PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
O™ FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © [COT, 1992

791

Implementing Streams on Parallel Machines with
Distributed Memory

tKoichi Konishi

T Tsutomn Maruyama

TAkihiko Konagaya

{Kaoru Yoshida {Takashi Chikayama

Abstract

Stream-based concurrent cbject-oriented programming
languages (SCOOL) to date have been typically im-
plemented in concurrent logic programming languages
{CLL). However, CLLs have two drawbacks when used
to implement message streams on parallel machines with
distributed memory, One is the lack of restriction on the
number of readers of a shared variable. The other is
a cascaded buffer representation of streams, These re-
quite many -interprocessor communications, - which- can
be avoided by language systems designed specially for
SCOO0Ls. The authors have been developing such a
language system named A'UM-90 for A'UM, a SCOOL
with highly abstract stream communication. This pa-
per presents the optimized method used in A'UM-80 to
implement streams on distributed memery. A siream is
represented by a message queue, which migrates fo its
reader’s processor after the processor becomes known,
The improvement from using this method is estimated
in terms of the number of required interprocessor com-
munication, and is demonstrated by the result of a pre-
liminary evaluation.

1 Introduction

Ome natueal use of concurrent logic programming Jan-
guages{CLLs) is to implement the Actor or object-
oriented programming models. In a CLL, 1t is
easy to specify objects running concurrently, com-
municating with one another by messages sent in
streams|[Shapiro and Takeuchi 1983]. Message streams
in CLLs are especially useful, as they provide flexibility
and modularity, and facilitates the exploitation of paral-
lelism; they allow dynamic re-configaration of communi-

INEC Corpatation
#-1-1, Miyazaki, Miyamae-ku, Kawasaki, lanagawa 216, Japan
{kenishi, maruyama, konagaya}feslclnec.cojp

Hnstitute for New Generation Computer Technolagy
1-4-28, Mita, Minato-ku, Tokyo 108, Japan
{yoshida, chikayama }Sicot.orjp

cation channels, while each object knows little about the
partners with whom it is communicating.

To support this style of programming, 2 number of
languages have been proposed ([Furukawa et al. 1934]
[Kahn et al. 1986] [Yoshida and Chikayama 1988]
[Saraswat et al. 1990]). We call these languages siream-
based concurrent object-oriented languages{SCOOL).

Most. research on SCGO0Ls to date has been focused on
providing excellent expressibility. While SCOOLs have
been implemented in CLLs, to our knowledge, no lan-
guage system dedicated for SCOOLs has been imple-
mented. :

A dedicated system for SCOOL can be much more
efficient than those implemented in CLLs when the ab-
straction and other information in programs are fully
exploited. The authors have been developing such a ded-
icated system for a kind of 3COOL, A'UM. The system
is named A'UM-90, and is targeted for multiprocessor
systems with distributed memory.

In this paper, some drawbacks of CLLs as implementa-
tion languages for stream communications are discussed,
then it is shown how A'UM's well-regulated abstract
slreams can be efficiently implemented. A brief descrip-
tion of such an implementation is given, its improvement
over a CLL implementation is estimated, and the results
of a preliminary evaluation are given.

The next section describes the implementation of ob-
jects and stream communication in CLLs. Section 3in-
troduces SCO0Ls as natural descendants of CLLs. Sec-
tion 4 explains why CLLs are inadequate for implement-
ing streams. Section 5 describes A’UM and A’UM-90
briefly. Section 6 describes the implementation of stream
communication in A'UM-90 and its costs. Section T
shows some results of evaluation, The last section gives
conclusion.

2 Objects in CLL

Stream-based concurrent object-oriented programming
languages have evolved from efforts to embody the
Actor or object-oriented programming medels in

CLLs[Shapiro and Takeuchi 1983]. This style of pro-

792

object{[message(Arguments) | In], State) :-
true |
methed (ATguments, State, NewState),
chject{In, MeuState).

Figure 1: A clause representing an object

gramming has the vistues of object-oziented program-
ming such as modularity and natural parallelism in an
extended way[Kahn et al. 1989], For example, an object
implemented in a CLL may have multiple input ports,
and communication ports can be transferred between
processes. Moreover, 1t can send messages before the
destination is determined. In this chapter, an implemean-
tation of objecl-oriented programming in a CLL is briefly
deseribed.

