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Abstract

We present in this paper a general inference machine
for building a large class of meta-interpreters. In par-
ticular, this machine is suitable for implementing ex-
tensions of Prolog with non-classical logics. We give
the description of the abstract machine model and
an implementation of this machine in a fast language
(ADA), along with a discussion on why and how paral-
lelism can easily increase speed, with numerical results
of sequential and parallel implementation.

1 Introduction

In order to get closer to human reasoning, computer
systems, and especially logic programming systemas,
have to deal with various concepts such as time, be-
lief, knowledge, contexts, etc. .. Prolog is just what is
needed to handle the Horn clause fragment of first or-
der logic, but what about non-classical logics? Just
suppose we want to represent in Prolog time, knowl-
edge, hypotheses, or two of them at the same time; or
to organize our program in modules, to have equational
theories, to treat fuzzy predicates or clauses. All these
cases need different ways of computing a new goal from
an existing one.

Theoretical solutions have been found for each of the
enumerated cases, and particular extensions of Pro-
log have been proposed in this sense in the literature.
Examples are [BK82], [GL82], Tokio [FKTMOS6], N-
PROLOG [GR84|, Context Extension [MP88], Tem-
plog [Bau89], Temporal Prolog [Sak8d], and [Sak87|.

For all these soluticns it is possible to wrile spe-
cific meta-interpreters in Prolog that implement these
non-classical systems ([3586]). But there are disadvan-
tages of a meta-interpreter: lower speed and compila-
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tion notoriously inefficient. If we want to go a step
further, and to write proper extensions of Prolog, then
the problem is that costs for that are relatively high
(because for each case we will lead to write a new ex-
tension), and we are bound to specific domains: we can
only do temporal reasoning, but not reasoning about
knowledge {and what if we want to add modules?).

Qur aim is to define a framework wherein a supe-
ruser can create easily “his” extension of Proleg. This
framework should be as general as possible. Hence,
we must provide a general methodology to implement
non-classical logies.

There are four basic assumptions on which our frame
i built:

1. to keep as a base the fundamenial logic program-
ming mechanisms that are backward chaining,

depth first strategy, backtracking, and unification,

2. to parametrize the inference step: it is the supe-
ruser who specifies how to compute the new goal
from a given one, and he specifies it in a logic
form.

3. to be able to rewrite goals.
4. to select clauses “by hand”.

Paints (2) and (3) postulate a more flexible way
of computing goals than that of Prolog, where first a
clause is selected from the program, then the Robinson
unification algorithm is applied to the clause and the
head of the goal, and finally a new goal is produced.

Paint (4) introdnces a further flexibility: the supe-
ruser may select clauses that do not unify exactly with
the current goal, bui just “resemble” it in some sense.
Even more, if the current goal contains enough infor-
mation to produce the next goal, or if we just want to
simplify a goal or to reorder literals we don't need to
select & fact clause at all.

The assumptions (1) and (2) were at base of
the development of & meta-level inference system
called MOLOG [FdCs6), [ABFdC*86], [BFdCHS8],
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[Esp8Tb}, [EspBTa]. The inference machine that is pre-
sented in this paper is a complete rewriting of MOLOG
realizing assumption (4). It has been developped at
IRIT ([Brif7] and [AG8S]).

A formal specification of the inference mecha-
nism called TIM : Towlouse Inference Machine, to-
gether with various examples, has been published in
[BHLM91]. Here, in this paper, we present the TRSKT :
Toulouse Abstract Reasoning System for Knowledge
Inference, which is an abstract machine in which the
inference mechanismn can be implemented. In the pre-
liminary version of this work nothing has been said
about abstract machine and implementation, and the
specifications are being defined more clearly now.

PRAG was designed to implement parallelism (see
sections 6 and 7). For example, for a given definite
fact and goal clauses, more than one rule is possible.
In this case it is possible to use a different processor for
each rule. The parallel machine was developped and
differents solutions was be done.

