PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GEMERATION COMPUTER SYSTEMS (992,
edited by ICOT. @ 1COT, 1992

715

UNIREDI: The High Performance Inference Processor
for the Parallel Inference Machine PIE64

Kentaro Shimada

Hanpei Koike

Hidshiko Tanaka

H.Tanaka Lab., Department of Electrical Engineering,
Faculty of Engineering, University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
E-Mail:{shimada,koike tanaka] fimtl.t.u-tokyo.acip

Abstract

UNIREDT iz the high performance inference processor of
the parallel inference machine PIEG4. [t is designed for
the committed choice language Fleng, and for use as an
elemnent processor of parallel machines. Its main {eatures
are: 1) a tag architecture, 2) three independent mem-
ory buses {instruction fetching, data reading, and data
writing}, 3) a dedicated instruction set for efficient exe-
cution of Fleng, 4] multi-context processing for reducing
pipeline interlocking and overhead of inter-processor syn-
chronization. With the multi-context processing mecha-
nism, the internal pipeline is shared by several indepen-
dent instruction streams (contexts), and which contexts
are to be executed is determined cycle by cyele. So, U-
NIRED acts as a pipeline-shared MIMD processor. In
this paper, several architectural featpures and the instruc-
ticn set are explained. And performance measurement
results by simulation are alss presented. High perfor-
mance (about 1M RPS! with 10MHz clock) is attained,
and it is shown that the multi-context processing mech-
anism is very effective for improved performance.

1 Introduction

Committed choice languages are designed for efficient
parallel execution of logie programs, but, because of their
parallel and logic semantics, high performance is hardly
achieved by conventional processors which are designed
for sequential and procedural languages., Therefore we
designed a dedicated processor for the element proces-
sor of the parallel inference machine PIE64 [Koike and
Tanaka 1988], which we are now developing, and named
UNIREDI. PIEG4 executes committed choice language
Fleng[Nilsson and Tanala 1988), and has sixty-four pro-
cessor elements.

For design decisions in UNIREDI, we paid special at-
tention to the following points.

1. The processor architecture should be tuned for the

execution of Fleng programs.

TRPS: Reduction Per Second

2. 1t must be equipped with the features of an element
processor of paralle] machines.

Far the first point, we designed a dedicated instruction
set for executing Fleng based on the experience of devel-
oping Fleng interpreters on workstations. For the second
point, we proposed the multi-context processing mecha-
nism for reducing inter-processor synchronization, and
the independent coprocessor command bus to intereon-
nect network interface processors and a process manage-
ment processor.

UNIREDT is implemented in 1.2 p CMOS gate array
and driven with 10MHz clock. This clock rate s se-
lectod because UNIREDT must synchronize with the lo-
cal memory bus, which in turn synchronizes with the
network hardware of PIEG4.

An overview of PIEG is given in section 2. In section
3, the architecture including the multi-context process-
ing mechanism and instruction set of UNIREDT are de-
scribed. Tn section 4 and 5§, some simulation results are
presented and discussed. Finally, we conclude this paper
in section 6.

2 PIE64

PIE64 is one of several parallel inference machines which
executes parallel logic prograrmming languages such as
Fleng[Nilsson and Tanaka 1988] and KLI1[Kimura and
Chikayama 1987). We designed the committed choice
language Fleng for PIEG4 so that it is easy to imple-
ment and easy to attain high performance. PIEG4 has
sixty-four processor elements, which are called inference
units (IUs), and two independent interconnection net-
works (Process Allocation Network: PAN and Data Ac-
cess/ Allocation Network: DAAN)[Tekahashi ef al. 1991).
These interconnection networks are implemented as cir-
cuit switching, and have a special function of broadeast-
ing load information for automatic load balancing se that
each [U can select the minimum lead U autematically.

716

ToFrom To/From
DaAMN PAN

Command Bus

*CBIF:Command Bus Interface
*MEIF:Memory Bus Incerface

Figure 1: organization of the inference unit of PIEG1

Each [T has an inference processor UNIREDE, two?
network interface processors(NIPs) [Shimizu et al. 1981],
a management processor{ MP), and a local memory of
four hanks {see figure 1). NIP, which is a dedicated pro-
cessar as well as UNIREDI, performa inter-1U commu-
nicating/synchronizing functions in a form suitable for
Fleng execotion. The transimission throughput is 10M
word per sec., namely 40MByte per sec. at one connec-
tion for each network. MP manages process scheduling,
load distribution, and load balancing, and performs ather
functions such as system maintenance. We use a gen-
eral purpose processor, SPARC, as MP to make process
management flexilile. Thus, in the IUs, we use fune-
tional parallelism by the three kinds of processor, where
UNIREDI performs computation, NIP perfarms commu-
nication and synchronization, and MP performs process
management.

