PROCEEDIMNGS OF THE INTERNATIONAL CONFEREMCE
0N FIFTH GEMERATION COMPUTER SYSTEMS 1992,
edited by KOOT. € 1COT, 1992

131

- Evaluation of the EM-4 Highly Parallel Computer
using a Game Tree Searching Problem

Yuetsu KODAMA Shuichi SAKAI Yoshinori YAMAGUCHI

Electrotechnical Laboratory
1-1-4, Umezono, Tsukuba-shi, Ibaraki 305, Japan
kodama@etl.go.jp

Abstract

EM-4is a highly parallel computer whose eventual tar-
get implementation has more than 1,000 processing el-
ements(PEs). The EM-4 protobype consists of 80 PEs
and has been fully operational at the Electrotechni-
cal Laboratory since April 1950, EM-4 was designed
to execute in parallel not only static or regular prob-
lems, but also dynamic and irregular problems. This
paper presents an evaluation of the EM-4 prototype
for dynamic and irregular problems. For this eval-
uation, we chose a checkers program as an example
of the game tree searching problem. The game tree
is dynamically expanded and its structure is irregu-
lar because the number and the depth of subtrees of
each node depend heavily upon the status of the game.
We examine effects of the load balancing by function
distribution, data transfer, control of parallelism, and
searching algorithms on the EM-4 prototype. The re-
sults show that the EM-4 is effective in dynamic load
balancing, fine grain packet communication and high
performance of instruction execulion.

1 Introduction

Parallel computing has been effective for static or reg-
ular problems such as scientific computing and data-
base systems. Parallel computing is, however, still an
active research topic for dynamic or irregular prob-
lems.

EM-4 is a highly parallel computer which was de-
veloped at the Electrotechnical Laboratery in Japan.
Its target applications include not only static or regu-
lar problems, but alse dynamic or irregular problems.
EM-4 provides special hardware for parallel comput-
ing: high data transfer rate, high data matching per-
formance, dynamic load balancing, and high instrue-
tion execution performance.

In this paper, we evaluate the performance of EM-4
on a dynamic and irregular problem. The performance

of EM-4 on some small programs such as recursive fi-
bonacei is presented in [Kodama ef al. 1991]. While
the fibonacci program creates many funection instances
dynarmically, it is not irregular because the tree of call-
ing functions is a binary tree, the depth of each branch
is similar to those of its neighbors, and the size of each
node function ia the same and small. We chose a game
tree searching problem as a practical problem. This
class of programs dynamically expands the game tree,
and is irregular because the number of subtrees from
each node of the game tree, the depth of subtrees, and
the execution time of each node depends heavily upen
the status of the game. Furthermore, the o8 search-
ing algorithm is often used for game tree searching,
because it cuts the evaluation of the current tree by
using the evaluation of the previous tree. Tree cutting
makes the program more dynamic and irreguolar.
This paper presents the evaluation of the EM-4 pro-
totype using a checkers game program as an example
of the game tree searching problem. We examine the
effect of parallel computing on the EM-4 prototype.
Section 2 presents an overview of the EM-4 and its
prototype. Section 3 describes a game tree searching
problem and a checkers game. Section 4 presents eval-
uation issues for load balancing, data transfer, control
of parallelism, and searching algorithms for the check-
ers game. Section 5 gives an evaluation and examina-
tion of the strategies described in section 4. Section 8
concludes our results and discusses our future plans.

2 The EM-4 Highly Parallel
Computer

EM-4 is a highly parallel computer whose even-
tual target implementation has more than 1,000
PEs[Yamaguchi el al. 1989, Sakai ef al. 1989]. The
EM-4 prototype consists of 80 PEs and has been fully
operational since April 1880[Kodama ef al. 1990].

