PROCEEDINGS OF THE INTERMATIONAL CONFEREMCE
OM FIFTH GENERATION COMPUTER 5YSTEMS 1992,
edited by [COT, @ 1COT, 1992

666

Realizability Interpretation of Coinductive Definitions and
Program Synthesis with Streams

Maliwoto Tatsuta

Research Institute of Electrical Communication,
Toholu University,
2-1-1 Katahira, Sendai 980, JAFAN
e-mail: tatsuta@riec.toholtun.ac.jp

Abstract

The main aim of this paper 15 to construct & logic by
which properties of programs can be formalized for ver-
ification, synthesis and transformation of programs.

This paper has 2 main poin[:s. One puint is realizabil-
ity interpretation of coinductive definitions of predicates.
The other point is an extraction of programs which treat
streams.

An untyped predicative theory TID, is presented,
which has the facility of coinductive definitions of pred-
icates and is based on a constructive logic. Properties
defined by the greatest fived point, such as streams and
the extensional equality of streams, can be formalized
by the facility of coinduetive definitions of predicates in
TID,,.

g-realizability interpretation for TID, is defined and
the realizability interpretation is proved to be sound.

By the realizability interpretation, a program which
Lreats streams can be extracted from a proof of its spec-
ification in TID,. General program extraction theorem
and stream program extraction theorem are presented.

1 Introduction

Our main aim 15 to consttuct a logic by which we can
formalize properties of programs for verification, synthe-
sis and transformation of programs. In this paper, we
coneentrate on formalization of programs with streams
and present a theory TID,.

Coinduckive definitions are very important for this
purpose. Properties of streams are represented seman-
tically by the greatest fixed point. The predicate rep-
resenting what a stream is and the extensional equality
of streams are defined semantically by the greatest fixed
point, These properties defined by the greatest fixed
point can be formalized by coinductively defined predi-
cates and coinduction.

j-ealenlus hes been studied to formalize programs with
streams for verification [3]. g-caleulus has the facility of

coinductive definitions of predicates and coinduction and
is based on classical logie.

In this paper, we present a theory TID,, which has
the facility of coinductive definitions of predicates and
coinduction and is based on a constructive logic, By
these facilities we can formalize properties of programs
with streams in TID,,.

Our theory TID, is based on a constructive logic be-
cause we wank to uase the facility of program extraction
by realizability for TID,. Program extraction is one of
the benefits we get when we use a constructive formal
theory to formalize properties of programs. Program ex-
traction ie to get a program from & constructive proof
of its specification formula. One method of program ex-
traction is to use realizability interpretation. In PX[4],
for example, a LISP program is extracted from a proof of
its specification formula by realizability interpretation.

By the facility of coinductive definitions of predicates
and realizability interpretation, we can synthesize pro-
grams with streams naturally in TID, using theorem
proving techniques.

This paper has 2 main points. One point iz realizabil-
ity interpretation of coinductive definitions. The other
point is an extraction of programs with streams.

We present an untyped predicative theory TID,,
which has coinductive definitions of predicates and is
based on a constructive logic. We define grealizability
interpretation of TID,. We show that the realizabil-
ity interpretation is sound. We present general program
extraction theorem and stream program extraction the-
orem.

The soundness proof is based on the early version of
thiz paper [8]. The scundness theorem was proved also
in [5]. Both works are independent.

In Section 2, we define a theary TID,.. In Section 3, we
briefly explain how useful the facility of coinductive def-
initions of predicates is to formalize streams. In Section
4, we discuss a model of TID,, and prove its consistency.
In Section 5, we present q-realizability interpretation
of TID, and prove the soundness theorem. In Section
6, we give general program extraction theorem, stream

program extraction theorem for TID, and an exarmple
of program synthesis,

2 Theory TID,

We present a thesry TID, in this section. It 15 the same
as Beeson's EON [1] except for the axioms of coinductive
definitions of predicates.

