PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
OM FIFTH GENERATION COMPUTER SYSTEMS (992,
edited by ICOT. © 1COT, 1992

739

OR-Parallel Speedups in a Knowledge Based System:

on Muse and Aurora

Khayri A. M. Ali and Roland Karlsson

Swedish Institute of Computer Science, SICS
Box 1263, S-164 28 Kista, Sweden

khayri@sics.se and roland@sics. se

Abstract

The paper presents experimental results of runming a
knowledge based system that applies a zet of rules to
a circuit board (or a gate array) design and reports
any design errors, on two OR-parallel Prolog systems,
M\JEE B.'El.d A'L'IIGI‘E.._‘ 'im'l'!l]E‘]'I'.IHI'I*.P.'d on a I'.I'I.'I.'I'.I.'I!JEI Uf EI'.IaI‘E‘d
memory multiprocessor machines. The knowledge based
systern is written in S5ICStus Prolog, by the Knowl-
edge Based Systermns group at SICS in collaboration
with groups from some Swedish companies, without con-
sidering parallelism. When the system was tested on
Muse and Aurora, without any modifieations, the OR-
perallel speedups were very encouraging as a large prac-
tical application. The mimber of processors used in our
experiment is 25 on Sequent Symmetry (S81), 37 on
BEN Butterfly IT (TC2000), and 70 on BBN Butterfly
I {GP1000). The results obtained show that the Aurora
system is muech more sensitive to the machine architec-
ture than the Muse system, and the latter is faster than
the former on all the three machines used. The real
speedup factors of Muse, relative to SICStus, are 24.3
on 581, 31.8 on TC2000, and 46.35 on GP1000.

1 Introduction

Twe main types of parallelism can be extracted from
a Prolog program. The first, AND-parallelism, utilizes
possibilities for simullanecus execution of several sub-
problems offered by Prolog semantics. The second, OR-
parallelism, utilizes possibilities for simultaneous search
for multiple solutions to & single problem. This paper
is concerned with two systems exploiting only the lat-
ter type of parallelism: Muse [Ali and Karlsson 1990a)
and Aurora [Lusk et ol 1990]. Beth systems support
the full Prolog language with its standard semantics,
and they have been implemented on a number of shared
multiprocessor machines, ranging from 2 few proces-
sors up to around 100 processors. Both systems show
good speedups, in comparison with good sequential Pro-
log systems, for programs with a high degree of OR-
parallelisin,. The two systems are based on two dif-

ferent memory models. Aurora iz based on the SRI
[Warren 1887] and Muse on incremental copying of the
WAM stacks [Ali and Karlssen 1990a]. The two systems
are implemented by adapting the same sequential Pro-
log system, SICStus version 0.6. The extra overhead
associated with this adaplation is low and depends on
the Prolog program and the machine architecture. For
a large set of benchmarks, the average extra overhead
for the Muse system on one processor is around 5% on
Sequent Symmetry, 8% on BEN Butferfly GP1000, and
22% on BBN Butterfly TC2000. For the Aurcra sys-
tem with the same sel of the benchmarks, it is arcund
25% on Sequent Symmetry, 30% on BBN Butterfly
GP1000, and 77% on BEN Butterfly TC2000. Earlier re-
sults [Ali and Karlsson 1990b, Ali and Karlsson 1990¢,
Ali et al. 1991a, Ali et al. 1991b] show that the Muse
system is faster than the Aurora system for a large set
of benchmarks and on the above mentioned machines.