732

Packet Interace et
Processoe Compuler

EMC-R
(Processing Element)

Packer Interfa
Swiich

[FE graup O

e po

3 u

i

=

Ly e

A s

5] g 5
6= [
=] a Q o o
o a a a L]
N-NNA B s
mu: I I:ffer Toit
34 al O pRa e
2 il 1] MO Contral Talt
r MAINT) Maimtenacs Tnit

Figure 1: The organization of EM-4 Prototype

2.1 The architecture of EM-4

The organization of the EM-4 prototype iz shown in
Figure 1. The protoiype consists of 80 PEs, and each
5 PEs are grouped and are implemented on a single
PE board. The PE of the protoiype is an single chip
processor which is called EMC-R and is implemented
in a C-MOS gate array. The PE has local memory
and is connected to the other PEs through a circular
cmega network.,

EMC-R is a RISC processor for fine grain pachet-
based parallel processing. EMC-R. generales packets
in an execution pipeline, and computation is fired by
the arrival of packets. This is a dataflow mechanism,
but we improved it so that it can operate on a block
which consists of several instructions, executed exclu-
gively from other instructions. This model is called
the “strongly connected arc model”, and the block is
a strongly connected block(SCE).

When a packet arrives at a PE, the execution
pipeline is fired and EMC-R executes the SCB indi-
cated by the packet. First, EMC-R checks whether the
partner of the packet has arrived. I the parter exists,
it continues to execute the SCB until the end of the
block. If the parter does not exist, EMC-R stores the
packet data in a matching memory and waits for the
next packet.

The packet size of EMC-R. is two fixed words and
there is only one format consisting of one address word
and one data word. It can be generated in a RISC
pipeline of EMC-R. During the data word is calen-
lated in a RISC pipeline, the address word is formed
in a packet generation unit when the packet output is

instructed, Since the network port is only one word
wide, first the address word is sent to network, and
then the data word is sent. In the second clock cycle,
the next instruction can be executed in parallel with
data word transfer.

The circular omega network has the same structure
as an omega nelwork, except that every nede of the
network is connected to a PE. The network has the
following features: (1) The required amount of hard-
ware is O{N), where NV is the number of PEs; (2) The
distance between any two PEs is O(logN). The 3 by
3 packet switching unit is in a EMC-R, and a packet
can be transferred to a neighboring PE independent of
the instruction execution on the PE. Packets are trans-
ferred by wormhaole routing, and take only M4+1 cycles
between PEs which are distance A apart if there is
no network conflict,

The clock of the EMC-R runs at 12,5 MHz. The
RISC pipeline can execute mosk instroction in one
clock cycle; the peak execution performance is 12.5
MIPS. 1t takes two clock cycles when two operand
makching fails, and takes three clock cycles when the
matching suceeeds. The peak synchronization perfor-
mance is 2.5 Msyne/s. It takes two clock eveles Lo
transfer a packet, and the peak network packet trans-
fer performance is 18.75 Mpacket/s. EM-4 prototype
consists of 80 PEs, the peak execution performance is
1 GIPS, its peak synchronization performance is 200
Msyne/s, and its peak network packet transfer per-
formance is 1.5 Gpackel/s, EMC-R achieves a high
performance in both instruction execution and packet
data transfer /matching,

CALLEE
PE[D.2)
a lLowp [~ ®
a i
{1.f021 E.f‘f_‘,}]“ a0
= LOAD 3 —
d '_1,| ' — d
H.ﬂ.ﬂﬂ PE[3,Y]
N » \""mms mis
f [— f
g — &
h h

[LD,[GA,CA] is the MLPE packet which shows that
PE[GA,CA] has the minimom lead LD

Figure 2: How to Detect the Minimum Load PE
2.2 Dynamic load balancing method

To gel high performance in parallel computers, high
utilization of PEs, as well as high performance of PEs
are necessary. If the program has simple laop strue-
ture or slatic data transfer structure such as in dif
fusion equation applicaitons, the load of the program
can be estimated and the load can be statically bal-
anced at programming or compiling time. But, if the
program is dynamic or irregular structure, static load
balancing is difficult and dynamic load balancing is
necessary.

In the EM-4, we implemented antomatic load bal-
ancing mechanisms attached to the circular omega
topology. In the circular omega network, each node
has two circular paths. We use a path to group
Lthe PEs, and use another path to achieve dynamic
load balancing. Suppose that a PE wanis io in-
voke a new function. This PE will send out a spe-
cial MLPE(Minimum Lead PE) packet, The MLPE
packet always holds the minimum load value and the
PE address among the PEs which it goes through.
The load of each PE is evaluated by hardware in the
PE mainly based on the number of packets in the in-
put buffer. At the starling point, the MLPE packet
holds its sender’s load value and its PE address; when
it goes through a certain SU in the circular path, the
ST compares Lhe load value of the PE connected to it,
and if the value is less than of the packet, the data in
the MLFPE packet will be automatically rewritten to
the current PE'Ss value; olherwise the MLPE packet
keeps its value and goes to the next SU. This oper-
ation is done in one clock cycles of packet transfer.
When the MLPE packet returns to the starting point,
it holds the least loaded PE number and its load value.