Many CLLs (FCP, FGHC, Fleng, Oc, Strand, ete.)
have been proposed to date. We use FGHC[Ueda 1983
in the following explanation.

Figure I shows a typical example of representing an
object in FGHC, The behavior of an object is defined
b:r' a ﬂu]]]b"_}l' UE I'.'I.-EI..I.'I.EIES E;ITL“H-I' h:.'l u:“: OTH: I]J'l'..'l"u"‘f.';u G;w:u
these clauses; a gozl named ebject representsthe state
of an object af a certain moment. The first argument
is a4 shared variable used 28 a communication port, from
which the object receives messages. The second argu-
ment is the internal state of the object.

When another goal sharing the variable with the first
goal assigns a term [message{fctuals) | Rest] to the
variable, the above clause can be selected, and Rest be-
comes shaved by the wo goals. Actuals are bound to
Arguments, and the body of the clause is executed.

A goal named method performs mest of the aclual
worl, creating new states and assigning it to NewState.
A new ohject goal is created with kest as the first ar-
gument and NewState the second. Thus, an ohject, or a
procesg, is represented by the recurring creation of goals
with altered states.

Communication ports are represented by wvariables
shared by two goals. One goal emits a message by assign-
ing a structure containing a message and a new variable.
When the other goal receives the message by successfully
matching itsell with a head of a clause, the new variable
becomes shared, to be usged as a new port. By repeating
this procedure, these goals can communicate as many
messages as required, one after another. The connee-
tion is closed when a structure containing ne variable is
assigned. Ceommunication in this style iz ealled stream
communicalion. :

Basically, stream communication is one-to-one as de-
scribed above, However, several streams of messages can
easily be merged into one by a simple process. A merger
should have several ports representing the input streams
to be merged and one more for the output. It receives

a message from one of is input ports and forwards it fo
the output port.

Many types of mergers with varying policies can be
devised. A merger of one type might receive from an
arbitrary port, utilizing the non-determinism in clause
selection of the CLL. A merger of another type might
concentrate on one port unil the connection through it
15 closed | then it might move on ta anather port. We call
the former type a merger, and the latter an eppender,
becanse it effectively appends streams one after another.

3 SCOOL

Programming objects in 2 CLL has several obvious draw-
backs. First, the implementation of stream commmuni-
cation is explicitly described in the program. Streams
are explicitly formed using messages and a variable,
and many to one communications are implemented with
merger processes. Programmers must make sure that
the same conventions are used throughout their pro-
grams. Secondly, contenfions are apt to happen, due
te the lack of restriction en multiple writers to a van-
able. Lastly, the verbosity, in particular manipulation of

-internal states, is excessive, It is-curnbersorne to provide

all the details of communication.

Many SC0O0Ls have been proposed to remove these
drawbacks ([Furukawa et al, 1984] [Kahn et al. 1986]
[Yoshida and Chikayama 1988) [Saraswat et al. 1990]).
These languages have a form for class definition, intro-
duced to make a concise description of object behavior
possible. Stream communication is denoted by dedicated
expressiona, with its implementation removed from pro-
grams.

To our knowledge, all SCO0Ls have been implemented
in CLLs. It is natural and efficient to use CLLs for this
purpese, but is problematic with respect to the resulting
system’s performance. CLL systems can not provide a
thoroughly ebject-oriented view efficlently, such as inte-
gers operated on by messages. Another problem is im-
plementing stream communication on a multiprocesser
systemn with distributed memory. We focus on the latter
problem, and explain the inadequacies of CLLs in the
next section.

4 Problems in implementing
streams in CLLs

Stream communication, and more generally asvo-
chronous sommunication, uses message buffers to store
pending messages. In distributed memory multiproces-
sar systems, accessing a message buffer requires inter-
processor communications(IPC), unless both the access-
ing process 2nd the buffer are on the same processor.
While a single IPC suffices to write a message into a

buffer on a remote processor, reading a message requires
two: a request and a reply. Placing the buffer on the
reader's processor can save one [PC for each message
comrunicated through the buffer.

However, it's difficult for CLL systems to place the
buffer on the reader’s processor. CLL systems use a
shared variable as a message buffer, and they can't tell
the readers of a varizble from the writers. In addition,
there may be multiple readers for a variable. In that
case, there is a relatively small advantage in saving [PCs
for only one reader among many.