In this paper we investigate the performance results
of Muse and Aurora systems on those multiprocessor
machines for a large practical knowledge based system
[Holmgren and Orsvirn 1989, Hagert et al. 1988]. The
knowledge based system is used to check a circoit board
{or a gate array) design with respect Lo a set of rules.
‘These rules may for example be imposed by the develop-
ment tool, by company standards or testability reguire-
ments. The knowledge based system has been written
in SICStus Prolog [Carlsson and Widén 1888], by the
EKnowledge Based Systems group at SICS in collabora-
tion with groups from some Swedish companies, without
considering parallelism. The gate array used in our ex-
periment consists of 755 components, The system was
tested on Muse and Aurora without any modifications.
One important goal that has been achieved by Muse
and Aurcra systems is running Prolog programs that
have OR-parallelism with almost no user annotations
for getting parallel speedups,

The speedup results obtained are very good on all the
machines used for the Muse system, but not for Aurora
on the Butterfly machines. We found that this appli-
cation has high OR-parallelism. In this paper we are
going to present and discuss the results obtained from
the Aurora and Muse systems on the thres machines

740

tised,

The paper is organized as follows. Section 2 briefly
describes the three machines used in our experiment,
Section 3 briefly describes the iwoe OR-parallel Pro
log aystems, Muse and Aurora. Section 4 presents the
knowledge based system. Sections 5 and 6 present and
discuss the experimental results. Section T coneludes
the paper.

2 Multiprocessor Machines

The thres machines used in our study are Sequent Sym-
metry 581, BBN Butterfly TC2000, and BBN Butterfly
GP1000. Sequent Symmetry is a shared memory ma-
chine with a commeon bus capable of supporting up to 30
{1386) processors. Fach processor has a 64-KByte cache
memory. The bus supports cache coherence of shared
data and its capacity is 80 MByte/sec. It presents the
user with a uniform memory architecture and an equal
access time to all memory,

The Butterfly GP1000 is a multiprocessor machine
capable of supporting up to 128 processora. The (GP1000
is made up of two subsystems, the processar nodes and
the butterfly switch, which connects all nodes. A pro-
cessor node consists of an MOG8020 microprocessor, 4
MEBEyte of memory and a Processor Node Controller
(PNC) that manages all references. A non-loeal MEmory
access across the switch takes about 5 times longer than
local memory access (when there is no contention). The
Butterfly switch is a multi-stage omega interconnection
nelwork. The switch on the GPL000 has a hardware
supported block copy operation, which iz used fo im-
plement the Muse incremental copying strategy. The
peak bandwidth of the switeh is 4 MBytes per second
per switch path.

The Butterfly TC2000 32 a similar to the GP1000
but iz a newer machine capable of supporting up to 512
processors. The main differences are that the proces-
sors used in the TC2000 are the Motorola 88100s, They
are an order of magnitude faster than the MOG2020 and
have two 16-KByie data and instruction caches. Thus
in the TC2000 there is actually a three level memory hi-
erarchy: cache memory, local memory and remote mem-
ory. Unfortunately no support is provided for cache co-
herence of shared data. Hence by default shared data
are not cached on the TC2000. The peak bandwidth of
the Butterfly switch on the TC2000 is 9.5 times faster
than the Butterfly GP1000 (at 38 MBytes per second
per path). The TC2000 switch does not have hardware
support for block copy,

3 OR-Parallel Systems

In Muse and Aurora, OR-parallelism in & Prolog search
tree is explored by a oumber of workers (processes
or processors). A major problem introduced by OR-
parallelism is that some variables may be simultane-
ously bound by workers exploring different branches of
a Prolog search tree. Two different approaches have
been used in Muse and Aurora systems for solving this
problem, Muse uses incremental copying of the WAM
stacks [Ali and Karlsson 1990a] while Aurora uses the
SR memory model [Warren 1987].

The idea of the SRI meodel is to extend the conven-
tional WAM with a large binding array per worker and
modify the trail to contain address-value pairs instead of
just addresses. Each array is used by just one worker to
store and access conditional bindings, i.e. bindings to
variables which are potentially shareable. The WAM
stacks are shared by all workers. The nodes of the
search tree contain extra fields to enable workers to move
around the tree. When a worker finishes a task, it moves
over the tree to lake another task. The worker starling
a new task must partially reconstruct its array using the
irail of the worker from which the task is taken.