133

Figure 2 show this. In this figure, PE[1,0] generates
an MLPE packet and, after the circulation, it obtains
the least loaded PE number [0,2] and its load 1.

By this method, called the cireular path load bal-
ancing, each MLPE packet scans s different groups,
where & is the number of network stages. When
the total number of the PEs increase, coverage of
PEs by this load balancing method becomes relatively
small. The efficacy of this method is reported in
[Kodama et al 1991].

Since it takes several eycles for the MLPE packet to
return, the EM-4 resolves this latency by pre-fetching:
it sends & MLPE packet in advance, allocates the new
function instance on the PE specified by the relurned
packet of MLPE, and stores the function ID in a spe-
cial register of the required PE. When & function call is
necessary, the stored function ID is used and another
MLPE packel is sent for the next function call. In the
pre-fetch strategy, the new function ID may have not
yeb been stored when a function call is necessary. In
this case, the pre-fetch method uses one of the other
distribution methods to choose the PE,

3 Game Tree Searching Prob-
lem

‘We choose the checkers program as an example of a
game tree searching problem in order to evaluate Lhe
EM-4 on a dynamic and irregular problem. Since the
rules of checkers are very simple, the program makes
it easy to characterize the paralle] behavior of the pro-
gram.

The rule of checkers game is as follows, Each player
moves one of his pieces in turn until the player who
has no pieces or moves loses. Pieces can be moved
to a forward diagonal area. If there is an opponent’s
piece in aforward diagonal area, and the next diagonal
area is empty, you must jump to the empty area and
remnove the enemy piece. I you can jump successively,
you must jump successively. If your piece arrives at
the end of the enemy area, that piece can then move
in all four diagonal directions.

The Min-Max searching algorithm is the simplest al-
gorithm for the game tree searching problem. This al-
gorithm expands the game tree by the possible moves
of each player in turn. When the game tree is ex-
panded to a certain level, each leal is evaluated. If
the stage corresponds to your turn, the maximum
node is selected; if the stage is your opponent’s turn,
the minimum node iz selected. Although the Min-
Max algorithm is simple, it is not efficient because
it needs to search every branch. The a-@ searching
algorithm[Slagle 1971] is more efficient than the Min-

T34

Max algorithm, because this algorithm tries to cut off
the evaluation of unnecessary branches.

If the game tree is expanded in a depth-first man-
ner, the resources required to remember the game tree
are small. This expansion makes it easy to eut off the
unnecessary branches, but reduces the parallelism. If
the game tree is expanded in a breadth-first manner,
it results in large parallelism, so this expansion is well-
suited for parallel computers. However, since the num-
ber of nodes increases exponentially as a function of
the depth of the tree, the resources will be exhausted
quickly if the parallelism is not controlled.

4 Execution Issues of a Check-
ers Game

The overheads to parallelize the checkers program are
the following:

1. overhead for allocating new funclion instances on
other PEs.

2. overhead for transferring the current status of the
table to other PEs.

3. idle PEs caused by an unbalanced load.

4. decline of efficiency caused by cutting branches in
the a-8 search.

These overheads depend upon implementation strat-
ey decisions. The funetion distribution strategy ef-
fects the function allocation overhead. Packed datz
transfer reduces the amount of fransfer data. The
idle PE ratio depends upon the lead balaneing strat-
egy. The searching algorithm changes the branch cut-
ting overhead. These overheads also depend upon the
control of the parallelism and the searching strategy.
Each of these decisions is deacribed in grealer detail
in the following subsections,

4.1 Function distribution and load bal-
ancing

Load balancing is the most important issue in achiev-
ing high performance on parallel computers. Since the
checkers program requires many function instances to
expand the game tree, it distributes thern among the
PEs in order to balance the load across the machine.