In an I, these three kinds of processors share the lo-
cal memary, and access it through a three way mem-
ory bus which is driven with a 10MHz ¢lock to synchro-
nize with network access over MIPs. So we can get a
throughput of 10M word (40MByte) per sec. each way,
namely 120MByte per aec. in 2ll. In addition, UNIRED-
I, NIPs, and MP communicate with each other through
a coprocessor command bus using a specialized protocol
for command-reply among these processors. The format
of the coprocessor commands is determined with the Fl-
eng data types taken into account.

In practice, there are four network interface processor chips in
ane IU. Tweo of them et in master mode and can start the action
of netwaork conmection while the ather two act in slave mode and
respond to the master NP when requested.

Teed m‘nrlf#g
processes from MP
Itipl
multiple contexts . I
El Status Reg. |fLsomesty
—a —| comext 3]
= |
P Peogram Countar ﬁ.ﬁrﬂ?ﬂ%ﬂﬂﬂm
select one active context
at avery clock eycle
. feed the value of PC of the context
%o the internal pipeline put a context fo the sleep
state h‘_k. walls for a reply
tetch a instruction and execute it ’
with the pipeling
(contex no.:) |3 211|011 |1
pipelinestage: 1 2 3 4 5 § 7

Figure 2: overview of the multi-context processing mech-
anism

3 UNIREDI Architecture

3.1 Overview

UNIREDT is a dedicated processor.. It was designed for
executing Fleng programa efficiently and to mest require-
ments of an element processor for parallel machines. lis
main features are:
1. a tag architecture
2. three independent memory buses (instruction fetch-
ing, data reading, and data writing)
3. multi-context processing
4. a dedicated instruction set to execute Fleng pro-
grams efficiently
All instructions of UNIREDI have one word (32 hits)
length, and are single-cycle instructions. Also its data
types have a length of 32 bits, and consist of two mark
bits for garbage collection, two tag bits, and twenty-eight
bits of value part [p-mﬂter types); or two mark bits, six
tag bits, and twenty-four bits of value part {ccmst.ant

types).

3.2 Multi-Context Processing

The internal pipeline of UNIREDI iz shared by multi-
ple instruction streams (contexts). UNIREDE executes
them concurrently, and which contexts should be exe-
cuted iz determined cyele by cycle. In other words, U-
NIREDI acts as a pipeline-shared MIMD processor {see
figure 2). Because Fleng is a paralle]l language which
generates many instruction streams in parallel, we can
expect to get encugh instruction streams to fill the con-
texts of UNIREDI, Process scheduling is determined by
the management processor, and UNIREDT starts a new
process as one of the contexts by receiving a appropriate

T T
s e L M = o
Amate) | paa & Catadian Wilke
Tearsle)
Translinsy | Fiogister)
Ause Mamory Wete
{Asbiragion) | {Da%
Teareier)

Stige! Stgez Slaed Sagad Suge5 Siages Saga7

Figl.ll‘e 3: pipeline D:Eauiza.l:inn of UNIREDI

coprocessor command from MP. And when one of the
contexts waits for a reply of some remote memeory ac-
cess, UNIREDI puts the context to sleep state and fills
its pipeline with the other contexts dynamically.

Twa kinds of aim of the multi-context processing exist.
1} Ta reduce pipeline interlocking caused by pipelined
executions of the instructions (intra-processor effect). 2)
To reduee the cost of process switching due to remote
memory access (inter-proceszor effect). Especially, the
second effect 18 a very important feature for an element
processor of parallel machines.

The most. remarkable point of the multi-context pro
cessing mechantsm- of UNIREDI 48 that it can continu-
otfsly execute instructions of only one context while the
other contexts are sleeping (as shown af the stage from
3 to T in the figure 2), UNIREDI has a pipeline inter-
locking mechanism to keep dependency ameng instrue-
tions of one context. Other processors which have simi-
lar mechanisms, such as HEP[Jordan 1983), MASA [Hal-
stead and Fujita IHEE]r and ':PC[SI'limuzu el al. 1989),
do not have pipeline interlocking mechanism and can-
not execute one instruction stream in continuons cycles,
Therefore they slow down dramatically as the number of
executable instruction streams decrease. That is not the
case of UNTREDIL

Due to the restriction of available number of gates, the
number of contexts is imited to four, But that is enough
to get the full effect of multi-context processing, as we
show later.