2 Horn clauses

The base of the language is that of Proleg. That lan-
guage can {but need not) be enriched with contest op-
erators if one wants to mechanize non-classical logics.
Characteristically, non-classical logics possess sym-
bols with a particular behaviour, These symbols are

e ecither classical connectors with modified seman-
tics (e.g. intuitionist, minimal, relevant, paracon-
sistent logics)

o or new connectors called context operalors (nec-
essary and possible in modal, knows in epistemic,
always in temporal, if in conditional logics).

Example In epistemic logics, the confext operators
are knows and comp, and

knows{a):F means that agent e knows
that P

comp(a):P means that it is compatible
with e's knowledge that P

Hence inference engines for non-classical logics must

reckon for the particular behaviour of some given sym-
bols. These properties will be handled by built-in fea-
tures of the inference engine,

The conditio sine qua non for logic programming
langnages is that they possess an implicational symbol
to which a procedural sense can be given. To define a
programming language it's less important if this is ma-
terial implication or not, but it’s rather the dynamic
aspect of implication that makes the execution of &
logic program possible. That is why the TIM language
is built around some arrow-like symbol.

We suppose the usual definition of terms and atomic
Jormulas of logic programming. Intuitively, TIM Harn
Clauses are formulas buill with the above connectors,
such that dropping the context we may get a classi-
cal Horn clauses. Now for each logic programming
language we suppose a particular set of context op-
erators. This set depends on the logic programming
language we want to implement, e.g. in epistemic logic
it is {knows, comp} and in temporal logic it is {always,
somelimes}. Formally we define by mutual recursion:

Drefinition 2. 1 - contexts

m{ty,...,tn) is a context if m is a context operator o >
O,and for 1 < 1 < neveryty is either a term or
& definite clanse.

Definition 2. 2 - goal clauses

TF 15 & poal clause if P is an atomic formula

NG A F) is & goal clause if 13, TF are goal clauses

TMOD : F is a goal clauses if 7F is a goal clause and
MOD is a context

Definition 2. 3 - definite clauses

P is a definite clause il P is an atomic formula

MOD : F is a definite clause if F is » definite clause
and MOD iz a context

F — @ is a definite clause if F is a definite clause
and 7 is a goal clause
Definition 2. 4 - TIM Horn clause

A TIM Horn clause (or Horn clause for short) is
either a goal clause or a definite clause. Note that
Horn clauses may contain several implication sym-
baols.

We shall also use the term Modal Horr elauses if we
are speaking of a modal logic. A set of definite clauses
is called a dafabase.

In the following sections we shall use the definition
of the head of a Horn clanse,

Definition 2. 5 - Head of 2 Horn clanse
o Hisahead of H.
o Hisahead of A G if H is a head of F,
o Hisahead of F + G if H is a head of F.
o Hisahead ofl MOD : ' if H is a head of F,

3 Writing meta-interpreters

3.1 General Mechanism

Just as in Prolog, to decide whether a given goal fol-
lows from the database esseniially means to compute
step by step new subgoals from given ones. In our
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Figure 1: General mechanism of the TIM machine

case, the computalion of the new subgoal is specified
by the superuser. The general inference mechanism is
described in figure 1. There are five steps:

Clause selection: We select a clause to solve the first
sub-goal of the question.

Rule selection: We select a rule to be applied to the
current claunge and the current question.

Rule execution: The execution of the rule *meodi-
fies” the current clause and the current question
and builds a resolvend.

Rewritting of the resolvent: When we reach a ter-
mination rule, we rewrite the resolvent into a new
qucﬁlfm,

End of resolution : A resolution is completed when
we teach a final form : the goal clause frue.

This system is doubly non determinist, because we
have both a clause selection (as in standard Prolog)
and a rule selection.