Our checkers program can distribute function ealls
by one of the following two strategies:

round-robin distribution Each PE independently
chooses the PE which will execute the called func-
tion in a round-robin manner.

manager distribution A centralised manager PE
chooses the FE which will execute the called func-
tion.

We can also combine the two methods: that is, the
manager distribution can be used until a certain level
in the game tree expansion, and the round-robin dis-
tribution can be used aller that level. In the round-
robin distribution, the load might be unbalanced at
the heginning of the program. In the manager distri-
bution, the overhead is larger than round-robin dis-
tribution because of packet communication overhead
and concentration of requests.

EM-4 dynamically distributes functions aceording
to the load of PEs by the circular path load balane-
ing described in section 2.2. The dynamic round-robin
distribution described below is the third function dis-
tribution method that we evaluated in our checkers
Program.
dynamic round-robin distribution A PE is dy-

namically chosen by the circular path load bal-
ancing method, and in the case that the MLPE
packet has not returned, a PE is chosen by the
round-robin distribution method.

4.2 Data transfer

Since EM-4 iz a distributed-memory parallel com-
puter, the checkers program sends the status of the
table and selected mowves by packets to funections on
other PEs. The status of the table is represented by
a 64 word array, but each word is only 4 bits, The
following two transfer methods are considered in the
checkers program.

unpacked transfer use packets which have data
representing & posilion.

packed transfer use packets which have packed
data representing 8 positions.

While the unpacked transfer sends eight times more

packets than the packed transfer, the packed transfer

needs to pack and unpack data,

4.3 Control of parallelism

Parallelism has to be controlled to both aveid exhaus-
tion of resources, and to provide suffictent parallelism
to keep all the PEs busy. To control parallelism,
throttling can limit the number of the active lunc-
tions. If the number of active functions exceeds a cer-
tain amount, further requests for calling functions are
buffered until ether funetions are finished. Throttling
has the possibility of deadlock.

Ancther way to control parallelism is to switch
from breadth-first search to depth-first search at some
level of the game tree, where the level can be deter-
mined either statically or dynamically. Static switch-
ing sets the level by the depth of the game tree. Dy-
namiec switching determines the level using the load

of PEs. Breadth-first searching increases parallelism,
and depth-first searching restrains parallelism.

Our checkers program uses the static switching
strategy to control parallelism, because this strategy
is very simple. We plan to implement the dynamic
switching strategy for the checkers progeam in the
near future,

4.4 Game tree searching algorithms

‘The two primary algorithms for the game tree search-
ing problems are the Min-Max algorithm and the o8
algorithm. The Min-Max algorithm provides much
parallelism in the breadth-first strategy. The o-F al-
gorithm has high efficiency in the depth-first strategy.
If the @3 algorithm is used only with the breadth-first
strategy, it ignores the peossibility of cutting branches,
and it must search more trees than the a-8 algorithm
on a single processor. Since the ratio of branches cut
off relative to the whole tres in the o7 alporithm in-
creases according to the depth of the searching tree, a
parallel o searching algorithm must be considered to
increase the efficiency of branch cutting in the parallel
environment.

Paralle] &-3 searching is complicated because of the
dilemma between parallelism and efficiency of branch
cutting., Another important problem is the overhead
of terminating functions. BSince these function in-
stances are distributed and activated in parallel, the
overhead of terminating functions is more than over-
head of creating funetions. This difficult trade-off is
gimply resolved in our checkers program by chang-
ing algorithm in breadth-first strategy and depth-
first strategy. In the breadth-first sirategy, we se-
lect the min-max algorithm to expand the parallelism,
and in the depth-first strategy, we select the o3 al-
gorithm to achieve the efficiency of cutiing branch.
We call this search “serial - search” in this paper.
This search can be easily implemented, but the effi-
ciency of branch cutting is less than the parallel o-g
search[Oki ef ol 1089].