3.3 Hardware Organization

3.3.1 Pipeline Organization

Figure 3 shows the internal pipeline organization of U-
NIREDI The pipeline consists of seven stages. The
main reason why as many stages as seven are required
is that, in an TU, all memory access needs two phases,
one of which is the bus arbitration phase in which the
four kinds of independent accesses from UNIREDI, two
NIPs, and MP are arbitrated (see figure 1), and another
is the data transfer phase in which memory access is ac-
tually performed, so that the memory access time hides
the bus arbitration time. Thus, at the first and the sec-

717

ond stages, UNIREDI fetches an instruction from the
local memary, decodes it and reads registers at the third
stage, executes it at the fourth stage, reads data from
the memory at the fifth and the sixth stages, and writes
data into the memory at the sixth and the seventh stages.
Also registers are written at the seventh stage. UNIRE-
DI has thirty-twe general purpose registers per context,
namely 128 general purpose registers in all. By means of
this pipeline srganization, UNIREDI makes efficient use
of its three memory buses and can execute test-and-sef
Lype ingtructions which require two times of memory ac-
cess (one read and one write) in one cycle without any
pipeline holding because the data reading and writing
buses are handled by different stages. These type in-
structions are very important for processing elements of
parallel machines.

The effectiveness of the pipeline architecture is deter-
mined by when and where the pipeline interlock oceurs.
As for UNTREDI, the pipeline interlock will sccur when
not all contexts can be executed. In that case, taking a
jump (at the fourth stage) will invalidate at most three
following, already-fetched instructions of the same con-
text at the fiest, the second, and the third stages. And

reading resiaters (at third-stage) which-are destinations

of load instructions executed within three preceding cy-
clez will cause pipeline hold, When all four contexts can
be executed, no pipeline interlock occurs becanse instruc-
tions of the same context are not executed and registers
of the same context are not read in any four continuous
cyeles.

8.3.2 Mechanism of Remote Memory Access

In principle, memory-accessing instructions of UNIRELDM
can execute remote memory acoess automatically. UN]-
REDI has a special register which holds the TU identifier
of six bits, and it compares the IU identifier field of the
memory address (the upper six bits of the address of
twenty-cight bits) with the 1U-id register when executing
memory access instructions. When they are not equal,
UNIRED issues a remote memory access command to
NIF instead of accessing its local memery. The resalt of
the remote memeory access is sent baek as a coprocessor
reply fram NIP.

UNIREDT should receive the replies of the remote mem-
ory access commands correcily. For this purpose, all
general purpose registers of UNIREDT have a special bit
indicating that they are waiting for replies or not. When
an instruction reads the register whose reply wait bit ia
set before the reply is received, UNIREDI cancels the
instruction and puts its context to sleep. And, after re-
ceiving the reply, UNIREDI wakes the context up and
re-executes the canceled instruction.

718

Table 1: the instruction set of UNIREDHE

Dereforence derf dercforence dfel dereference and check st
dell dereferenee and check list and load car dfew dereference and check vactor
devi - dereference and cheek veetor and lod top | dfee dereference and check constant

Execute cRec execute exel | exccule on Jist
exll execute on list and lead car exevy execute on vector
exvl execute on vector and load top Pexet execube on constant

Manipulate cpir copy if remote | cprr copy if remote with register

Strocture evtp check vector tap ¢vtr check vector top with register

Load [Id load tgld tagged load

Stare leizt. load and store Llel= tagged load and store
st store sudf store undefind code
stitn store imimediate

Active bind bind variable bdim bind with immediate

Unification cwos check variable order and swap

Heap Allocation allc allocate

Flow jump jump call call

Centrol jemp jump on eompare jnep jump on nat eompare
jtag jump oon tag Jmtg jump ob not tag
Jrmt jumnp on remate pointer jloe Jjump on local pointer
joe Jump on flag condition stop stop

Coprocessor cpein #end coprocessor comimand

Crarbage Pldsm lowd and store mark stmm store with modified mark

Collaction jmrk jump on markstop condition

Set et sel constant s sel mark and tag
seta st alternative pointer Aetf set candition fiags
elef elear condition flags gfe get flag condition