In this paper, we choose combinators as the target pro-
gramming language for simplicity since we want to con-
centrate on the topie of coinductive definitions of predi-
cates. We suppose that the evaluation stralegy of com-
binators is lazy or call by naime because we represent
a stream by an infinite list, which is a non-terminating
term. We omit also the formalization of the lazy or call
by pame evaluation strategy in TID, for simplicity.

Definition 2.1. (Language of TID,)

The language of TID, is based on a first order lan-
guage but extended for coinductive definitions of preds-
cates.

The constants are:

K: SI1 Py Por Puas D: SNy P d'

We chocse combinators as a targel programming lan-
puage for simplicity. K and 8§ mean the usual basic com-
binators, We have natural numbers as primitiyes, which
are given by 0, a successor function sy and a predecessor
function py. We also have paring funetions p, py and
Py &s built-in, which correspond to cons, car and edr
in LISP respectively. d is a combinator judging equal-
ity of natural numbers and corresponds to an if-then-else
statement in a usual programming language.

We have only one function symbaol:

App
whose arity is 2. It means a functional application of
combinators.

Terms are defined in the same way as for a usual first
order logic. For terms s, t, we abbreviate App(s, 1} as st.
For terms s, {, we also use an abbreviation (s,t) = pst,
tg = pyt and ¢, = p,t.

The predicate symbols are:

1L, N, =.

We have predicate variables, which a first order lan-

guage does not have, The predicate variables are:
X.YZ,.. . X" Y.2°....
Each predicate variable has a fixed arity.

We use an abbreviation Az.t which is constructed
by combinators in the usual way. We also abbreviate
Y(Az.t) as pz.t where Y = Af.(Az. f22))(Az. f(zz)).

Definition 2.2. (Formula)

We define a formula A, a set 5, (A) of predicate vari-
ablez which ocour positively in A and a set 5_({A) of
predicate variables which ccour negatively in A

667

1. If a, b are terms,
1, Nia), a=5b
are formulas. Then
S4(L) = 5.(L) = 4,
S+(N(a)) = S-(N(a)) = 4,
Sple=b=5{a=0b=4d¢

2. X is a predicate variable whose atily i3 n,
X{zy,...,2,) is a formula and
3+[X{T[,...-,I-“:|}= {X},
S X{z1,...,z)) = ¢

3 Ak B AV E A— B, WzA, JzA are formulas if A
and B are formulas in the same way as a first order
language. Then

Si(A & B) = 5,(AV B) = 5,(4) US,(B),
SAALB)=8_(AvB)=5_[A)US5_(B),
S4(A— B) = 5_(A) U S(B),
S (A—=B)=5{A)VS5.(8),
Se(¥zA) = 5,(3wA) = 54(4),
S_(VzA) = 5_(3zA) = 5_(4).

4 (v X Az oze A, ., 8] 15 & formula where X iz
a predicate variable whose arity is n, 4 is a formula,
f1,... by are terms and X is not in 5_(A4). Then

S+{I:FX.,:~.31 r=r= IE.AHH, vnay fﬂ” =
S+|:A} - {X}:
S_({(vXAzy .. zq ANy 1)) = S_(A)

1 means contradiction. N{a) means that a is a natural
number. & = b means that a equals to b.

The last case corresponds to coinductively defined
predicates. Remark that X and 2y, ...,2, may occur
fresly in A. The intuitive meaning of a formula

(X Az T ALK Trae oy Tad Wi e oo Bn)
is as follows: Let P be a predicate of arity n such that
F is the greatest solution of an equation

FEII.I . .I:E.“_] +—+ A{P,zh,. . 1:“]-
Then (vX-Azy... 20 A(X, €1, ooy 5))(E1y -) meams
Pty ... 1) intuitively.

We abbreviate a sequence as a bold type symbol, for
example, £4;...,T, a8 X.

Example 2.3.
We give an example of a formula. We assume the arity
of & predicate variable P is 1. Then
[Pz = (zg, 21) & 29 = 0 &6 Py)(z)

is a formula.