The incremental copying of the WAM stacks used in
Muse is based on having a number of sequential Prolog
engines, each with its own local address space, and some
global address space shared by all engines. Each sequen-
tial Prolog engine is a worker with its own WAM stacka.
The stacks are not shared between workers. Thus, each
worker has bindings associated with its eurrent branch
in its own copy of the stacks. This simple solution
allows the existing sequential Prolog technology to be
ugsed without loss of efficiency. But it requires copying
data (stacks) from one worker to another when a worker
runs out of work. In Muse, workers incrementally copy
parts of the (WAM) stacks and also share nodes with
each other when a worker runs out of work. The two
workers involved in copying will only copy the differing
parts between the two workers states. The shared mem-
ory space stores information associated with the shared
nodes on the search tree. Workers get work from shared
nodes through using the normal backtracking mecha-
nism of Prolog. Each worker having its own copy of the
WAM stacks simplifies garbage collection, and caching
the WAM stacks on machines, like the BBN Butterfly
TC2000, that do not suppert cache coherence of shared
data,

A node on a Prolog search tree corresponds to a Pro-
log choicepoint. Nodes are either shared or monshared
(private). These nodes divide the search tree into two
regions: shared and privefe. Each worker can be in ei-
ther engine mode or in scheduler mode. In the engine
mode, the worker works as a sequential Prolog system
on private nodes, but is also able to respond to interrupt
gignals from other workers. Anytime a worker has to ac-

cess the shared region of the search tree, it switches to
the scheduler mode and establishes. the necessary coor-
dination with other workers. The two main functions af
a worker in the scheduler mode are Lo maintain the se-
quential semanties of Prolog and to mateh idle workers
with the available work with minimal overhead.

The two systems, Muse and Aurora, have differ-
ent working schedulers on the three machines used in
our experiment. Aurora has two schedulers: the Ar
gonne scheduler [Butler e ol 1988]) and the Manch-
ester scheduler [Calderwood and Szeredi 1989]. Accord-
ing to the reported results, the Manchester scheduler al-
ways gives better performance than the Argonne sched-
uler Mudambi 1991, Szeredi 1989). So, the Manchester
scheduler will be used for Aurora in our experiment,
Muse has only one scheduler [Ali and Karlsson 1900c,
Ali and Karlsson 1991], so far.

The main difference between the Manchester sched-
uler for Aurora and the Muse scheduler is in the strat-
emy used for dispatehing work., The strategy used by the
Manchester scheduler is that work is taken from the top-
most node on a branch, and only one node at & time is
shared, In Muse, several nodes at a time are shared and
work 13 taken from the botiommost node on a branch.
The bottommosl stralegy approximates the execution of
sequential implementations of Prolog within a branch.
Another difference between the two schedulers is in the
algorithme used in the implementation of cut and side
effects to maintain the standard Prolog semantics,

Many optimizations have been made of implementa-
tion of the Aurcra and Muse systems on all the three
machines. The only optimization that has been im-
plemented for Muse and not for Aurcra is caching the
WAM stacks on the BBN Butterfly TCO2000. In Aurora
the WAM stacks are shared by the all workers while in
Muse each worker has its own copy of the WAM stacks.
Therefore, it is straightforward for Muse to make the
WAM stack areas cachable whereas in Aurora it requires
a complex cache coherence protocol to achieve this ef
fect.

