PROCEEDINGS OF THE INTERMNATIONAL COMFEREMCE
OM FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by 1COT. @© ICOT, 192

658

Defining Concurrent Processes Constructively *

Yukihide Takayama
Kansai Laboratory, OKI Electric Industry Co., Lid.
Crystal Tower, 1-2-27 Shiromi, Chuo-ku, Osaka 540, Japan
takayama®@kansai.oki.co.jp, takayama@icot.or.jp

Abstract

This paper proposes a constructive logic in which a con-
current system can be defined as a proof of a specifi-
cation, The logic is defined by adding stream fypes
and zeveral rules for them to an ordinary constructive
logic. The unique feature of the obtained system is in
the (M P5T) role whicl is a kind of structural induction
on streams. The {M PSTY rule is hased on the idea of
lavgest fixed point inductions, but the formulation of the
rule is quite different and it allows to define a concurrent
process as 8 Durge's mapstream funclion with & good
intuition an computation. This formulation is possible
when streams are viewed as sequences nob infinite lists.
Also, our togic has explicit nondeterminacy but we do not
inlroduce any extralogical device. Qur nondeterminacy
role, {(Nenfel), i actually a defined rule which uses
inlierent nondeterminacy in the teaditional inbuilionis-
tic logic. Several techniques of defining stream based
cancirrenl programs are also presented Lhrough various
lf".'{ill'l’]:}il.“ﬁ.

1 Introduction

Constructive logics give a method for formal develop-
ment of programs., e, [CT86, ANBS). Suppose, for ex-
ample, the following formula: ¥ 1 0.3y : Dy Az,¥).
Thiz iz regarded as & specification of a function, f,
whose domain is £y and the codomain is Dy satisfy-
ing the wpui-oniput velation, A{z.y), that is, ¥z :
Iy Alx. fla)} holds. This functional interpretation of
formulas is realized mechanicallv. Namely, if 2 construc-
tive proof of the lormula is given, the function, f, is ex-
tracted from the proof with g-realizability interpretation
[T D28] or witl Corey-Howard corvespondence of types
and formulas [Hows0]. This programming methodelogy
witl e referred 10 as consiruclice programming [SE90]
in the following.

Although constructive programming has been studied
lav many researchers, the constructive systems which can
handle concurrency are rather few, This is mainly be-

*This work was supported by [00T as o joine research project
an theorem proving aind its application.

cause most of the constructive logics have been formal-
ized as intuitionistic logics, and the intuiliconism itself
does not have explict concurrency besides proef nor-
malization corresponding to the execution of programs
[Got83]. For example, QJ [Sat87] is an intuitionistic pro-
gramming logie for a concurrent language, Quty. How-
ever, when we view (J 25 a constructive programming
syatem, concurrency only appears in the operational se-
mantics of Quiy.

Linear Logic [GirB7] gives a new formulation of con-
structive logic which is not based on intuitionism. This is
the first eansiruetive logic which can handle concurrency
at the level of logic. The logic was obtained by refining
logical connectives of traditional intuitionistic or classi-
cal logic to introduce drastically new connectives with
the meaning of parallel execution. In Linear Logic, for-
mulas are regarded as processes or resources and every
rule of inference defines the behavior of a concurrent op-
eration. Linear Logic resembles Milner's SCCS [Milgg)
in this respect,

We take intermediate approach between ()J and Linear
Logic in the sense of not throwing away but extending
intuitionistic logic. The advantage of this approach is
that the functional interpretation of logical connectives
in the traditional constructive programming based on in-
Luitionism is preserved, and that both the sequential and
concurrent parts of programs are naturally described as
constructive proofs. To this end, we take the siream
based concurrent programming model [KM74]. Weintro-
duce stream types and quantification over stream types.
A formula is regarded as a specification of a process
when it is a universally or an existentially guantified
over stream types, and otherwise it represents a speci-
fication of a sequential function, properties of processes
or linkage relation between processes. A typical process,
WX IV A(X,Y) where X and ¥ are stream variables, is
regarded as 2 stream transformer. Most of the rules of in-
ference are those of ordinary constructive programming
gveteme, but rules for nondeterminacy and for stream
types are also introduced. Among them, a kind of struc-
tural induction on stream types called (MPST) is the
heart of our extended system: With (MPST), stream
transformers can be defined as Burge's mapstream fune-
tions [Bur7h).