Moreover, the number of IPCs required would not be
reduced even if the buffer is placed on the reader’s pro-
cessor. In a CLL, streams are represented as a sequence
of message buffers, and the writer only knows the last
one. When it becomes full, a new buffer is appended to
the sequence, and if it is created on the reader’s proces-
sor, the address must be propagated to the writer. This
costs an additional TPC for every message sent.

Since CLL systems may not place shared variables on
the reader’s processor, implementing these streams in
CLLs results in costly remote reads, repeated for every
budffer.

The argument so far prompts the development of a
dedicated sistem for SCO0Ls. AUM-00is such a eys.
tem for A'UM, a SCOOL that thoroughly integrates
streams into its specification. The next section describes
A"UM and gives an overview of A'UM-90.

5 A'UM and A'UM-90

5.1 Behavior of Objects

All A'UM objects run concurrently. They keep internal
states called siots, and execute methods according to the
messages they receive,

The class an object belengs to defines its behavior. A
class definition has the following form, which includes the
declaration of the class neme, the classes it inherits from,
slot names (local state) and definitions of its methods.

class closs_name,
super-class_decl
slot_decl
method_defs
end .

An object receives messages from only one stream,
called its inferface. An object is referenced by connect-
ing a stream to its interface. Streams connected to the
ohject later on will be merged into the interface.

A method iz defined by the following form.

selector =» actions.

793

where selectoris the method's name, and actions specify
the operations it performs.

The only operations methods are allowed to pecform
are connecting a stream to another, creating an object,
and sending a message to a stream.

5.2 Streams in A'UM

Stream commumnication in A'TM is highly abstract, pro-
viding safe communications and the notion of channels.
Directed variables prevent contertions for a stream. The
gernantics of variables are enhanced so that they denote a
set of confluent streams called a channel, 2 more general
concept than a stream.

All variables in A'UM have a stream as their value
The role of streams in A’UM is similar to pointers in
Lisp; streams are the sole way of referencing objects.

5.2.1 Operations on Streams

A stream is a sequence of messages, directed to a cer-
tain receiver. A message sent to a stream is placed at
the end of the stream. Sending is expressed simply by
Juxtaposing a stream and a message, as follows.

stream message

Connection of two streams are denoted by the follow-
ing syntax.

receiver = siream

This means that all messages senl to siream flow info
receiver,

Closing a stream indicates that no more messages will
be sent through it. Closing iz always performed auto-
matically, when a stream is discarded.

In addition, messages arriving at an object’s interface
stream are consumed exclusively by that object. This
operation is also performed automatically.

5.2.2 Directed Streams

Stream connection is asymmetric; a siream may only
be connected to another stream once, but many other
streams may be connected to it. In order to assure at
compile-time that streams are connected only once, rel-
erences to a stream are classified into two types, called
directions. An inlet is a reference to a stream from which
messages flow; an outlet is another kind of reference in
which messages are sent!. The single connection of 2
stream is assured by the restrictions requiring that a
stream has only one inlet and that the right hand value
of a connect expression be an inlet,

Inlets and outlets are distinguished syntactically. Vari-
ables referencing inlets are denoted with a variable name
with - prepended to it, e.g. “X. Slots holding inlets and

1They are named from an object's poiot of view.

794

class account.
cut balance.
rimdt —-* 0 = !balance.
:depaait{‘ﬂ.lcunt} -
Ibalance + Amount = lbalance.
rwithdraw(”Amount, “Aek) ->
(Amount < !balance) 7 (

:'true =»
'balance - Amount = !balance.
'false =->
Ack :overdrawn{!balance}.
I,
:balance('balance) -> .

end.

Figure 2: Bank account

outlets are written as slot names preceded by @ and by
!, respectively. Expressions have a value whose direction
is determined according to their kind. Messages are dis-
tinguished by the directions of their arguments as well
as their number, and the message's name.

5.2.3 Channel Abstraction

Two tyvpes of siream confluence, namely mergers and
appenders have special support in the language. As
mentioned earlier, o merger performs non-deterministic
merging, and an appender connects streams one after
another in a specified order.

A channel is a tree formed of these confluences of
stremms. Varlables represent a channel of & particular
form, consisting of an appender and an arbitrary num-
ber of mergers. All outputs of the mergers are connected
to inputs of the appender.