Arithmetic add add ade add with carcy

and Logical sub subtract sbb subtract with borrow
and bit-wise and ar bit-wise or
HOE bit-wise exclusive or rol rotate lefc
TOT ratate right rel cotate with carry left
TeF rotate with carry right shl shift beft
shr shift right asT arithmetic shift right

Management spid sel pid register pidt preset pid and tag
shp sot heap pointer Ihp load from heap pointer
exhp exchange heap pointer set stp set scrateh area pointer
Itp lead from scrabch area pointer sif store flags
Idf load from flags

3.4 Instruction Set

Table 1 shows the instruction set of UNIREDI. We de-
scribe several notable instructions of it in the following
subsactions.

3.4.1 Dereference Instructions

The dereference instructions are most characteristic of
the instruction set of UNIREDIL They dereference links
of a variable and get the value of the variable. To deref-
erence one link per eyele, they recursively jump to them-
selves when the value of the operand register of them is
a pointer to a variable. In that case, they read the con-
tent of the address of the variable, write its value into
the same operand register, and jump to themselves. As
a vesult, they have dereferenced one link. By means of
using this mechanism in addition to the cyele-by-eyele
context switehing, instruetions of the other contexts can
be executed even while a dereference loop is processed.

One significant point of the dereference instructions is
that they have special ability for committed choice lan-
guages. That is the suspension register mechanism. In
head matching of committed choice languages, a goal
may suspend when a component of its arguments is an
unbound variable while the corresponding component of
the current clavse head is not a variable. After trying all
alternative clanses and committing no clauses, the goal
really suspends. Therefore when a goal may suspend
at one of alternative clauses, the variable which caused
the suspension must be recorded to hook the goal by
some suspension stack mechanisms until all alternative
clause are tried. In the case of UNIREDI, the variable
is recorded in the suspension register {general purpose
register R30) by the dereference instructions.

There are two kinds of effect of the suspension regis-
ter mechanism. First, the suspension stack, which is in
memory in the case of other similar processors [Kimura
and Chikayama 1987], can easily be implemented in reg-

append{[H | T], X, ¥} := ¥ = [E [Z], append{T, X, Z).
apperd([], X, ¥} A
appand ¢
sata $suspend, ap
dell ri, 82, rd H -
Bi:
tgld [r1 + 1], z1 Hile &
alle e, lat, 2, =5 L
at 4, [£6], %tap ; EH |
sudf [x5 + 1], 6 ; Z1
bind zE, ©3, T ;Y=[812
jntg T, udf, $checkl
nav r8, ra 1 Z)
exll rl, 81, 4 y

§2:
dfce ri, nil, $fail : [
cves T2, r3, r2, r3i ; X =1.
bind T2, r3, =7
jmtg 7, udf, Fchock?
succ E£tP, mp
atap

Figure 4: an example of compiled codes (append)

isters so that the suspension check is speeded up. Second
and more important, when the head matching is deter-
ministic, as is often the case with real programs, once
a goal suspends at one of the alternative clauses, the
goal suspends after all. Therefore no suspension stack
in memory is necessary in that case. The glispension
register mechanism also speeds up this case.

Several combined instructions exist among the derefer-
ence instructions. The dereference-and-check-list {dfel)
instruction checks the dereferenced value to determine

whether it is a pointer to a list or not,, and the dereference-

and-check-list-and-load-car (dell) instruction reads the
car part of the list if the dereferenced value is a pointer to
a list. Similarly the dereference-and-check-vector (dicy)
instruction checks the dereferenced value to determine
whether it is a pointer to a vector, and so on. These
instructions are capable of a two-way jump, one for sus-
pension and the other for pointer type check failing. The
jump addresses are given by the offset value from the in-
struction itself and the alternative pointer register (gen-
eral purpose register R28).