T. Hagino [Hagh7} gave a clear categorical formaliza-
Lion of stream fypes (infinite list types or lazy types)
whuse canonical elements are given by a schema of map-
stream functions, but relation between his formulation
and logic is not investigated, N, Mendler and othes
[PLSE] introduced lazy types and Lhe type checking rules
for them info an intuitionistic type theory preserving
the propositions-as-types principle in the sense that an
empty type can exist even in the extended type theory.
However, they do not give sufficient ruies of inference for
proving specification of stream handling programs, Rea-
soning about stream translormer can be handled with a
largest fixed point induction as was demonstrated by P.
Dybjer and H. P. Sander [D585]. However, their system
iz designed as a program verification system not as a con-
structive programming system. Although g-realizability
interpretation for program extraction can be defined for
the coinduction rale [KT91], the rule seems rather dif-
ficult to use for proving specifications. The reason is
that the coinduction rule deeply depends on the notion
of bisimulation, so that in the preol procedure one must
find a stronger logical relation included in the mere pan-
eral logical relation and that is not always an easy Lask.

The (MEST) rule is based on a similar idea o the
coinduction rule: one must find a new logical relation and
a new function to prove the conclusion. However, what
one must fined has a clear intuitive meaning as the compo-
nents of a concurrent process. Therefore, the (M PST)
rule shows an intuitive guideline en how to construct a
concirieht process.

Section 2 explains how a concurrent system is specified
in logic. A process is specified by the WX 3V A[X, V)
type formula. as in the traditional constructive program-
ming. The rest of the sections focus on the problem of
defining processes which meet the specifications. Sec-
tion 3 formulates streams and stream types. Streams
are viewed as infinite lists ar programs which generate
infinite lists at the level of underlying programming lan-
guzge. Al the logical reasoning level, streams are se-
quences, namely, total functions on natural nombers.
This two level formulation of streams enables to intro-
duce (M PET) which will be given in section 4. Section
5 presents the vest of the forrmalism of the whole system.
The realizability interpretation which gives the program
extraciion algorithm frem proofs will be defined. Several
examples will be given in section 6 to demonstrate how
stream based concurrent programming iz performed in
our system.

Motational preliminary: We assume fivst order infu-
itionistic natural deduction. Equalities of terms, typing
relations (M : o), and T (true) are atomic formulas.
The domein of the quantification is often amitted when
it is clear from the context. Sequences of variables are
denoted as T or X. M.[N} denotes substitution of ¥
to the variable, z, occurring freely in M. M|N] de
notes simultaneous substituion. FV{M) is the sel of

659

free variables in M. (:) denotes the (infinite) list con-
structor. Function application iz dencted ap(M, N} ar
M{N). M™{N) denotes M{--- M[N}-.-}.

P,

il

2 Specifying Concurrent Sys-
tems in Logic

The model of conenrrent eomputation in this paper is
as follows: A concurrent system consists of processes
linked with streams. A process interacts with other pro-
cesses only theough input and cutput streams. The con-
figuration of processes in a concurrent system is basi-
cally static and finite, but in some cases, which will be
explained later, infinitely many new processes may he
created by already existing processes. A process is re-
garded as a iransformer (stream transformer) of input
streams to an output stream, and it is specified by the
WAt Ty AV 2 Lo A[X,Y) type of formula where
I, denctes the type of streams over the type o, but its
definition will be given later. [, ... 5 an abbreviation
of [, %---xI,,, X and ¥ are input and cutput streams,
and A{f, ¥ 15 the relation defmition of input and out-
put streams.

The combination of iwe processes, WX IV A(X,Y)
and WP.3G. B(P,Q), by linking the stream ¥ and P
is described by the following proof procedure:

i
VX.3Y. ALX,Y)
¥ ax) 8, —
T 3a AX,0) & B@Y) -
VX.3Y 3 A(X.a) & Bla.Y)
where Hgdg 1A
¥P.3Q. B(P.Q)
QB0 0 o
¥ 3a. A(X,a) & BlaY)
T (B,
ALK, YO[By, @
AT & B gy @D
Jo. A(X, 0] & B{a, Q") (an

¥ 3. A(K, o) & Bjm ¥
and = and L; are the definition of process
YX.AV.A(X, V) and WPIQ . B(F, Q).

This iz & typical proof style ta define a composition of
two functions. Thus, a concurrent gystem is also specified
by WA.IY. A(X,Y) type formula. X and ¥ are input and
output streams of the whole concurrent system, and o is
an internal stream.

All these things just realize the idea that functions can
be viewsd as 2 special case of processes. In the follow-
ing, we focus on the problem of how to define a process
(stream transformer) as a constructive proof.

660

3 Formulation of Streams

We give i this section the definition of the stream types
Oy and I, and consider the semantics of quantification
over J,.