Among many axioms and inference rules of TID,., we
discuss cnly inference rules of coinductive definitions of
predicates here. The rest of axioms and inference rules
are almost the same as EON [1] and we only list them
in Appendix A.

b6l

Definition 2.4, (Coinductive Definitions)

Let v = pFP Ao A[P) where x is a sequence of vari-
abies whose length is the same as the arity of a predicale
variable P and A{FP) is a formula displaying all the oc
currences of F in a formula 4. Suppose that CO(x) is a
formula displaying all the occurrences of variables % in
the formula.

We have the following axioms:

Wae(w(x) — A}, (#1)
VX(C(x) - A(C) = ¥x(C(x) = v(x)). (v2)

v P.Az. A P) means the greatest fixed point of the func-
tion from a predicate P to a predicate Az, A(P).

We define a theory TID as a theory TID,, except for
the 2 axioms of coinductive definitions of predicates.

3 Coinductive Definitions of

Predicates

We explain coinductive definitions of TID, and show
some examples of formalization of streams by coinductive
definitions.

Proposition 3.1.
Let v be »wX.Ax AX). Then
V(v (x) e Alv))
haolds.

(v1")

Proof 3.2.
By (v1), we get p(x)— A{v). By letting C be Ax. A{v)
i {v2}, A(v) — v(x) helds. O

This proposition shows that v+ P Ax.A[P) is the solu-
tion of the following recursive equation of a predicate
P

P(x) & A(P).
(v2) says that vP.Ax.A[F) is the greatest solution of
this equation or the greatest fixed point of the function
APAz A(P).

Streams can be formalized by coinductive definitions
[3]. Therefore we can formalize streams in TID,.

We represent a stream by an infinite list {a,s) con-
structed by pairing where o is the first element of the
stream, s is the rest of the stream. In this representa-
tion, if s is a stream, we can get the first element of s by
sy and the rest by s;.

We present an example of bit streams, A bit stream
is a stream whose elements are 0 or 1. We will define
a predicate BS(z) which means that = is a bit stream.
When we write down a formula BS{x) in a naive way, BS
itselfl occurs in the body of the definition as follows:

BS(z) &+ = = (29, 21) & (20 = 0V 20 = 1) & BS(z,).
BS is a solution P of the following equation for & predi-
cate P

P(z)

= (20, T} & (Eg =0Vay=1)& P(zy) (1)
or the fixed point of the function
APAz.z = (0,2} & (2 = 0V 2o = 1) & P(z,). (2)

There may be many solutions F for (1). For example,
Az.L is one solution of (1}, though it is not our intended
solution. Az.L is the least solution. Our intended solu-
tion is the greatest solution of (1) or the greatest fixced
point of (2). Hence we have the solution in TID, and it
is represented as follows:
BS=vPAzx = (zg,m) &
(zo =0V xp=1) & Plz,).

Let D be ps.{0, s). D represents the zero stream whase
elements are all 0. We can show BS(0) by coinduction
{v2). Let C be Az.(z =0) in (»2), then we have

"'i".'r(.'l: = ﬁ —
t={Tp. o) &(2a=0Vag=1)dx; =10)
— ¥x(x = 0 — BS[z)).
By definition of @,
Ve(z=0—
z=(20,7) & (To=0Vae=1) &1, =10)
holds and we have
"n"xl[z = ﬁ = BS{::}}.
Let & = U then we get BS(0).

The coinductive definitions of predicates play an im-
portant role also to represent predicates of properties of
streams [3, 6. We will define the extensional equality
& st for streams s and ¢, This equality can be repre-
sented by the coinductive definitions of predicaies, =
is the greatest solution of the following eguation for a
predicate P

Plz,y) = =y = yo & P(ay,31)-
Therelore &= can be formalized in TID, as follows:
s rPleyae = vo e Plzy,m).

4 Model of TID,

We will briefly explain semantics of TID, by giving its
intended model,

We will use classical sel theory and the well-known
greatest fixed point theorem for model construction in
this section,

Theorem 4.1. {Greatest Fixed Point)

Suppose 5 be a set, p(S) be o power set of 5. If
J i pl&) — p(5) is a monotone function, there exists a
such that a € p(5) and

L fla)=g,
2. For any b e p(S), if b < f(b), then b C a.

a is abbreviated as pfp(f).

