PROCEEDINGS OF THE INTERNATIONAL CONFERENCE

OM FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. ©@ 1COT, 1992

825

An Implementation for a Higher Level
Logic Programming Language

Anthony 5.K. Cheng”

Ross A. Paterson!

Software Verification Research Centre
Department of Computer Science
The University of Queensland
4072, Australia

Abstract

For representing high level knowledge, such as the math:
ematical knowledge nsed in interactive theorem provers
and verification systems, it is desirable to extend Prolog'e
concept of data object. A basic reason is that Prolog
data objects—Herbrand objects—are terms of & minimal
object lanpuage, which does not include its own object
variables, or quantification over those variables,

Qu-Prolog (Quantifier Prolog) is an extended logic
programming concept which takes as its data objects,
object terms which may include free or bound occur-
rences of object variables and arbitrary guamtifiers to
bind those variables, Qu-Prolog is unique in allowing its
data objects to include free occurrences of object vari-
ables.

In thie paper the design of the abstract machine for
Qu-Prolog is given. The underlying design of the ma-
chine reflects the extended data objects and Qu-Prolog’s
unification algorithm.

1 Introduction

The extended logic programming langmage Qu-Prolog
{Quantifier Prolog) [Cheng et al. 1991, Paterson and
Hagzel 1990, Paterson and Staples 1988, Staples et
al. 1988a, Staples ef al. 1988b] has been designed to pro-
vide improved support for langnage processing applica-
tions such as Interactive proof systems. Its main feature
is that it supports higher level symbolic data types than
does Prolog. In particular, the data objects which Qu-
Prolog reasons about are terms of a full first order logic
syntax, which includes both object level varizbles and
arbitrary bindings of object level variables.

The language AProlog [Miller and Nadathur 1986],
which extends Prolog with typed lembda-terms, may
also be used for these purposes. Qu-Prolog is weaker,
in that its terms correspond to second-order lambda-
terms; substitution is provided, but not application of
terms to terms., However, in Qu-Prolog, as in traditional
notation, term variables may refer to open terme, raising
further questions of whether an object level variable oc-

*e-mail: chenafica.uq.oz.au
tpresent address: Department of Computing, Imperal College,
London SWT.

curs free in a term, or whether two object level variables
are distinet.

The Qu-Prolog Abstract Machine {QuAM) [Cheng
and Paterson 1990] is designed as the target for com-
pilation of the logic programming language Qu-Prolog.
QuAM is developed from the Warren Abstract Ma-
chine (WAM). New mechanisms are introduced to handle
quantified terms and substitutions and flexible program-
ming in Qu-Prolog. This paper presents the basic struac-
ture of the language and describes its implementation.

The main features of Qu-Prolog are described in sec-
tion 2. Tn section 3, unification is extended to Qu-Prolog
terms. The design of QuAM is given in section 4. Some
examples are given in section 5. It is assumed that the
reader has some knowledge of the design of WAM [Ait-
Kaci 1990, Warren 1983) and the compilation of logic

programming languages.

2 Qu-Prolog — the Language

Qu-Prolog has Prolog as a subset, and uses Edinburgh
Prolog syntax for constants and structures, and for ordi-
nary variables which are intended to range over arbitrary
object level terms. These variables will be referred to as
meia variables, in recognition of the meta level status of
the Qu-Prolog language relative to the object langnage.
In addition, Qu-Prolog introduces syntax to represent
object level variables and quantifiers, as follows.

Qu-Prolog has other features not deseribed here.
These include persistent variables, which are uvsed to
manage incomplete information in the database, For a
degcription of persistent variables and their implementa-
tion, see [Cheng and Robinson 1961].

2.1 Object Variables

Since object level variables are simply part of the object
level syntax, it might seem natural to name them af the
Cu-Prolog (meta) level by constants. Instead, Qu-Prolog
refars to object level variables only by a type of Qu-
Prolog (meta) level variable, called object-var variables,
The semantics of object-var variables is that they range
over object level variables. The success of this approach
reflects the common intuition that object level variables
are interchangeable.