3.1 Two Level Stream Types

A stream can be viewed at least in three ways: an in-
finite list, an infinite process, and an output sequence
of an infinite process;, namely, a total function on natu-
ral numbers. The formal theories of lazy funetional pro-
gramining such as [PL36] and [Hagd7] can be regarded as
the theories of concurrent functional programming based
on the first two points of view on streams. Our system
uses a lazy typed lambda caleulus 25 the underlying pro-
gramming langnage and has lazy types as computational
stream types. Computational stream types are only used
as the type system for the underlying language. In prov-
ing specifications of stream transformers, we use logi-
cil streem fypes which are hased on the third point of
view on streams. In other words, we have two kinds
of streams: computational streams al the programming
language level, and logical streams ab the logical reason-
ing level, We denote a computational stream type Cy
and a logicel stream type J;. The following is the basic
rules for computational stream types. The idea behind
them s similar to thet behined the lazy type rules in
[PL2G]. We confuse the meaning of the infinite list con-
slrnctor, (), and will use this also as an infinite carte-
sian product constructor, We abbrevizte M £ N for
M =N g the fellowing.

'FM:e I'FS:0

FH{AM 58 :Cs

CH{M:S5 S (N:T)

L =oxC,

TFAEN [RSET

Uk (M SN T rFMEZN
CHA{AS ::5"]?—._”{.-1":; T z:TFM:T
ressr Thes. M:T

where T s Oy or 7 — (.

t is the fixed point operator enly used for describing
a slrean as an infinite process (infinite loop program).
The reduction male for r-terms is defined as expected. hid
and # ave the primitive destructor functions on streams.

CEAM:C, MO 'k n:nat
M- kd{M): o D ts{M): O,
'rX O,

TF X (hd{X) : (X))

TE(M:S5):C,
F'EAd((A = 8)) £ A

F-{Af::5):C,
T-i(MaSNEs

Tyn:nad, NS} S (1) - § 75 1
res&r

[,n:nat - hd(t"8)) £ hd(tM{T))
rrsér
T+ M, 2 N4
I'Fpe. Mz%uw. N,

Before giving the definition of logical siream iypes,
note that the type, nat — o, 8 somorphic to O, namely,

Proposition 1: Let ¢ be any type, then Let o :
{nat - o) = C, be (M) = aplrz.in. (Mn) =
#(n + 1}),0) for arbitrary M : nat — o, and let
W NY = A, hd{ti*(N)) for arbitrary N : Cy. Then,

(1} For arbitrary M : nat — o, w{M) : Oy and
Blw(M)) = M in nat — o;

{2} For arbitrary N : Oy, (M)
PB(N)) = N in C,.

: naf — o and

A logical stream type, I, has the same elernents as
nat — o, but the elements are viewed differently, namely,
viewed as sfreams:

'rM:inat—o ' M: 1,
'EM: I, 'k M:nat = o

This means that any (total} function on the natural
number type nat definable in the underlying program-
ming language is regarded as a stream. A similar idea is
formulated with regard to formulas:

CEYn:natde : o Aln, 2)
TF 3V : 1, ¥n:nat. A(n,¥(n))
The equality hetween streams is extensional. That is
FFX:I, Y:I, ¥:nat X{n)=V¥(n)
r+xty

The following rule, {CON), characterizes a kind of con-
Linuity of stream transformers and is used for justifying
[MPSTY) cule given later.

(@RITEF Ly me = oy
(b - ¥X 1 Ly .op 1 s nat, Aln, FIX)) = Aln +1, X)

(ST)

THYX : L, .0.¥0:nat. A(0, FF(X))} = A(n,X)
A logicel stream also has, hd, ¢/ and (=), which simulate
those accompanted with C:
Rd(X) E X(0) for X 1 I,
(X)) Y dm.X(m+n)for X1,
(M = 5)0) M
(M 8ln) Sn—1)forn=0
Note that X{n) = hd{t*(X)) for arbitrary X : I, and
it : nat. All the rules far hd, ¢l and (:) in computa-

tional streams also hold for these defined funections and
the constructor for logical streams.

ngE ng |

3.2 Quantification over iogical Stream
Types

There is a difficulty in defining the meaning of quantifica-
tion over (logical) stream types. The standard intuition-

istic interpretation of, say, existential quantification over
atype, o, 3z : o.A(z) is that "we can explicitly give the
ohiect, a, of type o such that Ala) holds”. However, asa
stream is a partial obiect we can only give an approxima-
tion of the complete object at any moment. Therefore
we need to extend the familiar interpretation of quan-
tification over types. In [act, Brouwer's theory of choice
SEC|IETCes [TvDSE'J in intuitionism prevides us with the
meaning of quantification over infinite sequences,