We will construct a model M of TID, extending an
arbitrary model M of TID-. Our infended model of
TID" i& the closed total term model whose universe is
the zet of closed terms [1]. We denote the universe by U.

We will define p = A in almost the same way as for a
first order logic where A iz a formula and p is an environ-
ment which assigns a first order variable to an element
of U and a predicate variable of arity n to a subset of
U'® and which covers all the free first order variables and
all the free predicate variables of A. We present only the
definition for the case (v P Ac. A{P))(t).

Define F as follows:

x| = n,

F: p(U™) — p(U™),

F(X)={xeU" | p|P:= X] £ A(P}},
where p|P = X] is defined as follows:

AP 1= X|(P) =

gl P = X|(z}) = plz) i xisnot P
Then p = (¢vP.Ax.A(P))(t) is defined as t € gfp(F).
Mote that F is monotone since & predicate variable P
occurs only positively in A(F).

Theorern 4.2.
If TID, + A, then p = A for any environment g which
covers all the free variables of 4.

Theorem 4.3.
TID. is consistent.

5 g-Realizability Interpretation
of TID,

We will explain motivation of our realizability. We
start with a usual g-realizability and try to inler
pret {vPAz. A(P))(z). Let » be vPAz A(F) and then
v(z) + Afv, 1) holds, We want to treat vz} and A{y, z)
in the same manner. 5o we require (e q w{z))
le g Alw,z)). Therefore it is very natural to define
(e q F(ﬂ:}:l as y"l:e.l :r] where v*(e, z) is the greatest so-
Iution of & recursive equation for a predicate variable X*:

X*(e,) e+ (e @ Alma)l(r q v(y)):
where [[r g #{y)) == X*(r,y)} of the right hand side
means replacing each subformula (r q v(y)) by a sub-
formula X*(r,y) in a formula (¢ q A(v,z)). We get
the following definition of our reahza.h:ht.y by describing
syntactically this idea.

Our realizability in this paper is an extension of
Graysen's realizability. We can also define uwsual g-
realizability of coinductively defined predicates in the
same way as in this paper.

Diefinition 5.1. {Harrop formula)

1. Atomic formulas 1, N(a) and a = b are Harrop,

= X*(r,y)].

B6Y

2, f A and B are Harrop, then A & B, € — H, ¥z A
and (#P.Ax. A)(t) are also Harrop.

Since a Harrop formula dees not have computational
meanings, we can simplify the g-realizability interpre
tation of them.

Definition 5.2. {Abstract)

1. A predicate constant of arity n is an abstract of arity
n.

2. A predicate variable of arity n s an abstract of arity
1.

3. If Ajs s formula, Az ...
n.

z,.4 15 an abstract of arity

We identily (Azy...20.4) [t
f1,....2n i= 1y] where [z; 1= 4;,...
a substitution.

) with Alz =
,Tn = 1] denotes

Definition 5.3. (g-realizability Interpretation)
Suppose A is a formula, Py, ..., F, is a sequence of
predicate variables whose arities are my, ..., m, respec-
tively and Fy,Gy, ..., F,, G, i3 a sequence of abstracts
whose arities are my,my+1,. ., My, My +1 respectively.
{E. q.F......P“[Fh G] - ,F“_,GE] Al
is defined by induction on the construction of 4 as fol-
lows.
We abbreviate qp__p[Fi.G1,-- .,
AP, P Pl Gy Fay Ga, F,G) s
Py FyasFand P,,..., P, as P.

Fn'. Gn] a5 q,:
qp[F, Gl:

1. e @ A) = e=0& Ap[F] where A is Harrop.

2 (e g B() = Rt)&Get).

3.(e o Q) = Q(t) & Q(et) where @ #
P, (1<ign)

4 (e f ALB)=(ea ¢ A)&(e, ¢ B).

5 (¢ g AVE) = Niegg)k

(co=0—(e; q A}k
(o #0— (e o B)).