We are going in the next sections to explain how this
mechanism can be implemented, In subsection 3.2, we
will discuss rule selection and execution, in subsection
3.4 rewriting and in subsection 3.3 clause selection. In
section 6, we will come back to rule selection to show
how efficient mechaniem ean be used to improve reso-
lution speed.
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3.2 Selecting and Executing Infer-
ence Rules

An inference rule is of the form : A8 F? where
A is a definite clause and B, ' are goal clauses, [t
can be read: If the current goal clause unifies with &
and the selected database clanse unifies with A then a
new goal can be inferred that is unified with ©. In the
style of Gentzen's sequent calculus, inference rules can
be defined recursively as follows:

ATREIC

AT IC
where A, A" are definite clauses and B, O, B', O are
goal elavses. As usual in metaprogramming, chjects of
the object language are represented by variables of the
metalanguage’.

Essentially, what can be tested here is any condition
on the form of A A", B, €, B', ", or on the existence
of a database clause of a certain form. F.g. we can
let an inference rule depend on the (non-jexistence of
some clause in some particular module of the database.

In the recursive definition the following conditions
must be met®:

o var(A') C var(A)

o A" jga head of Aor A iea head of A

® (' iz a variable

s ' is & head of &

A special category of inference rules are reflerive

rufes:

true, TH 7

AL TR
These rules use the special fact true. The conditions
that these rules must meet are:

» A’ is either:
— a varjable®, or

— any definite clause constructed from the vari-
ables in & and ' and constants.

* ' is a variable
o OV is a head of &

FPartial lerminalion rules are wriiten:
A, 1B F1C i Condition

They end the recursivity in resolution.
These are some examples : the Proleg rule for goai
conjunciions:

ATBACKIDOAC
AIBFID

"To b correct, the real form of inference rule is a little dif-
ferent : a procedural condition expressed with elementary func-
tions of the abstract machine (see section 5) can be added. This
enables a more precise control over execution,

1t is these conditions on the form of the inference rules that
warrant the efficiency of the implementation.

*This variable will be unified with a new fact taken in the
clauss base
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the Prolog rule for implications in databose clouses
A—=BIWHEBAD
ATCHID
the Prolog partial iermination rule is:
o FHrue
Note that here we make use of unification. These three
rules are exactly what is needed to implement Prolog.

To summarize, the execulion of an inference rule
modifies the current fact and the current qugst'mu and
constructs a resolvent. The resolvent has the same
structure than the question or any other facl, Parlial
resolution is achieved when we reach a perfial termi-
nation rule,

How rules are selected is defined by the user. We
will see in the section § how this is exactly done. For
the moment, we say that rules are taken in the order
they appear in the rule base.

3.3 Rewriting the Resolvent into a
New Question

As soon as we have reached a partial fermination rule,
we rewrite the resolvent to create the new question to
solve, Rewrtting iz useful not only in order to stmplify
goals, but also in order to eliminate the true predicate
frem the new goal clause.
Rewrite roles are of the form:
71~ (72
and allow to replace a term that iz matched by Gl
in the resolvent with some substitution @ by the term
(G2} in the new guestion.
For example, the Prolog rewrile rule ia:
truef A~ 4
In elﬁr.t.emir. ].ugic, the rule :
knows{a) : knows{a) : A~ knows(a) : A
is a useful simplification,

3.4 Selecting Database Clauses

The user can define the way clauses are selected in
the base. But this selection “by hand” must be cho-
sen among a given set (that currently implements only
two methods: classical Prolog selection and least used
clause gelection).

Using the abstract machine, it is possible to build
another selection mechanizm (for example indexing se-
lection on the first operator) but it has not been im-
plemented yet and it is not described in this paper.

4 Examples : Modules

In this section we are going to show how to spec-
ify modules with dynamic import. Here, any module
name, such as m, ml, m(2), etc...is considered to be
a context.

Module logic

MCYMGFIN NG
CAOTNG
frusiiPueirue

Mitrureirus

Table 1: Rules for Module logics

The goal ml : m2 : & succeeds if G can be proved
using clauses from the modules ml and m2. The infer-
ence rules are that for Prolog, plus two supplementary
rules to handle module operators (table 1).