To get more efficlency from branch cutting, the
search that uses o-@ search from the leaf of breadth-
first strategy is the *partial parallel a-# search”. This
search algorithm is illustrated in Figure 3. In this
search, depth-first search is called in parallel from the
leaf of breadth-first search, but the top node{which
is indicated by B in the figure) of serial depth-first
search gets the o~ value from the parent node (A)
every time when the child node (C) return the eval-
uation result, and check whether the remain branch
(C*) can be cut off or not. The merit of this search is
that we can expect enough efficiency from branch cut-
ting and the overhead of terminating search is nothing

733

Min-Max
a— &
broadeh-Ffleat
B dapth=[lEsT
= -4

Figure 3: partial parallel search

sinee the child node in depth-first strategy is sequen-
tialized.

The checkers program can use the following three
searching algorithms.

Min-Max search using the Min-Max algorithm
both breadth-first and depth-first.

serial o-F search using the Min-Max algorithm
breadth-first, and using the & algorithm depth-
first.

partial parallel o8 search using the Min-Max al-
gorithm breadth-first until the last level, and us-
ing the a-F algorithm in the last level of breadth-
first and then depth-first.

5 Experimental Results on the
EM-4

We implemented the checkers program on the EM-
4 prototype in an assembly language to evaluate the
performance of the EM-4 for dynamic and irregular
problems. We examine the execution izsues discussed
in the previous ssction.

5.1 Effects of function distribution and
load balancing

An unbalanced workload causes idle PEs. Since the
load balancing of the checkers program is performed
al the function level, the function distribution strat-
egy must be evaluated. The alternatives for the func-
tion distribution of the checkers program are the man-
ager distribution, the rewnd-robin distribution, the
dynamic round-robin distribution, and combinations
of these,

We executed the checkers program using the partial
parallel -F search using each function distribution
methods. Figure 4 shows the results. We represent
the speedup ratio of each distribution relative to the
round-robin distribution. We executed each combina-
tion of manager distribution and round-robin distribu-

736

[\
1.1 dynemie r@&{:@hl ————t—

| \
1 2 3 4 5 6
Drepth of searching tree

Figure 4: Effects of function distribution

tion, and the fastest eombination is shown in the fig-
ure. The combination uses the manager distribution
until the third level, and thereafter uses the dynamic
round-robin.

When the level of iree searching is shallow, manager
distribution is better, because the manager distribu-
tion allocates functions more evenly. Since the size of
each function is large relative to the whole program,
the heavily loaded PE will become a bottle-neck and
the program cannot achieve sufficient speed-up, even
if the load is enly slightly unbalanced. When the level
of the search tree becomes deeper, the dynamic round-
robin distribution is better, because the size of each
function becomes small relative to the whole program,
and a small load imbalance does not effect the execu-
tion time much. On the other hand, in the manager
distribution, the requests of PE addresses for the func-
tion call concentrate on the manager PE. Because of
the queue of requests, the long turnaround time of
the function call makes the execution time slow. Fur-
thermare, at the sixth level of the search tree in the
manager distribution, the program cannot be executed
becanse of overflow of the packel queue buffer.

Since the execution of the dynamic round-robin dis-
tribution is 15% faster than the round-robin distribu-
tion when the searching tree is deep, this indicates
that the dynamic round-robin strategy is effective in
the case that there is sufficient parallelism.

5.2 Effects of data transfer

To parallelize the program, data must be transferred
between PEs, while data is only passed between mem-

execl ime{ ms) Erstructions
300
|
100 : /f" 10*
10 ey ;‘H{ 0
[
. packed-time i
. = s
1 e _unpacked-Inst 1
-—— y
i WE| I'B.lli:'lm!j/ J
03 / ed
0.1 /J ﬁ/ 10°
a2
I
{101 1wt

1 2 3 4 5 6
Diepth of searching tree

Figure 5: Comparison of data transfer

ory locations in a single PE. We compared the two
data transfer method, unpacked and packed. The un-
packed transfer uses a packet which has data repre-
senting a position, while the packed transfer uses a
packet which has packed data representing 8 positions.

Figure 5 is the results by the checker program of
the partial parallel -8 search using the combination
of manager and dynamic round-robin methed as the
function distribution. This figure shows the execution
time and the total number of executed instructions of
both data transfer method, Note that the execution
time and the total number of the executed instructions
are figured on a logarithmic scale.