826

The phrase ‘object variable’ is commonly used to ab-
breviate ‘object-var variable' since it has no other use
in describing Qu-Prolog syntax. For an occasional ref-
erence to & variable of the object language, the phrase
‘object level variable’ will be used.

Qu-Prolog object variables have the same lexical
conventions as constants. In order to distinguish
them, object variable notations must be declared by
object_var/i. The declaration convention is that as
explicit declaration of an object variable name also im-
plicitly declares all variant names derived by appending
an underscore followed by a positive integer. The stan-
dard library declares the atoms x, y and 2 as object
variables,

As each object variable is intended to range over all
object level variables, it is important to know whether
two object variables denote differant object level varie
able. This information can be supplied implicitly or by
explicit use of the predicate distinct_frem/2. For ex-
ample, * distinct from y asserts that x and ¥ do not
denote the same object level variable. By default, all
object variables occurring in the same clause/query are
distinet from each other.

Remark: In fact Qu-Prolog makes internal use of
some meta level constants representing object level vari-
ables. These terms, called local object variables, are
mentioned below bat they are not discussed here in de-
tall. Their key role iz as ‘new’ variables, for use when
changing bound variables. This newness is implemented
by a convention that they are excluded from instanti-
ations of user accessible meta variables and object-var
variables.

2.2 Quantifiers

Qu-Prolog can reason about object level terms which
include arbitrary quantifiers, in much the same way that
Prolog ean reason about terms which include arbitrary
funckion symbols, The user declares quantifier notations
as needed. Thus it is possible to have representations of
[for integral calculus as well as ¥, 3 for first order logic.

Distinct quantifier notations in Qu-Prolog represent
distinct object level quantifiers. Qu-Prolog uses the tra-
ditional prefix notation for quantified terms, Quantifiers
are declared explicitly by executing

op(Precedence, quant,)
where Q is the representation for the quantifier; ¢ must
have the same lexical structure as a Prolog constant.
2.3 Substitutions

Throughout logical reasoning, the need for substitutions

arises naturally. Qu-Prolog directly supports parallel

substitution for free ocourrences of object level variables.
The syntax for substitutions in Qu-Prolog is

[ti/21, - tafza] * term

where z,,...,%, are object varizables and 11,40 .31p are
arbitrary Qu-Prolog terms.

Qu-Prolog substitutions are evaluated at unification
time, in accordance with the standard concept of cor-
rect substitution into quantified terme, which subatitutes
only for free occurrences of varlables and which changes
bound vatiables to avoid capture of free variables from
the substituted terms. For a term sy = ... # &, % y where
#1,. .., 8n 15 asequence of substitutions, the substitutions
are applied from right to left. That is, s, is applied to y
first. The effect of applying a substitution to 2 term can
be observed with this example:

5% [$1f:1,.. o infzn] = 3.

After applying the rightmost substitution, the result will
B

e sui; if forsomei=1,...,n2; =y, 0r
v sayifforalli=1,__ . », o distinet from p.

It is also possible that there is insufficient information
at a particular stage to determine which of these cases
applies. In that case evalnation of the substitution will
be delayed. That may lead to delaying of unification sub-
problems, perhaps extending beyond the current unifica-
tion call,

As well as substitations appearing in user inputs, the
system can generate substitutions via unification. For
example, the problem lambda ¢ A = lambda y B has
the solution 4 = [z/y] = B.

2.4 Example

As a small example, we give a A-caleulus evaluator in
Qu-Prolog. The terms of the A-caleulus are transcribed
directly, except that we use the infix constructor @ for
application. First, we declare the quantifier lambda and
the application operator:

7- op(T00, quant, lambda).
*- op(600, yfx, @).

Now the following predicate defines the structure of A-

terms:

lambda_term{x).

lambda_term{AQB} :-
lambda_term(A},
lambda_tarm(B) .

lambda_term{lambda x A) :-
lambda_term{A).