The first rele represents the case where a module
M is nsed to compuie a new goal, and the second
where another module name eventually occurring in
G is used.

Others types of modules such as modules with static
import or with context extension [MP88], can be speci-
fied by just adding as new inference rule. In [BHLMS1],
we have shown how temporal logics, hypothetical rea-
soning and logics of knowledge and belief can be spec-
ified elegantly in our framework.

5 The abstract machine

The goal of the TR¥: abstract machine is to bridge the
gap between the description of inference rules in logical
form as shown abowve, and the real implementation of
the rule in an efficient programming language.

Compared to the WAM, the WH=KT abstract machine
deals with different objects, and has a quite different
goal, but on the whole, principles are identical; we will
also define our machine in terms of data, stacks, reg-
isters and instruclions set. We do not have enough
room here to describe completely the machine. So,
we shall not speak of the “classical” parts of resclu-
tion that are identical: i.e unification or backiracking.
Let’s say that the machine relies on classical structure
sharing for unification, and or depth first search and
backtracking.

Before going further, we must tell about the Great
Lie. TH#T does not use classical logic operators A or
+. For consistency and simplicity sake, all operators
either modal, temporal, classical, are represented in
our formalism in the same way and are reated by the
maechine in the same way also. Let’s see that on an
example: The logical clause written in Prolog:

A~ BAC
will be written in TR
MC):A[B): A

Here B is the argument of A and A is qualified by
A{B). All operators have arguments, and qualify an



object. For example, the 54 modal logic* clanse:
O(X) : (O(a) : p + O{a) : p)
will be written:
O(X) : A{O{a) : p) : Ofa) : p
and $a) : p is the aggument of A that qualifies O(a) :
P.
This could lock like the polish reverse notation, but
it is not exactly the same. In the polish reverse nota-
tion Kpg (that is pAq) gives the same role to p and g.
In ﬁl{p} i g, P and q have T\EB."}' different parts to pla,j.l':
pis an operand of A and g is the object gualified by
Mp). This destrays the symmetry of A, but should be
congidered as an advantage here. In all classical Pro-
log, solving p A g is different from solving ¢ A p: the
operator is not symmetric at all.

This formalism was not adopted lightly. The first
versions did not use it, and gave a special place to
the classical operators: we had a lot of problems to
deseribe correctly the inference mechanism. Adopting
this structure greatly enhanced the simplicity and the
efficiency of the system.

5.1 Data structures

First of all, boolean objects (true, false) with classical
operations associated (not, or, and) are implemented
along with integer and floats, with their standard op-
erations.

All data are organized in stacks, There are currently
nine basic data types, and nine corresponding stacks.

The objects stack: holds all the objects on which
the machine operates. An object can be either:
an operator®, a predicate®, a variable, an integer,
a float, a cona”, alfree®. Elements of this stack will
be called ObjectElement®.

The operands stack: Objects do not hold their
operands. Each object that has arguments holds
the number of its operands and a pointer to an
element of this stack thal holds pointers to all
the operands®®. Elements of this stack are called
Operand Element.

*From now on, we will only use the 54 modallogic. A classical
introduction is [HOTZ. We will use the following nolations : O
is knotws, & is compatible. Modal operators have arguments that
must be constants. The new operator ©p must be added to the
original language as shown in ([CHEE]).

®An operater is &n object that hes ohjects as arguments and
qualify an other abject.

fA predicate is an object that has argurments but de not
qualify any other ahject.

"The classical LISP cons

Balfres is & special object quite similar in its behaviour to a
variable that would always be frec [aifree is the abbreviation of
always free).

#Serings are currently not implemented.

"OThe operand stack is probably a technical mistake and will
probably be suppressed in future versions of the machine
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The clauses stack: Each element of this stack s
composed of:

# & pointer in the object stack to the beginning
of the clause

# & pointer to the head predicate!

» the number of free variables in the clanse.

Elements of this stack are called Clausefilement.