4 Knowledge Based System

One important process in the design of circnit boards
and gate arrays is the checking of the design with respect
to a set of rules, These rules may for example be im-
posed by the development tool, by company standards
or by testability requirements, Until now, many of these
rules have only been documented on paper. The check is
performed manually by pesple who know the rules well.
Increasing the number of gates in cirevit boards (or in
gate arrays) makes the manual check a very difficult pro-
cess, Computerizing this process is very useful and may
be the most reliable solution. The knowledge based sys-
Lems group at SICS, in collaboration with groups from

741

some Swedish companies, has been developing a knowl-
edge based system that applies a set of rules to a cireuit
board (or a gate array) design and reports any design er-
rors [Hagert et ol 1988, Holmgren and Orsvarn 1989).
The groups have developed two versions of the knowl-
edge based system. The first version has been developed
using a general purpeose expert system shell while the
second has been developed using S51CStus Prolog, The
latter, which will be wsed in our experiment, is more
flexible and more efficient than the former. It 15 around
10 times faster than the first version on Hinsln proces-
sor machines, When it has been tested, without any
moadifications, on Muse and Aurora systems on Sequent
Symmetry, the speedups obtained are linear up to 25

ProCessnrs.

One reason for the high degres of OR-parallelism in
this kind of application is that all of the rules applied
to the circuit board {or a gate array) design are inde-
pendent or could be made independent of each other.
The second source of OR-parallelism is the application of
each rule to all instances of a given cirenil sub-assembly
on the beard. A circuit sub-assembly can be either a
compenent (like buffer, fnverler, naend, and, nor, or,
zor, ete.) or a group of interconnected components, The
knowledge based systemn mainly consists of an inference
engine, design rules, and & database describing the cir-
cuit board (or the gate array). The inference engine is
implemented as a metainterpreter with only B Prolog
clauses. The gate array used in our experiment consists
of 755 components {Texas gate array family TGCO-100),
which is deseribed by around 10000 Prolog clauses. The
design rules part with its interface to the gate array
description is around 200 Prolog clauses. Eleven inde-
pendent rules are used in this experiment. The metain-
terpreter applies the set of rules to the gate array de-
scription. For a larger gate array more O R-parallelism
is expected. It should be mentioned that people who de-
veloped the knowledge based system did not at all con-
sider parallelism, but they tried to make their system
easy to maintain by writing clean code. They avoided
using side effects, but they have used cuts (embedded in
If.Then_Else) and findall constructs. The user interface
part of this application is not included in our experi-
ment.

Since Muse and the Aurora system are also running
on larger machines, the BEN Butterfly machines, it was
more natural to test the knowledge based system on
those machines, The speedup results obtained differ for
the Muse and the Aurora system. On 37 TC2000 pro-
cessors, Muse is 318 times faster than S1CStus, while
Aurora is only 7.3 times faster than SICS5tus, Similarly,
on 70 GP 1000 processors Muse is 46.35 times faster than
SICStus, while Aurora iz only 6.68 times faster than
SICStus. The low speedup for the Aurora system is sur-
prising since this application is rich in OR-parallelism.
[s this a seheduler problem for Aurora or an engine prob-
lemn? The following two sections are going to present and

T42

analyze the results of Muse and Aurora, in order to try
to answer this question.

5 Timings and Speedups

In this section we present timing and speedup results
obtained from running the knowledge based system on
Muse and Aurora systems. The runtimes given in this
paper are the mean values obtained from eipht
runs. On Sequent Symmetry, there is no significant dif-
ference between mean and best values, whereas on the
Butterfly machines, mean values are more reliable than
best values due to variations of timing results from one
run to another'. Variations around the mean value will
be shown in the graphs by a vertical line with two short
horizontal lines at each end. The speedups given in this
section are relative to running times of Muse on one
processor on the corresponding machine. The SICStus
ome-processor runtime on each machine will also be pre-
sented to determine the extra overhead associated with
adapting the 51CStus Prolog system to the Aurora and
Muse systems. Sections 5.1, 5.2, and 5.3 present those
results on Sequent Symmetry, GP1000, and TC2000 ma-
chines, respectively.