6. (e § A=8) = (A= Ejp
(eqg o B)).

T. (e g Vrdiz)) = ¥Yeler q' Alz)).

B. {e g FzAlz)) = (&n a Alen)).

8. (& o (vXIxAX))(E)) =
(vX"dex.(e ox[vp[Fl X"} A(X
where » = X dx A(X).

In the above definition, p, g, [F1.G1,. .. By, Gy) meana
a substitution. Our realizability interpretation is some-
thing like a realizability interpretation with & substitu-
tion.

[Fl&Ve((g o A)—

Mle, t)

670

Proposition 5.4,
Let v = v P Ax A(P).

L ¥xr((r q w(x)) = (r g Ale)).

2, Axrr g WE(r(x) — Alr)).

Proof 5.5.
By the definition of g-realizability and (»#17). O

Definition 5.6.
For a formuia A, a predicate vaniable P and a term f,

we define a term o by induction on the construction
of A as follows:

1. A i= a Harrop formula, then aﬁj = Ar.lh

2. A= P(t), then o = dr.ftr.

3. A= Q(t), then o = Arrif Q 2 P.

4. A= A & Ay, then o = Ar(ofro, ol m).

. A=A Ay, then ai"‘r = Ar{rg, d?‘gﬂcrf'l'raf;rrl:}.

o

G. A=Ay = Ay, then -D':"r = :’.?'q.crf'z‘r I[rl:a"f:fg”
7. A=Yz (z), then o = .).rz.urfﬁ_i](r:}.

8. A= 3zA(z), then o = Arfro, ol m1)-

9. 4 = (w@.Ax.A7)(E), then
ol = (psg.Axr.a3 (o} r))t where @ & P.

Proposition 5.7.
Let » = v P.Ax A(F). Then
Aq. _f..lxr.af#;[qxr] q
Wx(C(x) = A(C)) = ¥x(C(x] ~ v(x))
holds,

We prove it in Appendix B.

Theorem 5.8, (Soundness Theorem)

[TID, F A, we can get a term e from the proof of I 4
and TID, F{e g A) holds where all the free variables
of e are included in all the free variables of A.

Proof 5.9.

By induction on the proof of F A. The case of the
axiom (v1) is proved by Proposition 5.4. The case of the
axiom [¢2) is proved by Proposition 5.7. O

6 Program Synthesis with

Streams

In this section, we give general program extraciion the-
orem, stream program extraction theorem for TID, and
an example of program synthesis.

Program synthesis by theorem proving techniques has
been studied both in typed theories [2] and untyped theo-
ries [4]. For untyped theories, realizability interpretation
is used as the foundation of program synthesis by the
orem proving technigues. In Section 3, we showed that
streams and programs which treat streams can be formal-
ized in TID, by the facility of coinductively definitions
of predicates. In Section 5, we showed that realizability
interpretation can be defined for TID, and the inter-
pretation is sound. Hence we can synthesize programs
which treat streams by theorem proving techniques in
TID, using realizability interpretation.

We represent streams by infinite lists constructed by
pairing. We represent a specification of a program by a
formmla:

Va(A(z) - 3yB(z,y))
where r is an input, y is an output, A{x) is an input
comdition and Bz, y) is an input output relation.

Theorem 6.1. (Program Extraction)
Suppose that we prove a specification formula
Yz{A(z) — Iy B(z,y)) of 2 program in TID, and we
have a realizer 7 such that
V(Az) — (= q Az))).

Then we can get a program f and a proof of
Wz(A(zr) — Bz, fz))

effectively from the proof of the specification formula.

Proof 6.2.

Since the specification fermula is proved in TID,, by
soundness theorem of gerealizability interpretation we
have a realizer e such that

e q ¥z{A{z) — IyBlz,v))
helds. Let f be hz.(ex{jz))a. Then the claim helds. D

We can synthesize programs in the following steps:
1. We write down a specification formula.

2. We prove the specification formula in TID,.

3, We extract & program from the proof,

The program extraction theorem says that the third step
can be automated completely.

Example 6.3.