The environments stack: Each element is a pair
composed of a pointer to an objecl and a pointer
in the environment stack in that the ebject has
to be evaluated (classical structure sharing imple-
mentation). Elements of this stack are called En-
vironment Element,

The Trail stack: Pointers to the environment list for
resetting to free some variables when backtracking
(classical structure sharing implementation). Ele-
ments of Lthis stack are called TraidlElement.

The backtrack stack: Each element holds all infor-
mation necessary to backtracking (values of top
of stacks). Elements of this stack are called Bac-
trackElement.

The question stack: Each element is a pair com-
posed of & pointer of an object and a pointer to
the environment where thiz object must be evalu-
ated. The question stack holds goals Lo be solved.
Elements of this stack are called QuestionElement.

The resolvent stacle: stack for the resolvent ele-
ments. The resolvent iz built with the current
guestion and the current selecied fact, When
reaching a partial termioation rule, the resolvent
is re-written using rewriting rules on the top of the
guestion and becomes the new question. Elements
of this stacks are called resolventElement.

The predicates stack: Holds predicate structures.

There are also nine other types : pointers’ to object
in each stack, respectively ObjectPoinfer, Operand-
Pointer, ClausePointer, EnvironmeniPointer, Trai-
Pointer, BacktrackPointer, resolventPointer, Ques-
tionPointer.

At last, there is the rules array. This array describe
how resolution rules behave in the system. We will
come back to this later.

5.2 Registers

The registers described bere are what we call globai
registers or main registers (see figure 2). There exists

Uigeful when using classical Prolog clauses selection to in-
crease speed.

¥We usually uss the term painler that is not exactly appro-
priate, Our potnters should be thought as abstract data types,
that can be implemented as real pointers, or as indexes of an

array, or anything similar.
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Register | Description

Qeurr Pointer to the eurrent ohject n the question
FCurr Pointer to the current object in the clause
FEnv Pointer to the environment of the carrent elause
CClause | Painter o the current clause

CHule Tndex of the current rule need

TrTap Pointer to the top of Trail Stack

ObTop | Pointer to the top of Object Stack

BTTop | Pointer to the top of Backtrack stack

Qap Pointer to the top of question stack

RTop Pointer o the top of resalvent stack
EnvTop | Painter to the top of environment stack

Figure 2: Abstract machine registers

Push{x : object) return pointer
Read(i : pointer) return object
Pall return ahject

Modify(x : abject; i - peinter)

SetTop(i : pomnter)

Position return pointer

Figure 3: Operations available on each stack

also general purpose registers that can be temporarily
used for calculations. We will note them RO, &1, .. .in
the following pages.

At time §, the machine is completely defined by the
values of itz stacks and its regislers,

5.3 Instructions set

We deseribe here the instruction set of the abstract
machine. We can not, because of lack of space, describe
it extensively, but the next few lines give an intensive
definitions of all instructions.

For each type of object, there are twice as many
functions as there are components in the object, one
for getting the value of the component and one for
setiing this value.

Muoreover, for each of the nine stacks there are § basic
operations implemented (see figure 3).

+(p:pointer; i:integer):pointer Increments poin-
ter pby i

-{p:pointer; izinteger):pointer Decrements pointer
phbyi

-(pl,p2 : pointer):integer Returns the number of
elements between pl and p2,

There are also some classical functions: Assign-
ment, Equality test, Conditional constructions.
This ends the description of atomic functions, We
will need in the following lines the classical maere-

instruction unify, that unifies (Structl, Envl) with
{Struct2, Env2)*,

Let’s see on an example how the abstract machine
code is used io implement rules!

O(X}: A4,70(X): BHIO(X): C
OX): A, TB O
is translated into:

RO :sRaad{Qeurs)
if not
unify(Fourr,Fenv,GetHumStroct (RO) , GetNumEnv (RO}
then return false
#lse Pushresolvent(RO) endif
Qeurr := Qourr+i
raturn truse

6 Rule selection with paral-
lelism

In section 3.4, we said that resolution rules were cho-
sen in the rules base in order of appearance. We are
going to show here that this mechanism can be greatly
enhanced by indexing the rules base and using parallel
execution of rules.