For a variable named Foe, "Foo is an inlet of the root
streamn of the channel. Foo$1, Foo$2, Foo$3, and so on,
are leaf streams. Foo is equivalent to Foofl. They ame
appended into the root in the order of their number.
When there are many expressions having the same mum-
ber, the streams they denote are merged before being
a'FPCI:Id'L‘d.

Using channels reduces the description of mergers and
appenders in programs, which would be indecipherable
otherwise.,

5.3 An Example Program
Figure 2 is an example A'UM program defining a class

for a bank account.

Arguments in a message are connected with values
of the expressions in the selector corresponding to the
message. For example, :deposit receives an outlet and
connects “Amount fo it. :balance receivwes an inlet and
connects it to the value of !balance.

A binary expression is & macro form. It expands into
a send expression, which sends to the left hand value a
mesgage with two arguments, the right hand value and
an inlet of & new stream, The name of the message is de-
termined according to the operator. A macro farm eval-
nates info an outlet of the new stream. Thus, !balance
+ imount are expanded into !balance :add{Amount,
“Result), with Result as its value.

ezp ? (...) la an anonymous class definition,
which is used to represent a conditional behavior. Either
aof the methods : "true or :'false is executed by the
instance of the anonymous class, aceording to the result
of Amount < 'balance.

5.4 An outline of A’UM-90

AUM-90 is an A'UM language system, independent of
any CLL. It provides efficient stream communication on
a distributed memory multiprocessor systern. Moving
strewm data structures to their reader’s processor saves
many IPCs, which are otherwise required in stream com-
munication.

AM-90 manages coarse-grained processes. Specifi-
cally, a process executes an instance of a user-defined
class,

An A'UM-80 system consists of a compiler and an
emulator. The compiler generates code for an absiract-
machine designed for the syatem, and the emulator sxe-
cutes the code.

Two different types of platform have been used. One is
a Sequent Symmetry with 1§ processors, and the other
is 2 number of Sun Sparc Stations communicating by
Ethernet. Although a Symmetry has shared memory,
we nsed it as a distributed memory machine. We used
a small part of the memory to implement message com-
munication, and divided the rest among processors.

6 Implementation of Streams in
A'UM-90

The implementation described here fully utilizes infor-
mation on siream abstraction and message flow direc-
tion available in A'UM programs. Although the delivery
of messages is somewhal delayed, the number of IPCs
required is significantly reduced, when many messages
are sent through a leng cascade of streams. Moreover,
the delay is eliminated in many cases by various subtle
optimization methods.

6.1 Streams

A stream is represented by a structure consisting of a
message queue, a poinker to its receiver, and a reference
count. The reference count is necessary for detecting

PESI

PE#2 FE#3 Chbject
treamd

e DOTOECLL

- |

| migraté” Sizeami 000t
s . 5

Figure 3: Stream location

closed streams and for implementing the appenders cor-
rectly. The structure is named M node, where M stands
for merging. A merger is simply tepresented as an M
node having more than one pointer referring to it. An
appender is represented by a structure consisting of an M
node and a pointer to the following stream. The strue-
ture is named A4 node,

With these structures, implementing operations on
streams within a processor is straighlforward. Sending
a message 18 simply queuing it. Connecting a stream to
& receiver s making the pointer in the stream point to
the receiver and increasing the reference count of the re-
ceiver. When a stream is closed, its reference count is
decreased, Receiving a message is just dequening it.

6.2 Location of Streams

As argued in 2 previcus section, a stream should be
placed on its receiver’s processor in order to decrease the
number of IPCs. However, when a stream is created, its
receiver is still unknown. So we place it on the processor
local bo its creater at ibs creation, and let it migrate later
to the receivec's processor(see Figure 3),

Since it is always an object that ultimately receives
messages sent to a stream, the stream migrates to the ob-
ject’s processer. When the stream is directly connected
to the object, it migrates immediately. ¥ it is connected
to an intermediate stream, 1§ waits until the intermediate
slream migrates,

Suppose that an address of a stream in a processor is
announced to an object in another processor and that
the stream has not yet migrated. If the object sends
messages to the stream, two series of IPCs oceur, one
for sending them to the stream, and another for the mi-
gration process of the stream. We eliminate the former
series hy putting the messages into a new siream cre-
ated on the same processor as the sending object and
connecting the new stream fo the orginal.

With this strategy, and assuming that objects do not
migrate, all messages except those used for implementing
the strategy are transferred between processors at most
once, In the next section, a more detailed description of
the stream migration is given.