For example, the following are A-terma:

x

lambda x x
{lambda x x)@y
lambda x (x@y)

Note that A-terms may contain fres object variables.
Now we can define a single-step reduction predicate
on A-terms:

T- op(BOD, xfx, =»).

(lambda x A)OB => [B/x]=A.

hEB => CQB :~ A => C.

AOB => pQC :- B => C.
lambda ¥ A => lambda x B :- & => B.

The first clavse is the well-known f-rule. The others
allow rewrites anywhere in the expression. If desired, we
coitld alao add the g-rule:

lambda x A@x =% A :- x not_fres_in A.

The full reduction relation in the usual reflaxive, transi-
tive closure of the single-step reduction predicate:

7~ opl{B00, xfx, =»#),
& =+ C - A=xB, !, B=¥C(,
A =% A&,

3 Unification

Qu-Prolog extends Prolog unification to cover the new
data objects in the language. Two terms are unified if
they are equivalent up to changes of bound variables (o
equivalent). Since wnification for Prolog terms is not
changed (except that Qu-Prolog includes occurs check-
ing), our discussion will concentrate on the new features,

Becanse Qu-Prolog unificstion is more difficult than
ordinary unification—it is not decidable, bul semi-
decidable [Paterson 1980]—we often encounter sub-
problems which cannot be solved at that point in the
computation, but we may be able to make further
progress on them later, Such sub-probleme are delayed,
walting for a relevant variable {(or variables) to be in-
stantiated, at which point they are re-attempted. If the
siub-problems remain unsolved at the end of query so-
lution, they are displayed as part of the answer. This
approach has proved practical in our implementation.

We have also found it useful to delay sub-problems
to avoid branching. As a simple example, consider the
unification problem [X /y]+Z = ¢, whers ¢ is a constant (a
similar situation arises with structures). The unification
can succeed in one of two ways:

+ Imitation: Z = ¢, Here the substitution has a oull
effect on Z.

¢ Projection: Z=yand X =¢.

Hence it is impossible to determine 2 unigque mest general
unifier. Rather than branch the unification problem, Qu-
Prolog delays it wntil the binding of Z is known.

3.1 Object Variables

Since an object variable is intended to range over object
level variables, and since object variables are the only
Qu-Prolog terms of this type, an object varizble can be
instantiated only to another object variable. Further,
unification fails if the object variables denote distinct
object Jevel variables, Also, whenever a meta variable
is unified with an ebject variable, the meta variable is
bound to the object variable.

827

3.2 Quantifiers

To motivate the treatment of unification for quantified
terms, consider

lombdaz z = lambdayy

Intujtively, the two terms are unifiable without instan-
tiation of or y, because the terms are the same up
to change of bound wariable. To unify and y would
be incorrect: the two terms are o equivalent even if z
and y denote distinct object level variables. Henee dor-
ing quantifier unification, Qu-Prolog uses substifution
to rename the bound variables to a common bound vari-
able. The bound variable must not appear in the unified
terms. This Is where the local object variables mentioned
previously are used. In general, a problem of the form
gzi=quyt is reduced to

[w/zlst = [w/y]+t

for some new local object variable &, and unification con-
tinues. Here is how the approach applies to the example,
(1 i5 & local object variable).

lambde = = = lambda y y
lambda v [¥fz] * 2 = lambda o [v/y] * 3
pfalss = ey
¥ = v

(sucesss)

A substitution containing local object variables, when
applied to a meta variable, may be removed by a rule
called fnversion: a problem of the form [vfz]+ X =11is
reduced to the two problems

X = [z/v]*t, = not_freeint
For example, we have the following reduction:

lombde z A = lambda y p

[viz]vA = [vfy]sy
A = [zfv]+[vfy]*+
= not.freedin [vfy] +y
4 = =z, r nol_freein v
A ==z

TInification produces the answer 4 = =.
As a farther example, consider

lambda r A = lambda y =

Since # does occur free on the right and cannot occur free
on the left, this unifieation problem should fail. In Qu-
Prolog unification, that failure iz detected when, at the
time of calculation of A = [z/v] #[v/y] ¥ ¢, the constraint
z not_free_in [v/y]+z is generated and tested; and after
substitution evaluation, the test fails.

