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ABSTRACT

This paper proposes and evaluates the hardware
irplementation required for dynamic load balancing in
the prototype PIM/c of the Parallel Inference Machine
{PIM). In fine grain multiprocessing, dynamic load
balancing is suffering from the high overhead due to the
frequent access to load information. Proposed hardware
can reduce the overhead by speeding up the access (o
the load information. In order to utilize the high locality
of logic programs, PIM/c is configured along a
hierarchical structure of network-connected clusters
each of which is a bus-connccted multiprocessor.
Therafore two kinds of hardware suwitable for each
hierarchy are implemented for dynamic load balancing.

First, in the clusters, we propose a register with
broadcast write feature. The evaluation determines the
reduction of overhead due to memory polling which
detects a load request. The proposed hardware reduces
the execution time of logic programs by 15%.

Second, in the network, we propose the use of a
shortcut path to request the value of the total load within
a cluster, The evaluation shows that the overhead due 10
the request of that value is reduced as a result of
introducing the shorteut path. The proposed hardware
reduces the execution dme by 50%.

The results obtained confirm that the use of hardware
can reduce the high overhead of dymamic load
balancing,

1. INTRODUCTION

Japan's Fifth Generation Computer project [1] has
been centered around ICOT (the Institute for new
generation COmputer Technology). ICOT has
developed the parallel logic programming language
KL1 (Kemel Language-1) [2] to describe knowledge

and information processing systems, ICOT has also
produced software in KL1, including the PIM operating
system [3].

We are currently developing the PIM/c [4] as a KL1-
based machine. A hierarchical structure of network-
connected clusters each of which is a bus-connected
multiprocessor is introduced to uotilize high access
locality of KL1 programs in PIM [5]. Use of locality
could restrict the interactions to clusters of several
processors and thus reduce the communications among
clusiers, Therefore, a double hicrarchical erganization
i used in PIM/c.

Dynamic load balancing is one of the main research
areas for PIM. As a result of the fact that logical
relations are present in a KL1 program and they never
define their process of execution with determinacy,
dynamic load balancing must be used. For dynamic
load balancing it is necessary to require load
information, for example, the information about the
existence of idle processors or the value of a wotal load
within a cluster. The load information is updated and
referenced by distributed processors. In other words
the load information is global, therefore it has no
locality.

A problem exists in that hardware for normal process
execution in PIM/c is optimized to the access with
locality, With this type of hardware the latency in
accessing global information is large. In fine grain
multiprocessing in KL1 programs, high frequency and
large latency in accessing load information produces
high overhead. Therefore, extensions in hardware are
introduced in order to reduce the latency of load
infarmation in PIM/c.

In shared bus multiprocessors, snooping caches are
known o reduce the memory latency observed by the
processors [6,9]. There are two types of cache
coherency protocols for rewriting shared data with
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copies distributed in plural caches; invalidation-type
protocels and broadcast-type protocols. The choice
depends on whether it is preferable to invalidate old
copies for rewriting by the same processor, or to
broadcast the new data fuf rewriting by other
PIOCESSOLS.

Eggers [7] defined "per processor locality” as the
average number of repeated write references to the same
address by the same processor. For normal process
execution in the KL system, an incremental garbage
collection makes the same processor reuse the same
address repeatedly for different data references [4].
Thus invalidation protocols are more suitable due to
high “per processor locality"”,

For dynamic load balancing, broadcast protocels are
preferable in order to access load information
efficiently. Although protocols using both invalidation
and broadcast features are known as "competitive
snooping protocols [E]", the cache is insufficient o
reduce the latency in accessing load information within
the cluster of bus-connected multiprocessors. Thus the
gnooping cache in PIM/c utilizes an invalidation
protocol and the implementation of broadcast feature is
also considered, not for cache, but for registers to
reduce the latency more efficiently.

In network-based multiprocessors, for normal
process execution, it is more important to increase the
throughput than 10 reduce the latency because the "non-
busy-waiting" feature could overcome the large latency
[4]. The PIM/c network unit has message queues to
increase the throughput, although they produce an
increase in latency. For dynamic load balancing, use of
the old information may cause wasteful load
dispatching. Therefore, a shortcur path to the message
queues is introduced to reduce the latency in accessing
load information through the network of PIM/c.