There are twe principles in Brouwer's theory, the prin-
ciple of open dafe and the principle of funclion continu-
ity. The principle of open data, which informally states
that for independent sequences any property which can
be nsserted must depend on initial segments of those se-
quences only, gives the meaning of the quantification of
type YA Jp.A{X, ¥). That is, for an arhitrary sequence,
X, there is a suitable initial finite segment, Xy, of X such
that 3y, A{ Xy, p) hoilds, The principle of function con-
tinuity gives the meaning of the quantification of type
X IV.AX V). Assume the case of natural number
streams (total functions between natural number types).
The function continuity is stated as follows:

VX3V, A(X,Y) = 3 : K. VX, A(X, fIX)

where f|X = ¥ is an abbreviation of ¥z : naf, f(z =
X} = ¥Y{z)} and K is the class of functions that take
initial finite segment of the input sequences and return
the values, This means that every element ol ¥ is deter
mined with a suitable initial finite segment of X

These principles meet out intuition of functions on
slreams and stream transformers very well. WX : [, Sy :
. A[X,y) represents a function on streams over o, but
we would hardly ever try to define a function which re-
turns a value after teking all the elements of an input
stream. Also, we would expect a stream transformer,
WX : I3V : I.A{X,Y), caleulate the elements of the
outpul stream, ¥, gradually by taking finitely many el-
ements of the input stream, X, at any step of the caleu-
lation.

Mote that this semantics alsa meets the proof methed
used in [KMT74]: To prove a property F(X) on a stream
X, we first prove P for an initial finite subsequence, Xy,
of X (F P(Xy)) and defineF P(X) tobe limy, . x P{Xg).

4 Structural Induction on Logi-
cal Streams

As streams can be regarded as infinite lists, we would
expect Lo extend the familiar structural induction on fi-
nite lists io streams. However, a naive extension of the
structural induction on finite lists does not work well. If
we allow the rule below,
r, AR E }“I{XJI:.SI:I
TF VX 1. AX)
the following wrong theorem can be proved:

661

WrongTheorem: VX : L. B(X)
where B(X) = 3n : nat. X(n) = 100.

vooft By (ST) on X : L. Assume B{H[X)). Then,
there is a natural number & such that tI{X)(E) = X(k+
1) = 100. Then B(X) 8

This preef would correspond to the following uninter.
esting program: foe = AX. fee(t(X)). This is be-
cause the naive extension of the structiural rule on finite
lists does not maintain the continuity of the function on
streams. Therefore, we need a drastically different idea
in the ease of infinite lists. One candidate is the coindue-
tion rule {a largest fixed point induction) as in {DS84]:
(B = ©p[B)) = (B = vP.2) where vF.® denotes the
largest fixed point of P = &. WX : [, . A[X) part will be
described with » P& type formulas, and one must find a
suitable logical relation B to prove the conclusion. Buf
seatching B will not always be an easy task: we wish the
searching task decomposed into more than one smaller
taske each of which has clear and intuitive meaning of
computation. Therefore, we take ancther approach: the
(M FST) rule.

4.1 Mapstream Functions as Stream
Transformers

Recall that the motivation of pursuing a kind of strue-
tirral induction on streams iz to define stream transform-
prs as proofs, and stream transformers can be realized as
Burge's mapstream funetions. A schema of mapstream
functions is described in fyped lambda caleulus as fol-
Tows:
P=2M™" ANz ((M z) = ({((P M) N) (N z)))
If we give the procedures M and /¥, we obtain a map-
stream function. Note that, from the viewpoint of con-
tinuity, these procedures should be as follows:
M = “Fetch initial ssgment, Xy, of the input stream,
X, to generate the first element of the output
stream.

N = “Prepare for fetching the next finite segment
input stream interleaving, if necessary, other
stream transformer between the original input
stream and the input port.

This suggests that if 2 way to define A/, N, and F as
proof procedures is given, one can define stream trans-
formers as constrective proofs.

4.2 A Problem of Empty Stream

Before giving the vule of inference for defining stream
transformers, a little more observation of stream basex
programming is needed. Assume a filter program on nat-
ural rumber streams realized as a mapstream function:
Jlte= AX. if (alhd(X)) then flt,(t1(X))
else (had(X) 2t Flt,(RI{X)))
=X (M X) s ([P M) NHNX)Y)

b6

where (alhd{X)) is true when hd(.X') can be divided by
it {a natueal number) and
M = AX.if (alhd{X)) then M(H(X)) else hd(X)
N AN S (a|lkd{ X)) then N{#{X)) else t1[X)

i

For example, fHg{(5 25 5:5:...)) is an empty se-
quence hecause the evaluation of M5 =5 505 ¢ ...)
does pot terminate. This contradicts the principle of
open data explained in 3.2. To handle such a case, we
mtroduce the notion of complete stream. The idea is
lo regard fli;, for example, always generating some ele-
menks even if the input stream is (55 ...