5.1 Sequent Symmetry

Teble 1 shows the runtimes of Aurcra and Muse on Se-
quent Symmetry, and the ratio between them. Times are
shown for 1, 5, 10, 15, 20, and 25 workers with speedups
(relative to ene Muse worker) given in parentheses. The
alC8tus runtime on one Sequent Symmetry processor is
422.39 seconds. This means that for this application and
on the Sequent Symmetry machine the extra overhead
associated with adapting the SICStus Prolog system to
Aurora is 26.3%, and for Muse is only 1.0% (calculated
from Table 1}. The performance resulis that Table 1 il-
lustrates are good for both systems, and Aurora timings
cxceed Muse timings by 25% to 26% between 1 to 25
workers. Figure | shows speedup curves for Muse and
Aurora on Sequent Symmetry. Both systems show lin-
ear speedups with no significant variations around the
mean values,

Table 1: Runtimes (in seconds) of Aurera and Muse on
Symmelry, and the ratio between them.

| Workers || Aurora Musge [| Avrora/Muee
1 53369(|]E»ﬂ} 425.?4{1.00] 1.25
5 106.87(3.99) | B5.67(4.98) 1.25
10 53.58(7.06) | 42.94(9.94) 1.25
15 36.06(11.8) | 28.73(14.9) 1.26
20 27.22(15.7) | 21.65(19.7) 1.26
25 || 21.83(19.5) | 17.39(24.5) 1.26

1These variations are due mainly to switeh contention,

Speed-up
25+
.'ZCIE- * Muse o
o Aurora
15} °
a
10
=]
5 L
[+
I T R T 20 25

Workers

Figure 1: Speedups of Muse and Aurora on Symmetry,
relative to 1 Muse worker.

5.2 BBN Butterfly GP1000

Table 2 shows the runtimes of Aurora and Muse on
GP1000 for 1, 10, 20, 30, 40, 50, 60, and 70 workers.
The S51CStus runtime on one GP1000 node is 534.4 sec-
onds. So, for this application and on the GP1000 ma-
chine the extra overhead associated with adapting the
SICStus Prolog system to Aurera is 66%, and for Muse
is only 7%. Here the performance results are good for
the Muse system but not for the Aurora system. Aurora
timings are longer than Muse timings by 55% to 504%
between 1 to 7O workers.

Figure 2 shows speedup curves corresponding to Ta-
ble 2 with variations around the mean values. The
speedup curve for Aurora levels off beyond around 20
workers. On the ather hand, the Muse speedup curve
levels up as more workers are added.

Table 2: Runtimes (in seconds) of Aurora and Muse on
GP1000, and the ratio between them.

[Workers Aurora Muse | Aurora/Muse |
1 B86.4(0.65) | 572.3(1.00) 1.556
10 || 106.3(5.44) | 58.3(5.82) 1.81
20 T41(7.72) | 29.8(10.2) 2.49
30 T2.7(7.88) | 20.7(27.7) 3.52
40 64.3(8.91) | 16.1(35.5) 2.99
50 72.4(7.90) | 13.8(41.6) 5.26
60 65.7(8.71) | 12.4(46.1) 5.20
70 80.0(7.15) | 11.5(49.8) .04

Speed-up

i

10 20 a0 40 B0 60 70
Waorkers

Figure 2: Speedups of Muse and Aurora on GP1000,
relative to 1 Muse warker,

5.3 BBN Butterfly TC2000

Table 3 shows the performance results of Aurora and
Muse on TC2000 for 1, 10, 20, 30, and 37 workers. The
SICStus runtime on one TC2000 node is 100.48 seconds.
Thus, for this application and on the TC2000 machine
the extra overhead associated with adapting the SICStus
Prolog system to Aurora is 80%, and for Muse is only

Table 3: Runtimes (in seconds) of Aurora and Muse on
TC2000, and the ratio between them.

| Workers Aurora Muse || Avrora/Muse |
1 180.55(0.58) [105.97(1.00) L70 |
10 22.12(4.79) | 10.81(9.80) 205 |
20 16.02(6.61) | 5.56(19.1) 2.38 |
30 13.66(7.76) | 3.93(27.0) 3.48
37 13.79(7.68) | 3.29(32.2) 4.19

5%. Here also the performance results are good for the
Muse system but not for the Aurora system. Aurora
timings are longer than Muse timings by 70% to 319%
between 1 to 37 workers.