Another kind of combined instruction is that the exe-
cute instructions, which execute tail recursions, are com-
bined with those dereference instructions so that they op-
timize the tail recursion and the conseguent head match-
INg sequence,

3.4.2 Arithmetics and Bit-wise Logic Instruc-
tions

The arithmetic and bit-wise logic instructions of UNI-
REDT are wery similar to those of conventional proces-
sors., They exist for compiling such things as built-in
arithmetic predicates. One difference between those of

719

Figure 5: the simulation model used for the evaluation

Table 3: the number of clock cycles which are necessary
for emulating co-processor commands issued by UNTRE-
DI

command deseripbion tn;" reply num.of cycles
newgoal engieue & new goal MP T 1
endraduce end of a reduction MP rics 1
suspend suspend & goal MP e 7
derel dereference & variable NIF yes 16
bind bind a variable NIP yes 17
read read & remate list NIF yes 1%
activaies activate a goal KIF no . - 8

UNIREDT and those of conventional processors is that
those of UNIREDN check the tag part of the operands
and set the tag error flag bit of the flag register accord-
ing to the value of the tags®. Therefore there are several
switches of those instructions to deal with various tag
types. For example, the add.i instruction (i switch on)
adds an integer to another integer {otherwise set the tag
error flag), the add.p instruction adds an integer to a
pointer, and the add.b instruction adds total 32-hits to
32-bits and does not change the tag error flag.

3.4.3 An Example of Compiled Code

Now, we present an example of compiled code of UNIL-
REDL in figure 4. It is the code compiled from a de-
terministic append program. In the tail recursion loop
(between label $1 and §2 in the figure), there are only
eight instroctions. Therefore UNIRED can execute the
append program at a maximum rate of 1.25 million re-
ductions per second with the clock rate of 10 MH=.

4 Simulation Results
4.1 Simulation Maodel

Figure 5 shows a simulation model used for the evalu-

3T simplify the hardware, there are ne tag error trap mecha-
nisms in UNTREDI.

720

Table 2: several aspects of the sample programs which are revealed by the simulation

Program appand 100 nreverse 30 gsort 30 primes 100 8 goeens
tatal elock cycles 1435 T 2162 410688 6HGOI1
times of reduction 101 486 380 T268 JBETR
times of suspension o 20 122 103 55R
- mumn.ef executed instructions 18 4858 7747 30452 847933
instructions per reduction 8.08 6,79 0,38 54.20 16.67
elock eyeles per instruction 1.759 1.117 1.054 1.044 1.012

ation. We evaluated UNTREDT as a single, independent
processar, and emulated the coprocesser commands is-
sued by UNIREDI with the imaginary command proces-
gor shewn in Figure 5. In a real IU of PIEG4, these com-
mands are processed by MP and NIPs. Table 3 shows
the number of cycles which are necessary for emulating
the commands with the command processar. As far net-
work access commands, the number of cyeles in the ta-
ble iz determined based on the NIP's performance from
[Shimizu et al. 1991]. In addition, we vsed an indepen-
dent quene memory for queuing newly spawned goals in
the simulation model. This roughly corresponds to the
MP memory in figure 1. The goal scheduling strategy
with this quene memory is LIFO [Last-In, First-Out).

4.2 Performance with Sample Programs

First, we evaluate UNIREDT's performance under the
condition that there iz ne remote memory access. We
use, as the sample programs, append 100 (deterministic
append of a list of length "]I]J, nreverse 30 (naive reverse
of & list of length 30), gsort 50 {quick sort of & list of
length 50), primes 100 {generation of prime numbers up
to 100), and 8 queens (the B-queen problem). Table 2
shows some aspects of the sample programa, and figure 6
shows the performance with the sample programs. These
are measured with 10 MHz clock,

As for append 100, the performance is comparatively
low because, for spawning no sub-goals, the number of
active contexts in the program does not excesd one and
s the multi-context processing mechanism does not worlk.
In this case, the pipeline interlock occurs frequently and
therefore the performance is degraded in spite of only
cight instructions in its reduction loop. Figure T shows
the average number of active contexts about the sample
programs. In the figure, more than three contexts are
active in average about the other four programs. Con-
sequently we can get enough effeet of the multi-context
processing in these programs.

Another example of low performance is that of primes
100 becanse there are no multiplier/divider units in U-
NIREDHE and it takes long time to carry out the divi-
sions which that program requires through integer addi-
tions and subtractions. According to table 2, there are
mare than fifty instruetions per reduction in that pre-

Parfarmance|KRFS]

opoond 108nreverse 30 qsort 50 primes 100 B quesn

Figure 6: performance with the sample programs

ot

aversge aclive contexs
na
1

e i
appand 100nrevorss 30 gsort B0 primes 100 8 quesn
Figure T: average number of active contexts in the sam-
ple programs

gram, and this is over twice as big as in other programs
such as quick sort 50 and 8 queens. This 13 because it
takes about 120 instructions to perform an integer divi-
sion which is required in primes 100, For other similar
programs which require multiplication and/or division
of integer and for floating point, low performance is also
expected. But, because the management processor has
its own FPU (floating poiot wnit] in the [Us of PIEG4,
UMNIREDE can pass such calenlation to the MP and can
concentrate on reducing goals. However, the evaluation
has not been done yet.