We show an example of the program which gets a
stream of natural numbers and returns a stream whose
each element is the element of the input stream plus one.

The predicate NS(z) which says that z is a stream
of natural numbers can be represented in TID, by the
facility of coinductive definitions of predicates as follows:

NE=pX lzx= {:nu,m-l}l &= N{Iu} &X{tl:l.
The input condition of the specification is a formula
NS[z).
The input output relation of the specification is a for-
mula ADDI{z,y) which is defined as follows:
ADDN = vX Ay = xp+ L & X3, 1)
The specification formula is:
YWr{NS(z) — Iy ADDIz,y)).

We have one problem for this program synthesis
method. The coinduction cannot be applied to the part
Yx{N5[(z) —...) in the above example. We cannot prove
JyADDIz,y) by the coinduction in general. Therefore
the realizer of the coinduction cannot give a loop strue-
ture for the program. On the other hand, a realizer of
the induction principle plays an important role for this
approach of program synthesis since the realizer corre-
sponds to a loop structure of a program [4, 7], There-
fore we need the new method by which a realizer of the
coinduction also corresponds to a loop structure and is
useful.

Then we need more specialized program extraction
method for programs with streams in which the coin-
duction is useful. We give one solution for this problem
by the next theorem.

We put 2 restrictions on the theorerm: One iz thaf
the input condition A{x) must be the form (vX.Az.x =
{zo, 1) & Az} & X(z4))(z) for some A. The other is
that the input output relation B(z,y) must be the form
(vX.Azy.B(z,y0) & X(z1,1))(2,y) for some B. These
restrictions require an input condition and an input out-
put relation are uniform over data and they are natural
when we suppose that an input ¢ and an output y are
both streams.

Theorem 6.4. (Stream Program Extraction)
Suppose that the specification formula is ¥z{A{z) —
3yB(z,3)),]
A=eX Az = (zg 5} & Alzg) & X (xq),
B =vX ey Blz,w) & X(z1.0)
and we have a term j such that Ve[A{z)—(fz g Alz))).
Then we define
B° = eX 2z 3:B(z,2) & X(z).
If we have e such that
e q Ye(Alz)— B'(z)),
we can get a term F such that
Wz(A(z) — Bz, Fz))
where
filter = pf.Az. (oo, 1),

F = Az filter{ex({jz)).
We prove it in Appendix C.

By thiz theorem, we can synthesize programs in the
following steps:

&7l

1. We write down a specification formula Yz{A(z) —
JyB(=,y))-

2. We prove the corresponding formula ¥e(A{z) —
B*(z}) m TID,.

3. We extract a program Mz.filter(ex(jz)) from the
proof where ¢ is a realizer of the corresponding for-
mula Wz Alz) — B*{z)).

In the second step, we can apply the coinduction to
prove the part B%{z) since B"(x) is defined by coinduc-
tive definitions. Therefore a realizer of the coinduction
can correspond to a loop structure of the program.

Example 8.5.

We treat the same example as above again. The speci-
fication formula is a formula Yo (NS{z) =3y ADDI(z,).
Hence the formula ADDI"(z) is:

ADDI® = v X Ar3z(z = xp + 1) & X(1,). (3)
Therefore the corresponding formula we must prove is:
Va(NS(x) - ADDI"(z)). (4)

If we prove this formula in TID,, we can get the pro-
Eram which satiafies the spcciﬂca.t.inn hj,r stream program
extraction theorem.

The conditions of the theorem hold for this case. We
can put § = Az.pus.{0, 5) since

Va(NS(x) - (us.{0,5) q NS(a))).

We prove (4) in the following way here: Firstly, we

prove

Yr[NS{z) — 3z(z = o + 1) & N5{xy)). (5}

This is proved by letting = be x5+ 1. Secondly, by letting
& be NS in (v2) for ADDI®, we have
Wa(NS(z) = 3z(z = 20+ 1) & NS(z,)) —

Ve NS(z) — ADDI*(z)). (6)

Finally, by (5) and (6), we get (4).