In this figure, the number of executed instructions
of the packed packet transfer is 50% more than the
unpacked transfer for each level. The increase of the
executed instructions is caused by the pack and un-
pack operations. When the level is shallow, the ex-
ecution of the unpacked transfer is 1.5 times faster
than the packed transfer. This speed-up ratio is the
same as the instruction amount ratio. Buet when the
level is deep, packed transfer is a little faster than the
unpacked transfer while the instruction count of the
packed transfer is larger than the unpacked transfer.

Figure 6 shows the number of active PEs and over-
head PEsg in both data transfer strategies. An over-
head PE is a PE which is waiting for the ready of the
network to send a packet or slores the packet in the
memory packet buffer when the on-chip packet buffer
overflows. An aclive PE is a PE which is neither an
overhead PE nor an idle PE. At the shallow levels, the
active PE ratio of both transfer strategy is low. When

PE ratio (%)
70
60 .
30 packed .ct [
* ';:ndm:-u.u ;::w
30 r‘ ;/ " f;_.-*r
20] u-ﬁnﬁd.m
_ 10 /"‘) f, ;uum-m'"'f I
0]

1 2 3 4 5]
Depih of searching tree

Figure 6: Examination of the active PE ratio compar-
ing the data transfer

the level becomes deep, the active PE ratio of the un-
packed transfer is 30% lower than the packed transfer,
and the overhead PE ratio of the unpacked transfer is
30% higher than the packed transfer. This high over-
head PE ratio of the unpacked transfer is the reason
why it is slower than the packed transfer. Sinee the
unpacked transfer needs to send more packets than
the pacleed transfer, the network has many conflicts,
resulting in large overhead.

Although the packed transfer shows the high ra-
tio of the active PEs on the surface, a third of the
instruclions are used for packing and unpacking the
packets, and the packed transfer is not so eflective,
Since the pipeline of the EM-4 is designed to send
packets quickly, unpacked transfer is suwitable for the
EM-4. If there are many conflicts in the network, how-
ever, the overhead decreases the performance of send-
ing packets. One way to reduce this overhead is to
avoid the network conflicts by allocating the function
locally, Since the manager and round-robin distribu-
tions does not take into account the locality between
the PE which calls the function and the PE which ex-
ecutes the funetion, it increases Lhe possibility of net-
work conflicts. If the execution PE is selecied from the
neighbors of the calling PE, network conflicts do not
occur as frequently. Another way to control the par-
allelism is by limiting the number of active functions,
This is examined in detail in the next subsection.

737

Speedup ralio
20 Partial P = —

in
ey

b

g

0 1 2 3 4 5 6
Depih af parallel searching

Figure 7: Effects of parallelism control

5.3 Effects of parallelism control

While parallelism must be exploited to make the pro-
gram execulion faster, as mentioned before, too much
parallelisn causes some overhead. It is necessary to
control the parallelism in order to aveid the exhaus-
tion of resources, and to reduce the overhead of paral-
lelization. The checkers program controls parcallelism
by switching the searching strategy from a breadth-
ficst manner to a depth-first manner,

Figure 7 shows the speedup ratio to the sequential
execution of the o-F search when the switchover level
of the parallelism contrel strategy is changed. The
execution uses the combination of manager and dy-
namic round-robin method as the function distribu-
tion strategy and the unpacked method as the data
transfer strategy, Note that the X-axis represents the
depth of the breadth-first searching, while these all
execution search the game tree until the depth is the
sixth level,

In the Min-Max search, the deeper level of pas-
allel searching results in more parallelism, and the
maximum speedup becomes 49 times. Exploiting
maximum parallelism, however, does not necessarily
achieve speedup. One reason is that at the sixth level,
too many packels are sent and the overhead of network
conflicts becomes much larger than at the shallow lev.
els. Another reason is that excessive parallelizm is just
overhead such as data transfer or remote function in-
vocation, since sufficient parallelism is exploited until
the fifth level. It is sufficient to have as much par-
allelism as needed to activate every PE and hide the
latency of remote access — excessive parallelism is not

738

helpful.

The serial a-F search executes fastest at the sec-
ond level, and when the level is deeper the perfor-
mance decreases, This is because parallel searching
uses breadth-first search, and much information that
could be used to cut subtrees is discarded to parallelize
the program. As parallel searching gets deeper, maore
information is discarded. As a resull, il reduces the
efficiency of cutting excessive branches, and increases
the number of trees to be evaleated. The partial par-
allel o~ is same as the serial a-7 search.