Def. 1: Complete Lypes
Let o he any tvpe other than a stream type, then o,
denotes a tvpe & together with the bottom element 1,
[often denoted just _} and it is called a mnipf:!e {ype.

Def. 2: Complete stream types
A stream Lype, J; or Oy, is called complete when o is a
complete type.

flts is easily medified to a function from Cuyy to6 Chas,
and then flz((5: 8., .)) will be {L 2 L ::...) which
i praclically an empty stream

4.3 The (MPST) rule

Based on the observations in the previous sections, we in-
troduce a rule M PST}Hor defining stream transformers,
The rule is formulated in natural deduction style, but the
forvaula, A, in the specification of a stream transformer,
FH IV AKX, Y], is restricted. In spite of the restriction,
the rule can handle a fairly large class of specifications
of stieam transformers as will be demonstrated later,
The rule is as follows:

(o) WX : 1,30 r. M{X,a)
(b) WX : T, ¥a: 7. V5 : I, (M{X,a) = A(0, X, (a = 5)))
() Bf [= fo. WX : LYY : ,¥n : nat.
(Al FOLX) 8(Y)) = A(n + 1, X, 1))
YX : L.3Y [.¥u:nat A(n X,Y)

where A7 is a suitabie predicate and A{n, X, 1Y) must be
a vk 0 formula [ING9]. We can easily extend the rule
to the multiple input stream version,. We do not give
the precise definition of rank 0 formulas here, but the
intention is that we should not expect to extract any
comnputational meaning from Aln, X, Y} part. This re-
striction comes from purely techinical reason, but does
ol depenerate Lhe expressive power of the rule from the
praciical poinl of view because we usually need only to
define a stream translormer program but not the verifica-
bione code corvesponding te Aln, X, V) part. The techni-
cal reason for the side condition of (M PET) is as follows:
{APST) is in fact a derived rule with {ST') and (CON),
sa that g-realizability intevpretation defined in the next
section s carried oul using the interpretation of those

rules. The difficulty resides in the interpretation of the
(CON) rule, but if we restrict the formula A(n, X) in
(CON) to be rank 0, the interprelation is trivial. This
condition corresponds to to side condition of {M PST).

The intuitive meaning of (MPST) is as follows. As
explained in 4.1, a mapstream function is defined when
M and N procedure are given. (a)) is the specification
of the M procedure, fus, and {b) means that fir cer-
Lainly generates the right elements of the output stream,
The N procedure, fr, is defined as the value of ex-
istentially quantified variable, f, in (c). (c} together
with (8] intuitively means the following: for X : I, (in-
put stream) and ¥ : I, {cutput stream), let us call a
pair, {j}',,{X}‘ﬂ“{}"}L the nth fy-descendant of {_X, Y).
Then, for arbitrary n : nat, A(n, X, ¥) speaks about nth
Fu-descendant of (X,Y), and Afn, fu(X),H(¥)) actu-
ally speaks about n + 1th fy-descendant of (X, V).
If faw is & stream transformer, this means that the pro-
cess (stream transformer) defined by (M PST) generates
another processes dynamically.

Note that, as we must give a suttable formula, M, to
prove the conclusion, (MFPST) is essentially a second
arder rule.

5 The Formal System

This section presents the rest of the formalization of our
gystem briefly.

5.1 Non-deterministic A-calenlus

The noa-deterministic d-caleulus is a typed concurrent
calenlus based on parallel reduction and this is used as
the underlying programming langnage, The core part is
almost the same as that given in [Tak81]. It has natural
numbers, booleans (T and F), L and R as constants.
Individual variables, lambda-abstractions, application,
sequences of berms ((My, ..., My) where M; are terms),
i f-then-else, and a fixed point operator (u) are used as
terms and pregram constructs, The reduction rules for
terms are defined as expected, and if a term, M, iz e
ducible to a teym, N, then M and N ere regarded as
equal. Also, several primitive functions are provided for
arithimetic operations and for the handling of sequences
of terms such as projection of elements or subsequences
from a sequence of terms. The type structure of the cal-
culus i almost that of simply typed A-calculi, nat (nat-
ural number type), bool (boolean types), and 2 (type of
L and R) are primitive types and » (cartesian product)
and — {arrow) are usecd as type constructors. The type
inference rules for this fragment of the caloulus are de-
fined as expected. [n addition to them, computational
streams, computational steeam types and a special term
called coin flipper is introduced to describe concurrent
computation of streams. For the reduction strategy, o

terins in section 3.1 are lazily evaluated.