Figure 3 shows speedup curves corresponding to Ta-
ble 3. The speedup curves are similar to the correspond-
ing ones shown in Figure 2.

743

Spead-up

510 15 20 25 a0 35
Workera.

Figure 3: Speedups of Muse and Aurora on TC2000,
relative to 1 Muse worker.

6 Analysis of Results

From the resulis presented in Section 5 we found that
the Muse system shows good performance results on the
three machines, whereas the Aurora system shows good
results only on the Seguent Symmetry, In this section,
we try to explain the reason for these results by studying
the Muse and Aurora implementations on one of the
Butterfly machines {T'C2000), The TC2000 has better
support for reading the realtime clock than the GPLOO0,
A worker time could be divided into the following three
main activities:

1. Prolog: time spent executing Prolog (i.e., engine
time).

2. fdle: time spent waiting for work to be generated
when there is temporarily no work available in the
system.

3. Others: time spent in all the other activities (i.e.,
all scheduling activities) like spin lock, signalling
other workers, performing cut, grabbing work,
sharing work, looking for work, binding installa-
tion (and copying in Muse), synchronization be-
tween warkers, etc.

Table 4 and Table 5 show time spent in each activ-
ity and the corresponding percentage of the total time.
Hesults shown in Table 4 and Table 5 have been ob-
tained from instrumented versions of Muse and Aurora
on the TC2000. The times obtained from the instru-
mented versions are longer than those obtained from

744

Table 4: Time (in seconds) spent in the main activities
of Muse workers on TC2000. :

Activity
Muse Workers Prolog Idle Others
1 128,36(100) 0 0
5 125.80(99.7) | 0.08{0.1) | 0.26(0.2)
10 129.28(99.1) | 0.40{0.3) | 0.71{D.5)
20 | 129.90(96.5) | 3.56(2.6) | 1.17(0.9)
an 130.22(95.4) | 4.17(3.0) | 2.11(1.5)

Table §: Time (in seconds) spent, in the main activities
of Aurora workers on TC2000,

Activity
Aurora Workers | Prolog | Idle Others
1 [210.42(98.2) 0 2.36(1.1)
5 221.24(98.3) | 0.19(0.1) | 2.03(0.9)
10 235.34(98.1) | 0.43(0.2) | 2.43(1.0}
20 320.60(98.1) | 1.11(0.3) | 3.61(1.1} |
30 412.97(94.7) | 13.70(3.2) | 7.64(1.8) |

uninstrumented systems by around 19-27%. So, they
might not be entirely accurate, but they help in indicat-
ing where most of the overhead is accrued.

Before analyzing the date in Table 4 and Table 5
we would like to make two remarks on these data. The
first remark is that in the Aurora system the overhead of
checking for the arrival of requests is separated from the
Prolog engine time, while in the Muse system there is no
such separation. This explaing why there is scheduling
overhead (Others) in the 1 worker case in Table 5 and
not in Table 4. The other remark is that the figures
obtained from the Aurora system do not total 1005 of
time, since a small fraction of the time is not allocated
to any of the three activities. However, these two factors
have no significant impact on the following discussion.

By careful investigation of Table 4 and Table § we
find that the total Prolog time of Muse workers is almost
constant with respect to the number of workers whereas
the corresponding time for Aurora grows rapidly as new
workers are added. We also find that the scheduling time
{ Others) in Table 5 is not very high in comparison with
the corresponding time in Table 4. Similarly, the dif-
ference of Idle time between Muse and Aurcra is not se
high. So, the main reason for performance degradation
in Awrora is the Prolog engine speed,