5.4 [Effects of searching algorithms

Figure T also shows the effects of searching algorithms.
The execution of the Min-Max search on 80 PEs is
49 times faster than the Min-Max search on a sin-
gle PE, but oaly 1.8 times faster than the o-8 search
on one PE. This shows that the Min-Max search is
suitable for parallel execution, but that it is difficult
to compensate for the difference of efficiency between
the Min-Max search and the o-2 search by parallel
executlon.

The o-# search is a very serial algorithm, but
ean achieve 18 times speedup via partial parallel «-
B search, while the serial a-# scarch can achieve
times speedup. This is because the partial parallel
o-fF search uses the information of cutting trees at
the last level of parallel searching, and the efficiency
of cutting trees in the partial parallel o-0 search is
higher than the serial g-# search.

6 Conclusion and Future plans

To evaluate the highly parallel computer EM-4 on dy-
namic and irregular programs, we execute the game
tree searching problem of checkers on the EM-4 pro-
totype, which consists of 80 PEs. The effects of the
strategies for load balancing, data transfer, parallelism
conirol and searching algorithm are examined.

Our checkers program achieves 49 times speedup in
the Min-Max search and 18 times speedup in the a-F
search on 80 PEs systern. In this execution, the com-
bination of the manager distribution until the third
level and the dynamic round-robin distribution there-
after is used as the function distribution method for
lcad balancing, the unpacked transfer is used as the
data transfer strategy, and the static switching from
the breadth-first to the depth-first at the fifth level in
the Min-Max search and at the second level in the o-f
search is used to control parallelism.

In this evaluation, we demonstrated that the EM-
4 iz effective for dynamie load balancing, fine grain

packet communication and high performance of in-
struction execution.

In the near future, we plan to implement a dynamic
switching strategy which controls parallelism accord-
ing to the load of neighboring PEs. We will also im-
plement the full parallel - search, compare it with
partial parallel &G gearch, and make clear the advan-
tages and disadvantages of each method in the EM-d4
for the parallel game tree searching.

Furthermore, we are designing a higher performance
parallel computer EM-5. This computer will reduce
the overheads which are found in these evaluations
such as network conflicts.

Acknowledgments

We wish to thank Dr. Teshitsugu Yuba, Director
of the Computer Science Division, Mr. Toshioc Shi-
mada, Chief of the Computer Architecture Section for
supporting this research, and the staff of the Com-
puter Architecture Section for their fruitful discus-
sions. Special thanks are due to Dr. Mitsuhisa Sato of
the Computer Architecture Section and Mr. Andrew
Shaw of MIT for their suggestions and careful reading,

References

[Slagle 1871] James K. Slagle, Artificial Intelligence:
The Heuristic Programming Approach, McGraw-
Hill Ine., (1971).

[Oki et al. 1989] H. Oki, K. Taki, 5. Sei and 5. Hu-
ruichi, The parallel execution and evaluation of a
go problem on the multi PSI, Proc. of the Joint
Symp. on Parallel Processing ’89, (1989), 351-
357.(in Japanese)

[Yamaguchi ef al. 1889] Y. Yamaguchi, 5. Sakai, K.
Hiraki, Y. Kodama and T. Yuba, An Architee-
tural Design of a Highly Parallel Dataflow Ma-
chine, Proc. of IFIP 89, (1989), 1155-1160.

[Sakai et al. 1989] 5. Sakai, Y. Yamaguchi, I(. Hiraki,
Y. Kodama and ‘T. Yuba, An Architecture of a
Dataflow Single Chip Processor, Prec. of [ISCA 89,
(1989}, 46-53.

[Kodama et al. 1990] ¥, Kodama, 5. Sakai and Y.
Yamaguchi, A Prololype of a Highly Parallel
Dataflow Machine EM-4 and its Preliminary Eval-
uation, Proc. of InfoJapan 90, (1980), 291-208.

[Kodama et ol 1991] Y. Kodama, S. Sakai and Y. Ya-
maguchi, Load balancing by Function Distribution
on the EM-4 Prototype, to appear in Supercom-
puting "91, (1891).