4.3 Tolerance of Remote Access Latency

To evaluate tolerance of remote memory access latency,
we incorporated a paseudo-remeote access mechanism in

clock cycles

. ramods polnber ratio]:]
Figure B: all sorts of clock eyeles ve. remote memory

access (B guesns, the maximuom number of contexts =]_]
200000 { ;]

O pipeing slaep
2oc000d 1+ [pipeline held
[invalicated Inas

clock cycles

a 20 40 8o Ba 100
ramata pointer ratio[%]

Figare 9: all sorts of elock cyeles vs. remote memory
access (8 queens, the maximum number of contexts = 2)

the simulator in spite of the single processor model of it
as shown in figure 5. In more detail, we change the value
of the [U-identifier field of the pointers included in every
goal when reduction of the goal staris or resumes after
suspension, with the probability which we call remote
pointer raiio. Remote memory access commands issued
by UNIREDE are emulated by the command processor
shown in figure 5 with eyeles listed in table 3. Under
these conditions, we varied the maximum number of the
contexts from one bo four, and measured the clock cycles
reqguired by all sorts of the pipelined execution of instruc-
tions waing the & queens program. Hesults are shown in
figure 8 to 10. In these figures, the lowest part (shad-
owed) of the graph represents the number of executed
instructions, the second part (hatehed) represents the
number of invalidated instructions by some jumps, the
third part (lightly shadowed) the number of cyeles while
the internal pipeline of UNTREDH helds, and the fourth,
uppermost part (white)] the number of cycles while the
pipeline are sleeping because, waiting for some replies,
no contexts can be executed.

In figure &, the multi-context processing mechanism of
UNIREDI iz not activated becavsse the maximum nom-
ber of the active contexis is set to one. Therefore the

721

2500000
o

O pipelina siaop
2000000 1 m pipsling hotd
1 B enadaied insis,

™ E ougoubad nats.

1500000

chack cycles

a 20 40 60 B0 100
remate painter ratiaf3%]

Figure 10: all sorts of clock cycles va. remote memaory
access (B queens, the maximum number of contexts = 4}

1.6

{ —8— nmeverse 30
1‘5'_'"'—-— gsart 50
14 g~ ——®— primes 100

4 a_“—i— B quesn

Speed Up

1.2

1.1

I L)]
e +darf sdicl/dfcc +dellfaxll
conditien
Figure 11: effects of dereference instructions

pipeline sleeping time (the white part of the graph) can
not be hidden and becomes longer and longer as the re
mote memory access increases. Moreover, the pipeline
held time and the amount of invalidated instructions are
great because the pipeline interlock occurs frequently.

In the ather two figures (figure 9 and 10), the multi-
context processing mechanism works and works more of-
fectively as the number of contexts inereaze. The pipeline
sleeping time iz least in the figure 10 and the pipeline
interlack (the pipeline hold and the instruction invalida-
tion} hardly occurs in that figure. They become a little
longer as the remote memory access increases becanse
the average number of the active contexts decreases. Fig-
ure 9 shows an intermediate state between figure 8 and
10,

4.4 Effects of Dedicated Instructions

Finally, we present the effect of the dereference instrue-
tions, which are most characteristic of the instroction
set of UNIREDI. Figure 11 shows the speed up about
four sample programs (naive reverse 30, quick sart 50,
primes 100, 8 queen) without the dereference instructions
(the dereference instructions are resolved into mare ha-
sic instructions), with only the basic dereference (derf)

722

instruction, with the dereference-and-check-list fconstant
[dicl [dfee) instruction, and with the all combined in-
struictions such as the dereference-and-check-list-load-car
[execute-on-list-load-car {dellfex]l) instruction, respec-
tively.