We think that the only factor that slows down the
Aurora engine as more workers are added is the high
access cost of non-local memory. Non-local memory ac-
cess takes longer time than local memory access, and
causes switch contention. Non-local memory accesses
can be due to either the global Prolog tables or the
WAM stacks. In Muse and Aurora systems, the global
tables are partitioned into parts and each part resides
in the local memory of one processor, In Aurora the

WAM stacks are shared by all workers while in Muse
each worker has its own copy of the WAM stacks. The
global Prolog tables have been implemented similarly in
the both Muse and Aurora systems. Since the Muse
cngine dees not have any problem with the Prolog ta-
bles, the problem should lie in the sharing of the WAM
stacks in Aurora, coupled with the fact that this applica-
tion generates around 9.8 millien conditional bindings,
and executes around 1.1 million Prolog procedure calls.
On the average, each procedure call generates around
9 conditional bindings. This may mean that the rea-
son why Aurora slows down lies in the cactus stack ap-
proach, which causes a great many non-local accesses
to the Prolog stacks. This results in a high amount of
switch contention once over five workers. This is avoided
in the Muse model, since each worker has its own copy
of the WAM stacks in the processor local memory and
the copy is even cachable, Unfortunately, we could not
verify this hypothesis because the current Aurora imple-
mentation on the TC2000 does not provide any support
for measuring the stack variables access time.

7 Conclusions

Experimental results of running a large practical knowl-
edge based systemn on two OR-parallel Prolog systems,
Muse and Aurora, have been presented and discussed,
The number of processors used in our experiment is 25
on Sequent Symmetry (S81), 37 on BBN Butterfly II
(TC2000), and 70 on BBN Butterfly I (GP1000). The
knowledge based system used in our study checks a eir-
cuit board [or a gate array) design with respect to a set
of rules and reports any design errors. It is written in
SICStus Prolog, by the Knowledge Based Systems group
at SICS in collaboration with groups from some Swedizh
companies, without considering parallelism. It is used
in our experiment without any modifications.

The results of our experiment, show that this class of
applications is rich in OR-parallelism. Very good real
speedups, in comparison with SICStus Prolog system,
have been obtained for the Muse system on all three
machines. The real speedup factors for Muse are 24.3
on 25 581 processors, 31.8 on 37 TC2000 processors,
and 46.35 en 70 GP1000 processors. The obtained real
speedup factors for Aurora are lower (than for Muse)
on Sequent Symmetry, and much lower on the Butterfly
machines. The Aurcra timings are longer than Muse
timings by 25% to 26% between 1 to 25 S81 processors,
T0% to 319% between 1 to 37 TC2000 processors, and
55% to 594% between 1 to 70 GP1000 processors.

The analysis of the cbtained results indicates that
the main reason for this great difference between Muse
timing and Aurora timing (on the Butterfly machines)
lies in the Prolog engine and not in the scheduler. The
Aurora engine is based on the SRI memory model in

which the WAM stacks are shared by the all workers.
We think that the only reason why the Aurora engine
slows down as more workers are added is to be found in
the large number of non-local accesses of stack variables,
This results in & high amounts of switch contention as
more workers are added. This is avoided in the Muse
model, since ecach worker has its own copy of the WAM
stacks in Lthe processor local memory and even cachable
in the TC2000. Unfortunately, we could not verify this
hypothesis becanse the current Aurora implementation
on the Butterfly machines does not provide any support
for measuring access time of stacl variables,

8 Acknowledgments

We would like to thank the Argonne National Labora-
tory group for allowing us to use their Sequent Symme-
try and Butterfly machines. We thank Shyam Mudambi
for his work on porting Muse and Aurora to the But-
Lerfly machines. We also would like to thank Fredrik
Holmgren, Klas Orsvarn and Ingvar Olsson for discus-
sions and allowing us to use their knowledge based sys-
tem,

References

[Ali and Karlsson 1990a] Khayri A, M. Ali and Roland
Karlsson, The Muse Approach to OR-Parallel Prolog.
International Journal of Parallel Programming, pages
129-162, Vol. 19, Ne. 2, April 1990. '