Hardware extensions in FIM/e require only a small
amount of hardware because the addressable space for
broadeasting is limited in the shared bus, and because
the increase in the number of interconnections among
clusters is less than that of a system with a special
purpose network [104].

2, PIM/c HARDWARE FEATURES

PIM/c has the following hardware features:

A. Hierarchical structure of shared bus
multiprocessor and network based multiprocessor.

Figure 1 shows the configuration of PIM/c. It is
organized along a hierarchical soructure of network-
connected clusters to utilize the localities of KL1
programs. Thus, the shared bus hierarchy consisis of
processors combined in a cluster. Each processor has
its own cache, and they share a common bus. Software
simulation has proved that the common bus might be a
bottle-neck. We concluded that the number of
processors within a cluster should be limited to arpund
eight, and that a two-way-interleaved common bus [11]
should be possible in FIM/c.

We consider that utilizing the access locality makes it
possible to reduce the amount of network hardware
because of reducing the number of messages
transferred among clusters, As a consequence, in PIMfc
the network is connected only to cluster controllers
{CC) instead of all processors in the cluster.
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Fig. 1. The configuration of PIM/c. Each
cache has a capacity of 80 Kbytes and consists of 20
byte blocks.




B. Broadcast registers in the shared bus hierarchy.

In order to reduce the access latency of load
information in the shared bus hierarchy, registers with
broadcast feature are introduced in PIM (Fig. 2) [12).

We denote these registers as EFR's (Event Flag

Register). They have the following features:

* one-bit wide to indicate an event, and a Fast
detection feature for control jumps which checks the
existence of events.

« feature of broadcast write; therefore, regisiers
indicating the same request event to any processor
can be written simultaneously.

The reference and jump can be done within a cycle,

When using registers, there is no overhead due Lo cache
misses. Each PIM/c processor has 16 EFRs,
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Fig. 2. Broadcast registers in the cluster. Bold
lines show the propagation path of a request event to
broadcast registers and the broken lines show the
memory polling path without hardware support. The
thin lines show the reset action of that event.

C. Shortcut path in the network hierarchy.

In order to reduce the access latency of load
information in the network hierarchy, two kinds of
features are introdoced; a shortcut path for the specific
messages (Fig. 3) {13] and the registers that hold the
load information are called CIR's (Cluster Information
Register). The hardware has the following features:

= 3 shoricut path 1o message queuss.
= eight-bit wide registers to indicate load information
in a corresponding cluster.

The register should be written with the load
information by its corresponding cluster controller.

As the load information is required without waiting at
message queues and withour waiting for the cluster
controllers 1o receive, specified registers can always be
read in 11 cycles.
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Fig. 3. Shortcut path in the neiwork., The
shoricut paths and the registers exist in the router board
of the packet switching network. Broken lines show the
normal path through the message guewes to increase the
network throughput and the beld lines show the
shortcut path to bypass the queunes,

3. EVALUATION STRATEGY

We defined the following two strategies to evaluate
the effectiveness of the proposed load balancing
hardware,

3.1 Evaluation on the Real Hardware
Real hardware was used for evalvation as the
software gimulation is almost impossible for the
following reasons:
» The presence of the cache and the network introduce
MOE Parameters,
There are many hardware parameters related to the
internal states of the cache and the network, The
common bus arbitration time, and the message
packet swirching time are examples. The overhead
of cache misses and the network latency is important
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in this evaluation. Thus, simulating the cache and
network effects concurrently with processor
activiries would have taken a great deal of time in
software simulation,

3.2 Evaluation using an Artificial Load
Model
With an aim toward further improvement, we
evalvated an artificial load model for the following
TEA50NS: .
10 separate the effect of hardware alone.
An evalvation independent of the specific
application is necessary in order 1o isolate the
speedup produced by the proposed hardware
mechanisms,
= to separate the effect of load balancing,
The real KL1 execution environment involves many
new control sequences in addition to load
balancing. For example, handling the priority of
loads needs another polling action using EFR
registers. The total performance depends on the
usage of the proposed hardware in other control
SeqUEnces,

4. EVALUATION RESULTS

We carried out the evaluation of the proposed
hardware in both shared bus and network-based
hierarchies.

4.1 Evaluation of broadcast registers in the
shared-bus hierarchy

We carried cut this evaluation by focusing on the
reduction of the latency to access the information about
the existence of the idle processors.