6.1 Indexation of rules

The rules necessary to implement 54 are shown on top
of table 2.

Remember that due to the uniform netation of the
abatract machine the elause A(A) : B of the second
rule is in fact the implication B + A. We can see
that, for a given fact and a given question, we have
to try a lot of different rules. This creates a second
non-determinism that greatly slows down the imple-
mentation of the language.

But trying all rules is usually not useful, because
for a given fact and a given question, only a few rules
will match the shape of the fact and the shape of the
question. For example, if the fact is O(X) : A and the
question O5(X,I) : B only rules 9 and 11 can be used.

So, for a given logic, we can develop extensively all
possible cases. For 54, this gives table 2, This way,
given a fact and a question, the array gives directly the
rules that can be applied and there is often only one
rule that can be applied. This transforms the double
non-determinism in an almost simple non-determinism
much closer to Prolog complexity. So, in a large num-
ber of cases, it iz not necessary to backirack on rule
selection.

unify is of course writlen with atomic instructions.
""Other examples can be found in [Alled): full implementation
of 54 logie, among others {Fusey logis, module logic).
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Each processor will continue resolution with a fourth of
the resolution tree

Figure 4: Parallel execution of 5S4 rules

6.2 Parallel rule execution

The abstract machine was designed to enable an easy
implementation of parallelism. Sometimes, for a given
definite fact and a given goel clause, more than one
rule is pessible : we can use a different processor for
each rule. For example, in the 34 logic, if the fact is
O(X) : A and the question is &{X) @ B, four rules can
be used (table 3). With four processors, each one can
continue the resolution with a different rule. Figure 4
shows how the inference system tunning originally on
processor P1. With four processers P1, P2, P3, P4
available, it is possible to solve, in parallel, 54 rules
described in table 3.

The information transferred from one processor {P1)
to its children (P2, P3, P4) are the abstract machine
data stacks and the abstract machine registers. Some
stacls are never transferred (the backtrack stack, the
trail stack) because the child does not need to back-
track over the current resclution point. This paral-
lelism induces no side effects : as soon as one proces-
sor has received data, it will not have to communicate
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L to all : free
Ptol - request
Lte P: Ok

P te L : Data

Figure 5: Fully interconnected network

with its parent any more until it has finished its own
resolution. Moreover, there is no overhead in process-
ing time because parallelism is explicit in the language
itsell : overhead comes only from communication be-
tween processes,

Four models (Master/slaves network, fully intercon-
nected networks, ring networks, top-down networls)
are under development; we just mention them and we
will not discuss them in detail®,

Fully interconnected network: Every processor can
distribute work to any other processor that is free.
A very simple protocol is used to prevent two pro-
cessors to send at the same time data to the same
processor (figure 5). This protecol will solve prob-
lems as represented in figure 4,

Master/slaves network: The master process dis-
tributes work to all other processes, which, in
turn, can not distribute any work. This protocol
will also solve problems as represented in figure 4,

Ring network: Here each processor can send work to
the next one, and the last processor can send work
to the first,

Top-Down network : In the Top-Down Network,
each processor can only send information to the
following one but the last processor can't send in-
formation to the first one. ln ring networks and
top-down networks, resolution is not exactly as

represented in figure 4.