Such met_free_in constrainte may be delayed if they
cannot be immediately decided. For example, the unifi-
cation problem

lambda z A = lambda y [z/z]+ Z

828

gives the solution

[2fv] % [vfu] * [zf2] + Z
provided :
z not_freein [vfy| + [zfz] = 2

A =

In the absence of further information about Z, the
not.freein test must be delayed,

3.3 Occurs Checking

Unlike Prolog, occurs checking is ineluded as standard in
Qu-Prolog unification. However, it is not always possible
to determine whether a variable ocenrs in the final form
of a term. For example, it is impossible to determine
whether X occurs in the term [X/y]+ Z without knowing
more information about Z. If Z is bound to 3, X ocours
in the term. On the other hand, if £ Is bound to a
constant &, X does not occur.

Thus, if we are considering a sub-problem of the form
A =1, we cannot always reduce the problem. We use
two conservative syntactic conditions:

If X occurs in § ontslde of any substitution, and ¢ is
not of the form s + X, the unification fails, for the
X must appear in ¢ no matter how other variables
are instantiated.

o I X does not appear in ¢, including substitutions,
X iz instantiated to £

If neither of these conditions is met, the unification sub-
problem must be delayed, pending further instantiation
of X

4 The Qu-Prolog Abstract Machine

One of the design criteria for QuAM is that the effi-
ciency of ordinary Prolog queries within Qu-Prolog must
be maintained wherever possible. Thus, most of the
features of WAM are retained and the description be-
low will concentrate on the differences between QuAM
and WAM. The current implementation of QuAM differs
from the present description in that it uses an experimen-
tal representation for structures, intended for future en-
hancements to the Qu-Prolog language with higher-order
predicates and multiple-place quantifiers. The present
paper focnses on other aspects of the machine, so we omit
these details heve, assuming & WAM-like representation
of structures. Becaunse of the difference of the represen-
tation of the structures, no performance evaluation will
be given. A description of the current implementation
can be found in [Cheng and Paterson 1990].

4.1 Data Objects

Unbound Variables

Because of the association with delayed problems de-
seribed helow, the representation of a self reference cell
for unbound variables as in WAM iz inapplicable. A

data cell with & VARIABLE tag is used to indicate an
unbound varlable in Qu-Prolog. The value field of the
data cell contains a pointer to a list of delayed prob-
lems associated with the variable (Figure 1). Although
the representation of variables is different to WAM, the
classification into temporary and permanent variables,
the age determining method and the rules of binding a
varizble are retained.

VARIABLE = delayed problems

Figure 1: An Unbound Qu-Prolog Variable

The REFERENCE tag is retained to indicate that
one variable is bound to another one. When two heap
variables are bound together, the one created more re-
cently points to the one created earlier on the heap. The
delayed problems from the younger one are appended to
those of the older one.

Unbound Object Variables

DBIECT_VARIABLE| =+ delayed problems

T
distinct object variables

Figure 2: An Unbound Object Variahle

OBJECT_VARIABLE

— 1™ | NIL

OBJECT.VARIABLE

r

OBJECT_VARIABLE

Figure 3: « distinet_from y and = distinet_from =z

A separate tag OBJECT_VARIABLE is given to the
object variables to distinguish its function from the vari-
ables. The value field has the same purpose as the valus
field in variables. The second cell in an object variable
points to a list of object variables from which it is dis-
tinguished (Figures 2, 3). Rather than record all object
variables in the distinctness list, an ALL_DISTINCT
tag is placed in this cell for local chject variables.

The classification method, the binding rules and the
age determining method used for variables is also applied
to object variables,

The OBJECT REFERENCE tag indicates that an
object variable is bound to another object variable
When twe object variables are bound together, the dis-
tinctness information from both object wvariables are
merged together and placed in the older object variable
and the detayed problems will be woken up.

