
using recursion and the other using iteration. The per-
formence of nreverse (Fig. 4) was measured as well.
The results are shown in Table 1.

The results show good (if not ideal) parallel
speedup, though for search operations on a binary
tree, the performance is finally bounded by the sequen-

808

tial nature of the dhver and the root node. Access
contention on the global degue can be another cause
of overhead. Note, however, that the two examples are
indeed harder to execute in parallel than running inde-
pendent processes in parallel, becanse different chains
of message sends share goals. Note also that the binary
tree with 4777 nodes is not very deep.

The binary tree program rin with 4 processors out-
performed the optimized recursive C program. The it-
erative O program was more than twice as fast as the
recursive one and was comparable to the GHC pro-
Erafm run with 8 ProCessors. The cnu:nparisnn1 h.o‘ws‘:w‘.r,
would have been more preferable to parallel GHC if a
larger tree had been used.

The overhead of locking unlocking was about 30%
it nreverse and about 10% in the binary tree pro-
gram. Sinece nreverse is one of the fastest programs
in terms of the kEPS value, we can conclude that the
overhead of locking funlocking is ressonably small on
average even if we Jock such small entities as individ-
ual goals.

As for space eflicency, the essential difference be-
tween our implementation and C implementations is
that GHC goal records have pointers to input streams
'r'l’].ll{." E..r I'Ef.'ﬂl'dﬂ dﬂ not COTIELTG mr::nnq.r b}l’ bﬂil:lg
pointed to. The differenice comes from the expressive
power of streame; unlike pointers, streams can be uni-
fied together and can buffer messages implicitly.

One may suspect that message-orented implemen-
tation suffers from poor locality in general. This is true
for data locality, becanse a single message chain can
visit many goals. However, streams in process-oriented
implementation cannot enjoy very good locality either,
because a tail-recursive goal can generate a long list of
messages. Both process-oriented and message-oriented
implementations enjoy good nstruction locality for the
binary tree program and nreverse.

Comparison of performance between 2 message-
oriented implementation and a process-oriented imple-
mentation was reported in [Ueda and Morita 1980] for
the one-processor case.

7. Conclusions and Fulure Works

The main contribution of this paper is that message-
criented implementation of Moded Flat GHC was
shown to benefit from small-grain, tightly-coupled par-
allelism on aharl:d-me:utury nlu]tipruc:ssara. Further-
more, the result of preliminery evaluation shows thal
the absolute performance is good enough to be com-
pared with procedural programs.

These results suggest that the programming of re-
configurable storage structures that allow concurrent
aceess can be a realistic application of Moded Flat
GHC. Programmers need not worry about mutual ex-
clusion necessitated by parallelization, because it is
achieved automatically at the implementation level. In

procedural languages, parallelization may well require
major rewriting of programs. To our knowledge, how to
deal with reconfigurable storage structures eficiently in
non-procedural languages without side effects has not
been studied in depth.

We have not yet fully studied language constructs
and their implementation for more minute contrel over
parallel execution. The current scheme for the control
of parallelism is a simple extension to the sequential
system; it worked well for the benchmark programs
used, but will not be powerful enough to be able to tune
the performance of large programs. We need a notion
of prionty that should be somewhat different from the
priority construct in KL] designed for process-orented
parallel execution. The notion of faimess may have to
be reconsidered also. KL1 provides the shoen (manor)
construct as well, which is the unit of execution contral,
exception handling and resource consumption control.
How to adapt the shoen construct to message-oriented
implementation is another research topic,

Acknowledgments

The authors are indebted to the anonymous referees
for helpful comments.

References

[Chikeyama and Kimura 1987] T. Chikayama and
Y. Kimura, Multiple Reference Management in
Flat GHC. In Proc. 4th Int. Conf on Logic Pro-
grammming, MIT Press, 1987, pp. 276-203.

[lnamura and Onishi 1990] Y. Inamura and S. Onishi,
A Detection Algorithm of Perpetual Suspension in
KLl. In Proc. Seventh Int. Conf on Logic Pro-
gramming, MIT Press, 1990, pp. 18-30.

[Knuth 1873] D. E. Kouth, The Ant of Computer
Programming, Vol. 1 (Znd ed.}. Addison-Wesley,
Reading, MA, 1973.

[Shapiro 1980] Shapiro, E., The Family of Concurrent
Logic Programming . Computing Sur-
veys, Vol 21, No. 3 (1989), pp. 413-510.

[Ueda and Morita 1990] K. Ueda and M. Morita, A
Mew Implementation Techmique for Flat GHC. In
Proe. Seventh Int. Conf. on Logic Programming,
MIT Press, 1800, pp. 3-17. A revised, extended
version to appear in New Generation Computing,

[Ueda and Chikayama 1990] K. Ueda and T. Chikayama,
Design of the Kernel Language for the Parallel In-
ference Macline, The Computer Journal, Vol 33,
No. 6 (Dec., 1990), pp. 494-500.