The coin flipper is a device for sioulating nondetermi-
nacy. It iz a term, o, whose computational meaning is
given by ihe following reduction rule:

sl or B
That is, » reduces to L or & in a nondeterministic way.
This is like flipping a coin, or can be regarded as hiding
some particular decsion procedure whose execution may
not alweys be explained by the reduction mechanism.

o is regarded as an element of 2%, a super type of
2. The elements of 2 have been used to describe the
decision procedure of 1f-then-else programs in the pro-
gram extraction from constructive proofs in [Tak91] as
if T =L then M else N. Nondeterminacy arises when
7' is replaced by o The intentional semantics of » is
wudcfined. 2% enjoys the lollowing typing rules:

Lot Rt T u

5.2 Rules of Inference

(1} Logical Rules
The rujes for logical eonnectives and quantifiers are those
of first orcler intuitionistic natural deduction with math-
ematical induciion,
{21 Rules for Nondeterminacy

e=Lva=] A—eq—AI[Nm:_Det}

{ NonDet) is actually a derived rule: This is obtained
by proving A by divide and conquer on TVT. {NenDet)
means that if two distinct proof of A are given, one of
them will be chosen in 2 nondeterministic way. This
is the well-known nondeterminacy both in classical and
intuitionistic natural deduction.

(3) Auxiliary Bules

M g=eag a:o n:nel froo—mn giox— Ty

ap{ M, e} : frg:igi Mg — 18N

5.3 Realizability Interpretation

The realizability defined in this section is a varfant of
g-realizabilicy [TvDSS].

A new class of fornmlas called realizability velations is
intraduced to define g-realizability.

Def. 3: Realizability relation
A reafizability relntfon is an expression in the form of
@ q A, where A is a formula and 7 is a finite sequence of
variables which does not oceur in A @ is called a realiz-
ing varfables of A. For a term M, M q A, which reads
“a term M realizes a formula A", denotes (7 q A)sfM],
and M is called a realizer of A.

A type is assigned for each formula, which is actually
the type of the realizer of the formula.

Def. 4: type()

663

Let A be a formula. Then, a type of A, type(d), is
defined as follows:

1. type(A) is empty, if A is rank 0y

2. type(A & B) € type(A) x type(B);
type(AV B) ¥ 2% x type(A) x type(B);
type(A = B) Y type{A) — type(B);
type(¥r : o, A) - typelA);

fype(3e s 0. A) L & % type(A);

el

Proposition 2: Lei A be a formula with a free vari
able z. Then, typeld) = type AL M)} for any teem M
of the same type as x.

Def. 5: g-realizability

1. If Ais a vank O formula, then () g A o 4.
agA= BEvb: type(A).(A& bg A= alb)q B
(@B qdr:e A¥ a:ok Afa] &7 g Agfal;
TgVe:a A¥ vz 0 (mz) q Ak

(z,@b) g AV B

W=l & Albagq Al b: type(B))

V(z=RE& A &bqB&a:type(A)) provided that

A and B are distinet or A = B with A and B not
rank 0;

6 oqAVAY A Ais rank ;
7. (@qALBEaqAkbqB.

1

@ s

Proposition 3: Let A be any formula. If@ q A, then
@ type(A).

Theorem: Soundness of realizahility:
Assume that A is a formula, If A s proved, then ihere
is a term, T, such that T' q A can be proved in a triv-
ially extended logic in which realizability relations are
regarded as formulas, and FV(T) C FV{A).

The proof of the theorem gives the algorithm of pro-
gram extraction from constructive preofs. The program
extracted from (NonDef) is if o = L then M clse N
where M and N are the program extracted from the
subproofs of two premises. From a proof by (M FST),
the program AX.dm.ap{far, SR(X)) is extracted where
Far and fp are as explained in section 4.3, Other part of
the extraction algorithm can be seen in [Tak91).

6 Examples

The basic programming techmique with (MFPST) s
demonstrated in this section. In the following, we write
X, for X(n) when X is a stream.