In the figure, the speed up of the basic dereference in-
struction is about 10 % except in the primes 100 pro-
grarm, in which the majority of the executed instructions
are arithmetic ones. In addition, the combined instruc-
tions have their effect as shown, and the total effect
of these instructions is about 30% except primes 100,
Therefore it can be said that the dereference instructions
have a great effect. '

5 Discussion

In the previous subsection, we present the effect of the
dereference instructions and the combined ones. One
point is that they are not such complicated instructions.
In the hardware design, the instruction decoder does not
include the critical path which actualiy determines the
maximum clock rate of UNIREDI. The critical path
iz included in reading general purpose register file and
ALL caleulation. Moreover, all of the instructions of U-
NIREDM are single-cyele instruetions because they jump
to themselves recursively when they nesd more cycles
to complete their action, as described before in section
3.4.1.

Owing to these dedicated instructions, we can compile
Fleng programs so that the number of executed instrue-
tions are minimized. As the result, we can achieve high
performance though the clock rate is comparatively slow,
10 Mz,

Finally, we shall mention the effect of the multi-context
processing of UNIRED. As well as reducing overhead of
inter-processor synchronization, we can reduce pipeline
interlock with it so that we can turn the pipeline of U-
NIREDI into an interlock-free one.

6 Conclusion

We have described the architecture of the inference pro-
cessor UNIREDIL and evaluated some aspects of it. We
got a performance of about 1 MRPS with 10MHz elock,
and made certain that the multi-context processing of
UNIREDI has & big effect on reducing pipeline inter-
locking and on reducing overhead of the remote memory
access latency. In future, we will evaluate it by larger,
real application programs. And, of course, we will make
the real UNTREDY chip work as PIEG4 system element.

Acknowledgements

We specially thank Pesf. J.A Robinson for much helpful
adviee. And we alse thank the members of the group
SIGIE in our laboratory, namely Tadashi Saito, Eiichi
Takahashi, Minoru Yoshiada, Takeshi Shimizu, Yasuo
Hidaka, Jun’ichi Tatemura, Hidemoto Nakada, Kei Ya-
mamote, Hajime Maeda, Shouge Shibanti, and Takashi
Matsumoto. This work was supperted by Grant-in-Aid
for Specially Prompted Research [No.62065002), and is
now suppotted by Grant-in-Aid for Encouragement of
Young Scientists (No.03001269) of the Ministry of Fdu-
cation, Science and Culture.

References

[Jordan 1883] Jordan H.F.: Performance Measurements
on HEP - A Pipelined MIMD Computer, Proc. of
the 10th Anpual International Symposium on Com-
puter Architecture, pp.207-212, ACM (1983)

[Halstead and Fujita 1988] Halstead, R, and Fujita,T.:
MASA:A Multithreaded Processor Architecture for
Parallel Symbolic Computing, Proc. of the L5th In-
ternational Symposium of Computer Architecturs,
pp.443-451, [EEE (1988)

[Shimuzu et al. 1989] Shimizu,K., Goto,E.,
and Ichikawa,8.: CPC [Cyelic Pipeline Computer) -
An Arehitecture Suited for Sosephson and Pipelined-
Memory Machines, Transactions on Computers,
Vol.38, No.6, pp.825-832, IEEE (1959)

fKimura and Chikayama 1987] Kimura,Y.
and Chikayama,T.: An Abstrect KL! Machine and
Its Mnstruction Set Proc. of the 1987 Sympesium on
Logic Programming, pp468-4T7 (1987)

[Nilsson and Tanaka 1988] Nilsson,M. and Tanaka,H.:
Mussively Parallel fmplementation of Flat GHC on
the Connection Machine, Proc. of Fifth Genera-
tion Computer Systems 1988, pp.1031-1040, 1COT
{1988)

[Koike and Tanaka 1988] Koike,H. and Tanaka,H.:
Multi-Conlext Processing and Data Bualancing
Meehanism of the Parallel Inference Machine
PIEG], Prac. of Fifth Generation Computer Sys-
tems 1988, pp. 870-977, ICOT (1988)

[Takahashi et al. 1991] Takahashi,E., Shimizu,T.,
Koike,H., and Tanaka H.: 4 Study of o High Band-
width and Low latency Mnterconnection Nelwork in
PIEGS, Proc. of Pacific Rim Conference on Commu-
nications, Computers and Signal Processing, pp.5-8,
IEEE (1991)

[Shimizu et al. 1991] Shimizu,T. Koike H. and
Tanaka,l.: Details of the Network Interface Proces-
sov for PIEGY, (in Japanese) S1G Heports on Com-
puter Architecture, 87-5, IPSJT (1991)