[Ali and Karlsson 1990b] Khayri A. M. Ali and Roland
Karlsson. The Muse OR-Parallel Prolog Model and its
Performance. In Proceedings of the 1990 North Amer-
ican Conference on Logic Programming, pages 757-
776, MIT Press, October 1990,

[Ali and Karlsson 1990¢] Khayri A. M. Ali and Roland
Karlsson, Full Prolog and Scheduling OR-Parallelism
in Muse. Infernational Journal of Parallel Program-
ming, pages 445-475, Vol. 19, No. §, Dec. 1990,

[ALi and Karlsson 1991] Khayri A. M. Al and Roland
Karlsson, Scheduling OR-Parallelism in Muse. In Pro-
ceedings of the 1991 International Conference on
Logic Programming, pages 807-821, Paris, June 1991,

[Ali et al. 1991a] Khayri A. M. Ali, Roland Karls-
gon and Shyam Mudambi, Performance of Muse on
the BEN Butterfly TC2000. ln Proceedings of the
ICLP*91 Pre-Conference Workshop on Parallel Fr-
ecution of Logic Programs, June 1991, To appear also
in Lecture Notes tn Computer Science, Springer Ver-
lag.

745

[Ali ef al 1991b] Khayri A. M. Ali, Boland Karls-
son and Shyam Mudambi. Performance of Muse on
Switch-Based Multiprocessor Machines. Submitted to
the New Generafion Gﬂmpu.!ing Journal, 1991,

[Butler ef al. 1988] Halplh Butler, Terry Disz, Ewing
Lusk, Robert Olson, Ross Overbeek and Rick Stevens.
Scheduling OR-parallelism: an Argonne perspective,
In Proceedings af the Fifth International Conference
and Sympesiwm on Logic Programming, pages 1590-
1605, MIT Press, August 1988,

[Calderwood and Szeredi 1989] Alan Calderwood and
Péter Szeredi. Scheduling OR-parallelism in Aurora—
the Manchester scheduler. In FProceedings of the
sizth [International Conference on Logic Progrom-
ming, pages 419435, MIT Press, June 1989,

[Carlsson and Widén 1988] Mats Carlsson and Johan
Widén. SICStus Proleg User’s Manual. SICS Research
Report RBZ00TH, October 1988,

[Hagert ef al. 1088 G. Hagert, F. Holmgren, M. lidell
and K. Orsviarn. On Methods for Developing Knowl-
edge Systems—an Example in Electronics, Mekan-
resultat BBO03 (in Swedish), Sveriges Melwmnforbund,
Box 5506, 114 85 Stockholm, 1988,

[Holmgren and Orsvien 1989] Fredrik Holmgren and
Klas Orsvirn, Towards a Domain Specific Shell for
Design Rule Checking. In Proceedings of the [FIP TC
10/ WGEI0.2 Working Conference on the CAD Sys-
tems Using Al Technigues. pages 221-228 Tokyo,
June 6-T, 1989,

[Lusk et al. 1990] Ewing Lusk, David H. I}, Warren,
Seif Haridi, et al. The Aurora OR-parallel Prolog Sys-
tem. New Generation Computing, 7(2,3): 243-271,
1930.

[Mudambi 1991] Shyam Mudambi. Performance of Au-
rora on NUMA machines. In Proceedings of the
1991 International Conference om Logic Program-
ming, pages T93-806, Paris, June 1991,

[Szeredi 1989] Péter Szeredi. Performance analysis of
the Aurora OR-parallel Pralog System. In Proceedings
of the 1989 Narth American Conference on Logic Pro-
gramming, pages T13-732, MIT Press, March 1959,

(Warren 1987] David H. D, Warren. The SRI Model
for OR-parallel Execution of Proloz—Abstract De-
sign and Implementation Issues. In Proceedings of the
1987 Symposiym on Logic Programming, pages 99—
102, 1987.