Quantified Terms

Qu-Prolog currently allows 1 place quantifiers {i.e. quan-
tifiers with one bound variable) only. To represent quan-
tified termes in Qu-Prolog, a tag QUANTIFIER is in-
troduced, analogous to the STRUCTURE tag of the
WAM. Such & value points to a three contiguous cells,
containing the guantifier atom, a reference to the bound

object variable, and the body of the quantified term (Fig-
ure 4).

QUANTIFIER

ATOM - 4
OBIECT-REFERENCH ‘OBJECT_VARIABLE

.

term

Figure 4: Quantified Term g x term

Substitution Operators

In QuAM, an application of one or more substitutions
to a term is represented as a data cell, marked with a
SUBSTITUTION.OPERATOR tag and pointing to a
pair of cells. The first cell contains a pointer fo the list
of substitutions, while the second is a data cell denoting
the term (Figure 5). The list of substitutions is stored
in reverse order, with the innermost substitution at the
front, to simplify evaluation.

| suBSTITUTION OPERATOR] ——] subs list
term

Figure 5: sub + term

An ordinary parallel substitution is represented as a
data cell with the property tag, containing a peinter to
a pair of cells. The first of the cells is a pointer to the
parallel substitution, while the second represents the rest
of the substitution list. A parallel substitution involving
n pairs of object variables and terms is represented as
a block of 2n + 1 cells; the first contains the size of the

820

substitotion, while the renaming 2n cells refer to the
object variables and terms. Again the substitution pairs
are stored in the reverse order for easy evaluation [Figure
6).

[property | |

B 2
n OBJECT_REFERENCEH ——= y
INTEGER, 456
¥ OBJECT.REFERENCE - x
INTEGER, 123

Figure 6: A Parallel Substitution s+ [123/x,456y]

Each substitution list contains a marker deseribing the
property of the substitution list. It is used during unifi-
cation to assist the determination of whether or not the
unificetion can be solved by projection. In general, a
problem of the form s + 4 = ¢, where ¢ is a constant,
structure, quantified term or object variable, can always
be reduced by imitation. If s is known not to contain
any terms of the same top-level structure as £, then the
problem cannot be solved by projection. Thus branching
is eliminated and we can proceed by imitation. Other-
wise, the unification problemn will be delayed to avoid
branching. In most cases, the whole substitution list
must be examined. in order to eliminate projection. In
special cases, the marker will contain enough information
to make & complete search unnecessary.

It is also convenient to know if a substitution list con-
gists solely of renamings generated by quantifier unifica-
tion, as such a list can be safely inverted. Thus, each
substitution list is marked as one of:

& jnvertible: the sobstitution list consists solely of re-
namings.

« object variables enly: the substitution list is not in-
vertible, but its range contains only object variables.

» others: the range of the substitution list contains
constants, structures, quantifiers or meta variables.

4.2 Data Areas

QuAM supports the same data areas as in WAM. The
heap provides space to store data objects as well as the
distinctness information and linking cells required for de-
layed preblems. The Jocal stack holds choice points and
environments. The choice points are enlarged to reflect
the extra data areas and registers.

Because the delayed problems list and distinctness in-
formation must be reset to thelr previous value upon
backiracking, the method of trailing (i.e resetting the
address to null) used in WAM iz inapplicable. Each en-
try in the trail is extended to be a pair of addresses and

830

previous values to provide extra information for back-
tracking.

In addition to the standard WAM data areas, a de-
layed problems stack that holds any delayed problem
generated during unification is provided. Apart from
containing polaters to the arguments for the delayed
problem, it has a type tag and a solved tag. The type tag
indicates whather the delayed problem iz a unification or
a not_free_in problem (Figure 7). The solved tag s sat
whenever the problem is solved.

UNIFY | NIL
[R1)/x*A =——1—

T i

Figure 7: Delayed Problem: [f(1)/z]+ 4 = f(1)

When a guery is salved, any delayed problem that re-
mains is printed as a constraint to the solution. Storing
the delayed problems in & separate area allows fast access
to the problems when the solution is printed.