793

6.3 Migration Procedure

In the following description, all streams are supposed to
reside in different processors unti] they move. Opera-
tions within a processor are trivial, and are assumed to
cost much less than ones involving IPCs. It is also sup-
posed that streams are connected in a processor other
than that of the receiving object. Otherwise, the migra-
tion procedure iz so simple to become identical with an
ordinary sending without migration,

1. A stream is placed on the same processor as its cre-
ator object.

2., When the siream is connected, a control message
named where is sent to the specified receiver. The
control message has & pointer to the stream and a
tag showing the type of the slream, i.e., either an M
node or an A node.

3. The where causes the following actions according to
the type of the receiver:

a stream before its migration handles the con-
trel message as if it is an ordinary message.
That is, it is put into the receiver’s queue.
It will be transferred again when the receiver
eventually migrates, and will be forwarded to
another receiver, which should cause the fol-
lowing cage.

an object or a stream after its migration

creates & mew node of the type indicated by
the tag in the control message, and reports the
address of the new node by a conirol message
pamed here to the stream waiting for the re-
ply. When the type of the immigrant and the
receiver is the same, the receiver creates no new
node, and reports its own address.

4, When the stream receives the here, it migrates to
the specified new residence, in one of the following
manners according to ils type:

M node It sends all messages in its queue to the
new residence. If it hasa't been closed vet, it
leaves in the former residence a pointer for-
warding to the new location. The original res-
idence will be reclaimed when it is closed.

A node In addition to the procedure for the M
node, the stream to be appended to the migrat-
ing one is connected to the same receiver at the
moment when this A node is closed. That is, a
new where with a pointer to the stream is sent
to the receiver.

796

6.4 Migration Cost

Each stream creates a where. [t is transferred between
processars bwice, once when the stream is connected, and
once when its receiver migrates. The second transfer
doesn't happen if the receiver is an already moved stream
or an object. Suppose a channel connected to an object
consists of n streams, and of which ny are connected
directly to the object, then the number of IPCs for where
iz m 4 (n—ng)

A here is created in correspondence with a where, and
i transferred between processors once. For all here's , n
1PCs accur,

Migration brings about no transfer of control mes-
sages, 80 the number of [PCs required for migration is
n+(n—ng)+n=3:n-ny

Closing a stream requires another kind of control mes-
sage. We call it elose. Each stream sends its reader one
close when closed. Thizs adds up to n close’s requiring n
IPCs.

Ordinary messages are transferred between processors
always once. If there are m ordinary messages to be sent,
then, in total,

(dn—mg)+m+n

transfers between processors occur,

How many IPCs occur for stream communication if
streams don’t move? Neither of where and here are cre-
eted. A ecloge is still created for a stream. The number
of times ordinary messages and close’s are transferred
depends on the structure of the channel.

A channel s a tree having streams as its nodes. Sup-
pose the i-th node receives m; messages, and its depth is
di, where a depth of a node is number of streams in the
path from the leafl to the rool. For example, the depth
of a leal dirchlJr connected to an ul:rjl:l:.’l. is 2. Then mes-
sapes sént to the i-th leaf 15 transferred d; — 1 times, and
the total number of transfers will be:

S - 1)(ms + 1)

=1

The condition when it requires less IPCs to imple
ment stream communication with migrating streams
than without them is:

T

i =1)(mi+1)> (3n—ny)+m+n

im]
This can be rewritten as:
Z{d; = 2Wmy+ 1) > 3n—ny
i=1

Since d; can not be smaller than 2, d;—2 never becomes
negative. The next term m;+1 is the number of messages
sent from & node, including a elose. The last term In —

14 i5 the number of control messages used to move all
streams.

The above condition says that il the channel has some
intermediate nodes befween the root and leaves, and
rore than a certain number of messages are sent through
them, then stream migration is beneficial. Conversely, if
all streams in a channel are directly connected to an ob-
ject, or too few messages are sent, streams should not
be moved. The next section discusses some optimization
based on detecting those cases,

6.5 Further Optimization

The left-hand side of the zhove condition becames zero
when all streams are directly connected to an object.
When connecting a stream, it js defected al run-time
that the receiver is an object; pointers are tagged to in-
dicate the type of the pointed structure. By not moving
those streams, the right-hand side is zlso decreased to
zero when the left-hand becomes zero.