We calculate realizers corresponding to the above
proofs as follows: The realizer corresponding to the proof
of (5) is:

er = Azr({zo + 1,0}, 112}y
er q Vz{NS(z) — Jz(z = 20+ 1) & NS(z1)).
The realizer corresponding to the proof of (6) is:
ez = Ag.p fhero(gzr),
ez g Wo(NS(z) — Jz(z = zp+ 1) & NS{z1)) —
V(NS(z) —» ADDI(z))
where
a = Ar{{rew,ron), four).
The realizer corresponding to the proof of (4) is:
£ = &g€),
e g Yr{N5{zx)=— ADDI®(x)).

672

We gef

e = pf.her.({zy+ 1,0), fxyrn)}.
The extracted program is:

Fz = filter{ex(jz)}
filter(fz{ps.(0,5}))

= (pg.Az(zo + 1, 9m))x

where f = pf er.({zg + 1,00, fxyry). This is the pro-
gram we expect,

Remark that the realizer eq of the coinduction (6} gives
a loop structure of the program F.

Acknowledgments

I would like to thank Mr. Satoshi Kobayashi and Mr.
Yukivoshi Kameyama for careful comments, I'm deeply
grateful to Prof. Masahilko Saio for invaluable discus-
sions and comments.

References

[1] M. Beeson, Foundations of Constructive Mathemat-
ics (Springer, 1985),

[2] R.L. Constable et al., Implementing Mathemat-
ics with the Nuprl Froof Development System
(Prentice-Hall, 1986).

[3] P. Dybjer and H.P. Sander, A Functional Program-
ming Approach to the Specification and Verification
of Concurrent Systems, Formal Aspects of Comput-
ing 1 (1989) 303-319,

[4#] 8. Hayashi and H. Nakano, PX: A Computational
FLogic (MIT Press, Cambridge, 1988).

(5] 8. Kobayashi, Inductive/Coinduciive Definitions
and Their Realizability Interpretation, Manuscript
{1891),

[6] R. Milner, Communication and Concurrency (Pren-
tice Hall, 1089).

] M. Tatsuta, Program Synthesis Using Realizability,
Theoretical Computer Seience 90 (1991) 309-353.

[8] M. Tatsuta, Realizability Interpretation of Greatest
Fixed Peoints, Manusecript (1991).

[3] M. Tetsuta, Monotone Recursive Definition of Pred-
icates and Its Realizability Interpretation, Proceed-
ings of Theoretical Aspects of Computer Software,
LMNCS 528 (1991) 358-52,

Appendix

A Axioms and Inference Rules

of TID,

The logical axioms and inference rules are the same as
the ones of a usual intuitionistic logic.
Axicms for Equality:

Yr(r = x) (E1)

Va,y(z = y & A(z) - A(y)) (B2)
Axioms for Combinators:

Y, y(Kzy = =) (C1)

Yz, y, #(Szyz = ze(yz)) (C2)
Axioms for Pairing:

vz, y(po(pzy) = =) (P1)

v, yip;(pry) = v) (P2).
Axioms for Natural Numhbers:

N{0) (N1)

Va(N(z) = N{sx2)) (N2)

Va(N(z) — py(swz) = 7) (N3)

Vr{N(z) — snz # 0) (N4)

A(0) Ve (N{z) & Alx) = Alsyz)) —

VE(N(z) — Alz)) (N5)

Axioms for d:

Ve, y,a, 5(N(z) & N(y) & & = y — dayab = a) (D1)
Ve, y,a,H{N(z) & N(y) & & # y — dayab =) (D2)

B Proof of Soundness Theorem

Lemma B.1.
(1) i a predicate variable P occurs only positively in
a formula A,
{r aplF, ax.(y q Clx))] A)—
(eiir qp[F dyx3r(ir q C(x)) &y = fxr)] A).
(2) If a predicate variable P occurs only negatively in
a formula A4,
(r gp[F dyx3r{lr q Clx))ky=fxr)] A)—

{a:"fr ap[F Ay g Cx))] A)

Proof B.2.
We prove |:1} and {ﬂ} Rirnult.a.neuusl}r b:,f induction on

the construction of A, O

Proof B.3. (of 5.7)
Let v = v P.Ax. A(P).
Suppose
Wx(C(x) — A[C)),
g q Yx(C{x)}— A(C))

and let
f = uf Xotro iy (gxr).
We show

fa ¥x(Cx) — v(x])).