4.3 Registers
There are a few extra registers used in QuAM:

« the top of the delayed problems stack,

¢ a list of formerly delayed problems that have been
woken up,

* The substituiion peinter register points to the entry
in the parallel substitution where the next compo-
nent is to be added,

As well as the X registers, there is an associ-
ated set of registers, known as the X5 (X substitu-
tion) registers, which hold the substitution of a term
when the substitution and the term of a SUBSTITU-
TION_OFERATOR data cell are broken up during
dereference. This procedure enables the substitution to
be passed from the outer structure to the inner terms
effectively.

Because each Y register Is one data cell in size, and an
OBJECT.VARIABLE is two cells in size, a ¥ register
cannot hold an OBJECT_VARIABLE directly, and in-
stead contains a reference to an OBJECT_VARIABLE
in the heap.

4.4 Instruction Set

For each new data object provided in QuAM, there are
put and gef instructions to build and unify the data ob-
jeet. The new instructions are:

put. object_variable X;
Create a new object variable on the heap, and place
a reference to it in X,

get_object_variable X; X;
Copy the object variable reference in X; into X;.

pui_object_value X; X;
Copy the object variable reference in X; into X;.

get.object_valve X; X;
Unify X'§;, X; with the objoct variable referenced
by X,

put_guantifier g X; X; X;
Construct 2 quantified term, with quantifier g,
bound object variable X; and body X}, and place a
reference to it in X,

gelguantifier g X; X; X,
Match the term in X Sk, X with a quantified term,
with guantifier ¢ and bound object variable X;. The
body is placed in X §;, X;.

In each of the last two instroctions, the register X; must
have been previcusly set to an object variable.

lote that some of these Instructions use the XS reg-
isters, while others ignore them, expecting any substi-
tution to be incorporated into the term in the X regis-
ter. Thus during head matching substitulions are con-
veniently accessible in the substitution registers, allow-
ing efficient dereferencing, and sharing of sebstitutions.
Howaver, if such & value iz to be a sub-term, its substi-
tution {if any) must be re-incorporated into the term.

There is a set of put instructions to build substitu-
tions, but no corresponding set of get instructions, This
is because a substitution occurring in the head must he
built in the same way as if it had occurred in the body,
and then the substituted term must be unified with the
corresponding head argument (or eomponent). The in-
structions available are:

put_subs_operator X; X;
Combine X5; and X; imte a SUBSTITU-
TION_OPERATOR, and place a reference to it
i Xj.

put_empty.subs X;
Set X5 to an empty substitution.

put.parallel_subs n X;
Prepend a parallel substitution, consisting of n pairs
(each supplied with the next instruction), to X 5.

put_parallel_subs pair X; X;
Add a pair, substituting X; for the objeet variabla
referred to by X;, to the parallel substitution eur-
rently under construction.

pul.subs X; X;
Transfer a substitution from X 5; to X §;.

sef_object_property X;
Set the property tag on X 5; to “object variables
only®.

deiermine_properiy X;
determine the property tag of X 5;.

The only new procedural instructions are:

do_delayed problems
Solve any woken delayed problems. This instruction
is executed after the head has been matched.

not_free_in
Perform a not.free_in test during quantifier unifi-
cation.

4.5 Dereference

Because of the presence of substitution, additional opera-
tions are included into the dereference algorithm. Tha
substitutions are evalvated during dereference when-
ever possible. Given an object variable, the substitution
will map the object variable to its value. Depending
on the type of the data ohject encountered in the term,
dereference also simplifies the substitution before re-
turning.

5 Examples

A number of small examples are given here to highlight
the design differences between QuAM and WAM.