When less than two messages are sent through a
stream, the stream does not migrate, le. it does not
send out a where, More detailed analysis shows that twe
is the least number to make stream migration beneficial.

In. addition, various minor optimization methods are
applied to reduce the delay of the first message’s deliv-
ery, For example, the first message is sent with a where,
packed together in one IPC, if it is available when the
where is zent out. When a where is received by & stream
that only bridges two other streams, receiving no ordi-
nary messages, it immediately forwards this where in-
stead of sending out a new one. Such a siream can be
distinguished by checking its reference count when it re-
ceives a where.

7 Ewaluation

In order to evaluate performance of the implementation
described in the sections so far, we measured the follow-
ing three values:

s Delay time
¢ IPC load
s Total elapsed time for entire execution of a program

As a contrel, we measured against an A'UM-90 system
which does not migrates streams. We call this system
NO_WHERE, and the system that performs the migra-
tion WHERE in the fellowing sections.

Programs used in the measurement of delay time and
IPC load form a linear ekannel, a long chain of streams
without any branches, and send along the channel. Fig-
ure § shows the objects’ configuration, Each PE creates
one stream on itselfl,. When the PE receives a message
connect, 1b connects its stream to the next lower stream

¥ Teallo — —
PERD A
i v-!-b- =
entineed wi‘ i
[-
IR P
R I E I T

Figure 4: Objects’ configuration

on ancther PE. Also, the first PE releases several mes-
sages named hello at its stream,

The eonnect circulates around the PEs, one at a time,
through a channel different from that thorough which
hellos flow. Two programs which differ in direction of
the circulation were used. We call one of them DOWN-
STREAM, in which a connect flows in the same direction
as hellos, and the other UPSTREAM, in which & connect
flows against hellos, The connect in Figure 5 is flowing
UPSTREAM.

The time was measured from after Lthe release of Lhe
hellos and & connect untit the arrival of the last hells-

7.1 Delay time

Figure § shows the result of the delay time measure-
ment, sending up to fen messages down a channel of
length ten.

The values are elapsed time measired on an unloaded
Sequent Symmetry, using 10 PEs, They includes CPU
time and idle time during which PEs were waiting for
53 AEES.

In the DOWNSTREAM cese, delay time in the
WHERE is longer than in the NO_WHERE by at most
1000 msec, as expected. In the UPSTREAM case, how-
ever, messages arrive earlier in the WHERE than in the
NOWHERE by 200 msec. The reason for this reversal
is that the migration of streams took place concurrently
with the circulation of the connect in the WHERE. After
the connect reached the uppermost PE, hellos were sent
directly to their final receiver in the WHERE, while, in
the NO_WHERE, they flowed through every FE having
a part of the channel.

From these results, we can expect that the difference
in the delay time of the WHERE and the NO_WHERE
would be smaller than 1000 msec when the connections of
& channel’s constituent streams ocour in a varying order.

Also, note that the delay time for the first message
in the WHERE is much smaller than these for the later
messages. This results from the optimization, mentioned
at the section 6.3, of sending a where and the first mes-
sage together whenever possible.

797

 irileeiiiiaae

= -
P WHERE, EPSTAEAN -+ |
g WHERE, DOSMETHIAN =
saenl ¢ W BHERE, CPOTHEAN -5-
; HO_WHERE, DOUMSTREAN =

oo}

] £
E p—
] S L -
L e
3 el ‘___'_'_.___‘___________.._-—-—
i P
4 uemop R S
''_,"-l—'-r_'_
115 S
="
1404 : : : .

Figure B: Delay time

e

WHERE, OPSTREAM = '
WHERE, DOMMSTREAM -
WO_MEERE, TPETREAM o-

BO_WAERE, DOMRETAEAM

CPT Elms(manc)
g
\

1 T ' e
LoD 13D 140 Q160 I80 300
numsbar of ballaos

Figure 6: [PC load

7.2 IPC load

Figure T shows the result of the [PC load measurement,
sending up to 200 messages down a channel of length 500.
The values are CPT time measured on an unloaded Se-
quent Symmetry, using 10 PEs. The resuits confirm that
the IPC load in the NO_WHERE eventually becomes
much [arger than that in the WHERE as the number of
released messages grows.