7 Implementing Parallelism

7.1 The “classical” machine

The new abstract machine specifications was the result
that began with the first implementation of MOLOG,
in €, in 1088,

Coding the new machine took less than two months,
Of course, two years spent in coding other abstract
machines (that proved to be unsatisfactory) helped a
lot. From the beginning, the stress was on getting a

1501 all practical implementations issues, details can be fannd

in [Alled).

program as close as possible to the specifications of
the abstract machine. That was the reason why the
ADA language has been chosen: the specifications of
the abstract machine are exactly the specifications of
the main package of the implementation. Moreover,
compared to other implementations previously written
in C, coding and debugging was a lot easier and faster,
We wanted also to be able to easily implement paral-
lelism. So, for example, stacks are implemented with
arrays and there is not a single real pointer in the sys-
tem, only indexes. It has an interesting well known
side effect: we never run out of stack space, because i
a stack becomes full, we just have to copy it to a new
larger stack. Allindexes are still valid. The mechanism
is invisible to the pregrammer and the user and very
useful with some very recursive non-classical problems.

This was done at the loss of performance. Access-
ing any object in a stack requires two function calls
and three tests plus the classical indirection. The
BEZG machine runs about fifieen times slower than
C-Prolog!® en PROLOG problerns. This could easily
be enhanced by recoding the machine with efficiency
in mind,

Coding a logic is very easy as soon as it follows the
general framework given in section 3.2, The 54 logic
was implemented in one day. and tested with the clas-
sical “wise men" puzsle. The puzzle is solved in three
minutes on & HP-720 workstation with the full amount
of knowledge (more than twenty clauses), With oaly
the five clauses necessary to solve the problem, the so-
lution is found in less than a second, hundred times
faster than the MOLOG interpreter.

7.2 The parallel machine

The parallel machine was developped with an ETH-
ERNET network as medium for data transfer. The
parallel system is made of many TR machines run-
ning on different workstatijons, linked by INTERNET
sockets'”. The only configuration tested was a top-
down petwork. Results are shown in table 4. It would
be too long Lo discuss them here in detail. Full expla-
nations can be found in [Alled).

We can briefly say that, over three processors, the
network is clearly too slow and becomes the bottleneck
of the syslem. A large part of time is lost in com-
municating with other processors. There are different
solutions that could be used to enhance performances:

» We can use parallelism only for branches that are

Y1t is however faster than some classical PROLOG wrilten in
eompiled Common Lisp

171t was quite easy to do, becanse all necessary packages for
comrmunication and parallelism had been developped previously
for other projects. Reusability of seftware Is a major advantage
of ADA.



of Procs |  PL| P2| P3| P4
319+1
166+10 | 145+6

120424 | 142450 | TT+17
120426 | 140446 | 4631 | 2249

Table 4: CPU+aystem time used

lh-'q‘.ﬂlol-'*

close to the root of the tree. This will decreass
the number of sent packets,

» We can try a master/slave peiwork. The master
processor will be almost devoled to sending pack-
ets but slaves would not spare time on this,

&« We can improve the amount of sent dats; some
etacks can only grow, and are never modified un-
der a certain depth. We could enly send new data,
and not the whole stack.

¢ We could try to use & different medium. An
ethernet network is a very slow device for par-
allelism, and, moreover, our network is usually
crowded with packets coming from other stations
or other X-terminals. It would be very interesting
to implement the machine on a multi-processor
compufer with shared memory segments, or on
a transputers neiwork. We were not able Lo do
it yet because we lack access to such a machine.
We are very eager to try such an approach. If
we are able to find a2 machine with many proces-
gors, the inference machine could be almost, as fast
as a standard PROLOG even when solving non-
classical logic problems, because the double non-
determinism would be almost reduced to classical
PROLOG non-determinism.

8 Conclusion

We think the implementation of any logic given by in-
ferenee rules of the form defined in the earlier sections
can be done in a very short amount of time (one or
two days at most). The development of an automatic
translator from the logical shape of the rules to the
abstract machine specifications suggests itself and is a
subject of current work.

Now, it is hoped that fast, general and eficient im-
plementations of such logics could bring a new area of
development for expert systems. In particular, in the
C.ENAY a large expert system (3,000 rules) using
fuzzy and temporal logics has been developped in Pro-
log {[AL91]). Thiz expert syslems could be an excellent
test for TARARL

18The CEMA is an institution responsible for studies of new
systems for Air Traffic Contral in France
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