664

6.1 Simple Examples

A process which doubles each element of the input nal-
ural number stream is defined as follows:

SPEC 1 WX : £ 3Y L inal. ¥, =2 X,
Proof: The proof i= continued by (MPST). Let
M{X a) Wy =2, had(X}, and (a) and (0) ave easily
proved. {c) is proved by letting f = AX_ (X}]

The program extracted from the proof is AX.Am. 2.
Ad (™[X} which is, by the isomorphisn: ¢y extension-
ally equal to w2 AN, {2 Ad[X) o 2(H{ X))

A process which takes the successive two elements at
once from the input stream and cutputs the sum of them
is defined as follows:

SPEC 2:¥X LAY : LVn:nat. ¥, = Xp -+ Xanin
Proof: By (MPST). Let M{X,a) ¥ a = hd(X) +
hed(H{X)) and {e) and (b) are easily proved. (¢} is proved
by letting £ % AX, t*(X). B

The program extracted from the proof is
AX. A, hd(tPF=(X)) + Rd{tEm X))

which is extensionally equal to wzAX. (hd{X) +
Re{E{ X)) o= (420X,

6.2 Parameterized Processes and

Complete Stream Types

A filter process defined below vemoves all the elements
of the input stream, X, which can be divided by a fixed
natural numnber p. This process is an example of pa-
reaneterized processes. The definition uses the complete
stream type and the rank 0 formula techiigue.

SPEC 2: Wp:nat WX Lae 3V« g,
Vi nat. OA{p,a, X, V)

where Aip,n, X, 1Y) 3 MplX,) & ¥, = L1v
(=~(p| XN &V, = X)) and ¢ is the rank 0 operator.
Proof: Lel p: not be arbitrary, and

YA GV $A(p 1, X, 1) will be proved by (MPST).
Let M(X,0) & ((phd(X) & o« = L) v
(—{phd{ X)) & o= hd(X)). (a) is proved by divide and
conquer with regard to (plld{A)) W —(p|kd{ X)) (b) is
proved easily, and (g} is proved by letting f = AX, t{X).
|

The program extracted from the proof is
Ap AN e apl fag. FRIX D

where [y e Ax if (p|hd{X)) then L else hd{X)
and fy %= AX. t(X). Precisely, (p|hd(X)) should be a
decision procedure for (p|hd[X]).

6.3 Dynamic Invocation of Processes

The following example, a program which extracts only
prime numbers in the input stream, is one of the typical
examples of dynamic creation of new processes,

SPEC &: %X 1 Tae. 3
where
A, XYY E (PR(X.) & ¥, = Xa)
V(~PR(X) & ¥, =1)

t Jaey 0z nat., G AR, X, ¥)

and PR(m) ¥ Vn:nat.
(2<n<m
= =(3d :nat. m=d . n)).
Prooft By [(MPST). Let M(X,a) %

(PR(A(X)) & a = hd(X)) V (~PR{(hd(X)) & a =
L), (a) is proved by divide and conquer with re-
gard to PR{E(X)) v PR X)}. (&) is proved eas-
ilyv. The proof of (c) is a little complex. Let f =
AX. if PR(A(X)) then Fli(hd(X),tl(X)} else tI(X)
where flt(p, X} is the filter process developed in the
previous subsection. Then, for arbitrary X : I,
and n : nat the following hold: 1. PR{f(X),) =
PR(NX).); 2. -PR{f(X)) = =PR(X).); 3
PR{f(X).) = FiX)n = t{X)n. These can be proved
by divide and conquer en FR(RI[X)) v =PR(Rd[X)).
Then, from Aln, fFIX), 1Y) & (PR(f(X),) & Yo =
FXWIV (~PR(F(X)n) & Yas = L), Afn + 1, X, ¥)
can be proved. Then, () is proved, |

The program extracted from this proof is

AX.Am. apl far, SEX))

where fur & AX. if PR(hd(X)) then hd(X) else L
and fy &
AX.if PR{RA(X)) then Flt(hd(X), (X)) else H{X).
This program performs load distribution in the follow-
ing way. When a prime number, p, is found in the input
stream, X, this program invekes a filler process, fli,
making X as the input stream of flt, and take the out-
put stream of fit, as the new input stream.

fi.4 Nondeterminacy

The stream merge operation is a typical example of non-
determinacy which can also be defined by (MPST).
However, because of the condition (¢} on A(n, (X, ¥), Z),
our specification is weaker than that of the merge opera-
tion. It anly specifies that all the elements of the cutput
stream come from the input streams. The rest of the cri-
terta for a merge operation, namely, all the elements of
the input streams occur in the output stream preserving
the order of the input elements without repetition and
loss, depends on how the formula Af is defined in (a) and
how f is defined far (¢) in the premises of (MPST).

SPEC 5: Y{X,Y): I,,.32Z : L.