A. The load balancing scheme,

The load balancing scheme is explained below:

» Distributed load pool.
Each processor has its own load pool in order 1o
avoid implicit data transfers between caches due to
updating a serial link in case of the generator
processor of the load differs from its consumer

processor using common load pool [14].
Consequently, an explicit load balancing
communication for the distributed load pools is
reguired.

» Receiver-initiated load balancing.

The explicit load balancing communication for the
distributed load pools should be initiated by fully
idle processors in order to avold wasteful
dispatching. Thus the communication is request
based.

+ Communication with arbitrary responder.

In order to reduce the response time without
interrupting busy processors, a new type of
communication, the AR (Arbitrary Responder)
communication is introduced in PiM/c [12]. The
request is sent to any processor which has more
than one load in its load pool. In order to avoid the
high overhead of context switching, every
processor poils the request at intervals where the
context switch overhead is low. Thus any
processor which detects the request first responds
to it. As the timing to detect requests differs in
each PIM/c processor, this communicatdon method
is expected to reduce the response time
proportionally to the number of processors in a
cluster.

B. The load mads!,

This model reflects the following characteristics of
KL program execution:

« Unit load.

We denote the unit as the reduction. The unil is
assumed to be 200 cycles in PIM/c (Fig. 4).

« Indeterminacy in the granularity of loads,

In order to simulate "Tail Recursion Optimization”
[17], we define the goal! as consisting of an
arbitrary number of reductions (1 to 16).

» Indeterminacy in the number of goals.

In order to simulate the indeterminacy, we assume
that each processor generates an arbitrary number of
goals (1 o 4096).

= A high write ratio and a high share ratio.

Accesses performed within the reductions have the



following parameters: write ratio is 0.5, share ratio
iz 0.5, where write ratio iz defined as the ratio of
write references 1o total memory references, and
ghare ratio is defined as the ratio of references 1w
shared data area to total memory references.

» A high access locality.

We define the locality as the number of successive
accesses to the same address. The value is set to 4
in order to simulate free-list manipulation, which
consists of allecating, instantiating, referring and

deallocating a memory cell.
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Fig. 4. A Load model with varying
granularity.
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C. Results of the evaluation in a cluster,

We control the initial load amount in each processor
to vary load balancing conditions. According to the
deviation of the initial load amoums within processors,
14 cases are simulated with an 8-processor cluster. The
resulting data are the total elapsed time (T), the total idle
time (1), the total wait time after requesting for load (i),
the total dispatching time (t), the total reduction count
(R) and the load request count (r}. The toral idle fime
includes the time spent waiting for load dispatching
since requesting a load by updating a bit-map word
until receiving a load by reading a non-zero value from
its communication area, and the time to wait for
termination of the whote program, The bit-map word is
a data array in which each bit corresponds 10 a
pracessor requesting load. The wotal dispatching time
includes the time to select an idle processor by encoding
the bit-map word to the address of its communication
area, and the time to dispatch a load to each idle

727

processor by updating their communication areas. The
evaluation measures are i and t, and the reduetion cost
is defined as follows:

Reduction cost=({T-I-t) /R

Figure 5 shows the performance increase in reduction
using registers. The total reduction cost and the load
request count are varled in 14 simulation cases. In this
figure, request ratio is introduced, which is defined as
the ratio of the load request count r to the total reduction

- count R. The reduction cost is almost independent of

the request ratio. This fact indicates that the memory-
polling overhead caused by checking request
ocourrences is larger than the overhead due to cache
misses using invalidation protecol, The speedup
obtained is 15% due to the use of EFRs.
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Fig. 5. The increase in speed using regis-
ters. The reduction cost is defined as the number of
execution cycles per unit load. The result involves extra
cycles for probing. The request ratio is defined as the
number of request per reduction. Using memory
polling the reduction cost is high due to the serial
execution of a memory access and a branch. Using
EFR, both the access and the branch can be done within
a cycle. The polling is done for three kinds of events;
load request, load dispatching and termination of the
whole program,
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Figure 6 shows the wait time i and the dispatching
time t as a function of request count, It is confirmed that
the use of EFR with broadcast feature reduces both the
wait time and dispatching time. The use of EFR reduces
the dispatching tirme by 209, and reduces the wait time
by 15%.
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Fig. 6. The increase in speed using broad-
casting. The disparching time and the wait time
increase due to the cache misses using an invalidation-
type snooping cache. The use of broadcast feature
climinates the overhead due to the cache misses.