Let v*{r,x) = (r q w(x)). It is sufficient to show
Vier({r g C(x)) = v*(fr,X)).
This is equivalent to
Vxy(3r((r q Clx))&y = fxr)—=+"(y,x)).
By (#2), it is sufiicient to show
Yay(3r((r g Clx)) &y = fxr)—

(v aele,lyx3r((r q C(x))&y=fxr)] A(P))).

This is equivalent to
Wxr{(r q C(x))—
(fxr gplv, yx3r((r q C(x))&y = fxr)]
A(F))}-
Fix % and r and assume
r q Clx).
We show

fxr gple, dyx3r((r q Cx)) &y = fxr)] A(P).

By the assumption about g,
qer q A(C).
Hence
g qp|C, Ay q C{(x))] A(P).
By positivity and Yx{C(x) — v{x)),
gxr qelw,dyx(y q C(x))] A(P).
By Lemma B.1,
ohiby (@) qely, yx3r((r q O(x)) &y = fxr)]
A(P).
By fxr = i (qer), we have

fxr qely, Ay dr((r q C(x)) &y = fxr)] A(P).

(5]

C Proof of Stream Extraction
Theorem

Lemma C.1.
Suppose that
A=svXdzz=(zyn) & j{mu} & X(xy),
B = vX.dzy.B(z,v0) & X(z1,1m),
B® = v Xz 3:8(z,2) & X(z,).
Then
ViWz(A{z) = (fz q B"(z)))
Ve Alz) — Bz, filter{ fz})))
holds.

Proof C.2.
By only rules of NJ, the above goal is equivalent to
Vry(3f(Va(Alz) = (fz a B(z))) &
Alz) & y = flter(fz)) — B{z,y)).
By (w2}, it is sufficient to show
Yoy (If(Va(A(z}) = (fz a B(z))) &
Alz) &y = filter(fz)) —
Bz, ¥) & 3g(Ya(Alz) = (92 q B(2))) &
Alz1) & 3y = filter(gz:)))-

673

By only rules of MNJ, it is equivalent to
Vaf(Vz(A(z) = (fz q B°(z)) & Alz) —

Bz, (filter(f£))s) &
39(¥a(A(z) = (9= q B'=))&
Alz:) & (filter(fz)); = filter(g21))).)

We will prove it.
Fix x and f and assume that
Ve(A(z) = (fz q B(z)), (8)
Alz). {9}
By (8) and (9), (fzr q £°(z)) holds. Hence

(fodm a Blz,(fr)e)) & ((fz)r g B°(z;))(10)

holds. Therefore B(x, (filer(fz))o) holds since
(filter(fz))o = (f2 oo
Put g be Ay.[flze,v))r. We will show WylAly) —
(g q B*(¥))). Fix y and assume that A{y). By the
definition of 4,)
Alz) &z = {zq,39) & Alzg) & Alz;)
and i
A{{za,3)) > Alzo) & Ay)
hold. By this and (9), A{zg) holds. Hence A({xo,y))
holds. Combined it with (8), we get (f{zo,u} q
B°((za,3))). Hence ((f{z0,4))r @ B*(y)) and (gv q
B*(y)) hold. Therefore we get Vy(A(z)—(gy q B*(y))).
By (9], A(z;) holds. Since, in general, (filfer{s)); =
filter(s,) holds, we get (filter{fz)), = filter((fz),) =
filter{ gz,). Therefore (7) holds. O

Proof C.3. {of Theorem 6.4}

By the assumptions and the definition of g-
realizability, Ve{A{z) — (ex(jz) q B"(z))) holds. Let-
ting f be Az.ex(jz) in Lemma C.1, we get ¥Vz(A(z) —
B(z, Fz)). O