Wn :nad, $Aln, (X, V), Z)

where A{n, (X,¥),2) ¥ (3m : nat. Z, = Xa)v (A :
nat. Z, = 1})

Proof: By (MPST). Let M({X,¥),a) ¥ a = hd(X),
then the proofs of (a) and () are straightforward. (] is
proved as follows: Let (X,¥): o, & : I, and n @ nat be
arhitrary. Then, A{n, (#{X),¥),0(2)) = (Im. t1(Z}, =
H{X V) V(3 (B = V1) & (3. Bugs = X)) V
(3. Zuyy = Yi). This implies (3m'. Znyy = Xope) V
(A Basn = ¥} = Aln + 1,(X,¥),2). Similarly,
-‘q{ﬂ1{j)1ﬂ(x”|ﬁ|:z}] = Aln+1, E-t-:-y}l Z]' is proved.
Then, two distinct proofs of (¢) are given. Then, by
{WonDet), I[c}l is proved. J]

The program extracted from this proof is
MX, Y)dm. ap(fae, 32X, ¥))

where fiy & AXhd(X) and fv H MX,Y). if 0 =
L then [t1{X),Y) else (¥, H{X)).

7 Conclusion and Future Works

An extension of constructive programming to stream
based concurrent programming was proposed in this pa-
pet. The system has lazy types at the level of program-
ming language end logical stream fypes, which are tvpes
of sequences viewed as streams, at the level of logic. This
two level formulation of streams enables to formuiate a
purely natural deduction style of structural induction on
streams (M PST) in which concurrent processes (stream
transformers) are defined as proofs. The (MPST) rule
allows to develop the proof of a specification with a good
intuition on the concurrent process to be defined, and the
rule seems to be easier to handle than the largest fixed
point induction. Also, nondeterminacy was introduced
at the level of logic using the inherent nondeterminacy
of proof normalization in intuiticenistic logic,

For the future work, as seen in the example of & merger
process, the side condition for (M PST) should be re-
laxed to handle larger varieties of concurrent processes.

References

[Bur?s] W. H. Burge. Recwrsive Programming Tech-
niques. Addison- Wesley, 1975,

[C+86] R. L. Constable et al. fmplementing Mathenat-
jes with the Nuprl Proof Developmnent Sysiem.
Prentice-Hall, 1986.

[D589] P. Dybjer and H. P. Sander. A Functional Pro-

gramming Approach to the Specification and
Verification of Concurrent Systems. Formal As-
pects of Computing, 1:303 — 319, 1989,

0635

[Gi&7]) J.-¥Y. Girard. Linear logic. Theoreticnl Com-

pufer Seience, 50, 1987, North-Holland,

[Got85] S. Goto. Concurrency in proof normalization
and logic programming. In Internatioinal Joind
Conference on Artificial Intelligence "85, 1985.

[Hagd7] T. Hagine. A Typed Lambda Calculus with
Categorical Type Constructors, In Calegory
Theory and Computer Science, LNCS 283,
1987,

5. Hayashi and H. Nakano. FPX : 4 Computo-
tional Logic. The MIT Press, 1389.

[HN89]

[Howsd] W. A. Howard. The formulas-as-types notion
of copstruction, In Fssays on Combinatory
Lagic, Lambda Calewlus and Formalism, eds. J.
P. Seldin and J. B. Hindley. Academic Press,
14930,

[KM74] @. Kahn and D. B. MacQueen. The Seman-
ties of a Simple Language for Parallel Program-
ming. In IFIP Congress 74 North-Holland,
1974,

[KT91] 8. Kobayashi and M. Tatsuta. private commu-

nication. 1991,

[Mil28] R. Milner. Communication and Concurrency.

Prentice Hall, 1939.

M. Mendler P. Pariangaden and H. L.Constable.
Infinite Objects in Type Theory. In Symposium
on Logic in Computer Science 86, 1986,

[PLS6]

M. Sate. Quiy: A Concurrent Language Based
on Logic and Funetion. In Fourth Mnternational
Conference on Logic Programming, pages 1034~
1056. The MIT Press, 1987,

SatB7]

[SKo0] M. Sato and Y. Kameyama Constructive
Programming in 55T. In Proceedings of the
Jopanese-Crechoslovak Seminar on Theoreli-
cal Foundations of Knowledge Information Pro-

cessing, pages 23-30, INORGA, 1990.

[Tak91] Y. Takayama. Extraction of Redundancy-free
Programs from Constructive Natural Deduc-
tion Proofs. Journal of Symbolic Computation,
12(1):29-69, 1991 '

[TvD&8] A. §. Troelstra and D. van Dalen. Construe-
tivism in Mathemalics, An Introduction. Stud-
ies in Logic and the Foundation of Mathematics
121 and 123. North-Helland, 1988,