7.3 Total elapsed time

Figure 8 and Figure 9 shows results of measurements
using a program PRIME, which enumerates prime num-
bers by the generate-and-test method. The graphs in
Figure & are obtained from 10 PEs in a Symmetry, and
those in Figure 9 are from izolated Ethernet network con-
sisting of two Sun Spare Stations. The top two graphs
in each figure are elapsed time, the next two are average
total CPU time for a PE, and the other one is CPU time
for a PE, spent only for processing other than [PC. The
last one is estimated from CPU time for execution using
1 PE, divided by the number of PEs, i.e., 10.

The graphs for elapsed time shows that the WHERE

793

S0 e

—
MO _HIERL, elapasd +—

Limm{mams)

——

o . !-I'Hl H;II:I 600 SO0 1050 3300 1400 Q€048 1604 200
maiimen intager Emsted

]

Figure 7: PRIME on shared memory

Hog v r T - T
Hit_HIERE, elapsmd =
WRENE, alagummnd a-
£0000 |- K% WHERE, CPU o
WHESE, CBU v
CFY, No IPC e
50000 [
E 10000
B aenost
b}
20000 |
10600
e
= = J—
g

e v e irs . .
] 200 400 &00 80D 100D 1350 1400 1800 000 2000
naximup inEoger tosted

Figure &: PRIME on Ethernsat

is faster than the NO_WHERE. On a Symmetry, the en
tire speedup can be explained by decrease of CPU time.
There is up to 40% improvement in CPU time spent for
IPC, which can be read from the difference between to-
tzl and non-TPC portion of CPU time. On Ethernet, the
speedup is much larger than the decrease of CPU time,
due to much slower communication.

8 Conclusion

Streams in CLLs are difficult to implement efficiently for
two reasons:

1. Message buffers are not always placed on their read.
ers' processor, because an arbitrary number of read-
ers are allowed for a buffer. Therefore, interpro-
cessor reading from the buffer takes place with two
IPCs, instead of one required for writing into i,

2. A stream is represented by cascaded message
buffers, which CLLs don’t treat as a single body.
Consequently, even if these buffers are placed on
their reader's processor, their address has to be re-
peatedly sent to their writer.

This is not the case for AUM. A’UM has abstract
stream communication, whose implementation is left as
the language systems’ responsibility. In addition, every
stream is restricted to have only one reader, So streams
in ATM can be more efficiently implemented than ones
in CLLs.

An ATUM-00 moves a stream bo its reader's processor,
and zaves about half of the [PCs required in CLLs. In
spite of the migration, it deliver the first message through
ihe stream with small delay. A prime mumber generator
program runs up to 40 % faster in an A'UM-90 than in
the system does not migrate streams.

While the optimization method given in this paper
tries io reduce the number of [PCs for a given distri-
bation of abjects, it is alse important to find the best
distribution of cbjects. Of course, these methods have
to balance the amount of IPCs and the parallelism ex-
ploitation.

Acknowledgments

We thank Shinji Yanagida and Toshio Tange of NEC Sci-
entifie Information System Development for developing
the ATUM-90 absiraci-machine emulator.

References

[Furukawa et al, 1984] K. Furukawa, A. Takeuchi, 5. Kuni-
fuji, H. Yasnkewa, M. Ohki, K. Usda, Mandala: A Lopic
Hosed Knowledge Programming System, Proc. FGCS'84,
November 1984.

[Kahn et al. 1986] K. Kahn, E. DD, Tribble, M, §. Miller, D.
(<. Bobrow, Objects in Concurrent Logic Programming
Languages, Proc. QOPSLA'SE, September, 1986

[Kahn et al. 1989] K. Kahn, Objects - a fresh look, Proc,
Third Euwropean Conf. on Object-Oriented Program-
ming, Cambridge University Press, July 1989,

[Saraswat et al. 1990] V. A, Saraswat, I{. Kahn, J. Levy,
Janus: A step towards disiribufed constraint progrom-
ming, North American Logie Programming Conference,
Oetober 1090,

[Shapire and Takeachi 1983] E. Shapiro, A. Takeuchi,
Object-oriented Programming in Coneurrent Prolog, New
Generation Computing, 1, 1983,

[Ueda 1985] K. Ueda, Guarded Horn Clauses, Technical Re-
port TR-103, ICOT, June 1985,

[Yoshida and Chikayama 1988] K. Yoshida, T. Chikayama,
AUM: A Streamn-Based Object-Oriented Language, Proc.
FGOS'EE, November 1988,