4.2. Evaluation of shortcut paths in the
network-based hierarchy

We carried owt this evaluation by focusing on the
reduction of the latency in accessing the value of the
total load in a cluster,

A. The load balancing scheme.

The load balancing scheme is described below:

s Sender-initiated load balancing.
A study of the Multi-PSI system disclosed 2
problem of the receiver-initiated load balancing
scheme in large-scale machines, namely that a load
request contention may arise at busy processors
[15]. In order 1o avoid this contention, an improved
sender-initiated scheme, named "Smart Random
Load Dispatching” [5] is efficient in reducing

wasteful dispatching. In this scheme, the cluster to
which goals are dispatched is determined at random
and then this goal dispatch is aborted on the
condition that the dispatch target has more loads in
the pool than the dispatching cluster.

B, The Load model,

The load model among clusters is defined in such a
way as to reflect the changes in the amount of loads in
the load pool. The load model is as follows:

+ Aninitial goal is denoted by L{16) (Fig. 7 shows
Li{s).

# The execution of goal L{i} produces (i-1)
subgoals, L(i-1),.... L{2), L{1). Thus, the goal
L{i) has 2i-1 reductions.

= Each reduction takes 300 cycles to execule using
network messages.

e The message length required for the load
dispatching is 27 bytes long. Thuos, it takes 27
cycles to send this message through the one-byte-
wide network interface. The length of the message
requesting the load amount is 2 byees.

Fig. 7. A load model with floating amount of
load.

C. Results of the evaluation among clusiers.

We control the dispatching rate, which is defined as
the ratic of all goals dispatched to other clusters to ail
executed goals, by changing the interval of the
dispatching control. In order to determine the efficiency
of load dispatching, the otal elapsed time (T), the total
idle time (I} and the dispatching rate (d) are measured,
Differences result from the latency of load information.



Figure § shows the results obrained by applying the
smart random load dispatching scheme to 8 cluster
system without support hardware, The normalized
elapsed time, which is defined as the ratio of elapsed
time by 8 cluster system to elapsed time by single
cluster, and the utilization of processors are plomed a5 a
function of the dispatching rate. In order to compare the
results in the two cases, we assume that the dispatching
rate is controlled (o be 0.2, because safe control occurs
only at the upper side of the minimum point. Without
the support hardware, the resulting increase in speed is
approximately 3.3 in an 8-cluster system at a
dispatching rate of 0,2,
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Fig. 8. Smart random dispatching
without support hardware. The dispatching rate
is defined as the ratio of all goals dispaiched to other
clusters to all executed goals. The normalized elapsed
time varies considerably from 0,125 using 8 clusters
connected via a network because the overhead for
message handling is visible.

Figure 9 shows the results after applying the smart
random load dispatching scheme with hardware
support. The normalized elapsed time and the utilization
of processors are plotted as a function of the
dispatching rate. With the support hardware active, the
processor can reduce the overhead dug to requesting the
load amount. The resulting increase in speed i3

approximately 5.5 in an Z-cluster system at a
dispatching rate of 0.2,

Comparing the two results, the use of the proposed
hardware halves the normalized elapsed time at 0.2
dispatching rate, where the conirol of dispaiching rate
seems 1o be possible, -

It should be noted that the shortout path can also be
used for other load balancing schemes, including the
minimum load distribution scheme [16]. These schemes
will be evaluated in future work.
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Fig. 9. Smart random dispatching
with support hardware. The normalized elapsed
time varies near (1,125 using 8 clusters connected via a
network because the overhead for message handling is
quite low.

5. CONCLUSION

Hardware for dynamic load balancing is implemented
in both shared-bus and network-based multiprocessors.

We propose a register with broadeast write feature in
shared-bus multiprocessors. Also, in network-based
multiprocessors, the network unit uses a shortcut path,
The evaluation was carried out using real hardware and
an artificial load model.

The evaluation results in the shared bus hiecarchy
determine the overhead due 1o memery polling which
detects a load request. The proposed hardware reduces
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the execution time of logic programs by 15%.

The evalvation results in the network-based hierarchy
show that the overhead due to requesting the load
amount is reduced as a result of introducing the shortcut
path. The proposed hardware reduces the execution
time by 50%.

It is confirmed that the proposed hardware reduces
the access latency of load information, and
subsequently the overhead produced by dynamic load
balancing,
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