5.1 Quantified Terms

Quantified terms are constructed in a similar fashion to
the unary structures, except for the object variable, The
following sequence of instructions shows how a quantified
term lambda x x is built in register X:

put_chject_variable X0 hx
put_quantifier lambda X0 X0 Xi

Matching a quantified term is slightly more compli-
cated than structure matching. Apart from matching
the term from outside in (i.e. match the quantifier before
matching the body), it must establish that the bound
variable of the quantified term in the head does not oc-
cur freely in the body of the quantified term from the
query, Thus, a not_free_in instruction must be exe-
cuted before the quantifier matching is performed. The
following instructions match the argument X, with the
bead argument (lambda x A)@B:

get_structure @/2 X0

unify_variable X2 % lambda x A
unify_variable X0 B
put._cbject_variable %3 hx

put_empty_subs X3
not_free_in X3 X2
get_quantifier lambda X3 X2 X2 § &

5.2 Substitutions

QuAM ls designed to create substitutions independent
of the term. The term is created before the substitu-
tion. The example [a / x, b / y] * & illustrates this
property.

831

put_variable X0 X0 A
put_smpty_subs X0
put_object_variabla X1 Yy
put_atom 'b* I2
put_ocbject_variable X3 T x

put_atom ‘a' R4

put_parallel_subs 2 X0 Woxa
put_parallel_subs_pair X1 X2 % [b/y] = &
put_parallel_subs_pair X3 X2 ¥ [a/x.b/yl+A
determine_proparty X0

If the substitution is nested inside another term, an ex-
tra step is needed. A SUBSTITUTION_OFERATOR
data object s created to group the substitution and
its mssociated term together. To construct the term
£([a/x, b/y] * A}, the following additional instruc
tions are required:

put_sube_operator X0 X0 J group together
put_structure £/1 X1
unify_valua X0

Whenever a substitution is azsociated with 2 term in
the head, that term together with the substitution will
be bueilt by pef instroctions and general unification will
be called. For example, consider the following clause
from the A-calculus evaluator:

(lambda x AJEE => [A/x]sB.

In section 5.1 above, we gave the translation of the
matching of the first argument, leaving x in Xa, 4 in
X; and B in Xy. The following instructions match the
second argument (in Xy):

put_subs_cperater X0 X0 § group together B
put_subs_sperater X2 X2 § group together A
put_ampty_subs X0 % B
put_parallel_subs X0 1 % =B
put_parallel_subs_pair X3 X2 ¥ [A/x]
determine_property X0

get_value X0 X1 ¥ unify with the argument

Note that 4 and B must both be combined with their
substitutions, if any. In the case of A, this allows the
value to fit into a cell in the substitution pair. In the
case of B, the substitution must be incorporated into the
value, and the substitution register set to empty, so that
the new substitution will be outside any existing substi-
tutions.

If the substitution is nested within another term, the
outer term is matched by the gef instructions, while the
substitution is built and unified with the appropriate
component.

6 Conclusions

QuAM has been implemented in C under the SUN 4
environment. The compiler was initially implemented in
NU-Prolog [Waish 1986], and subsequently transferred to
Qu-Prolog, which includes Prolog as a subest,

832

Qu-Prolog, including the extensions and features men-
tioned here, has been motivated particularly by the need
to rapidly prototype interactive proof systems, and cur-
rently it is the implementation language for a substantial
experimental proof system [Robinson and Tang 1991,

Acknowledgements

John Staples, Peter Robinson, Gerard Ellis and Dan
Hazel have made substantial contributions to the design
and implementation of QuAM. This research was sup-
ported by the Australian Research Council.

References

[Aft-Kaci 1990] H. Ait-Kaci, The WAM: a (Real) Tuto-
rial, Report No. 5, Paris Research Laboratory (PRL),
France, 19390,

[Cheng and Robinson 1891] AS.K. Cheng and P.J.
Robinson, An Implementation for Persistent Variables
in Qu-Prolog 3.0, Software Verification Research Cen-
tre, Department of Computer Science, University of
Queensland, 1901. :

[Cheng and Paterson 1990] A.5.K. Cheng and R.A. Pa-
terson, The Qu-Prolog Abstract Machine, Technical
Report No. 149, Key Centre for Software Technol-
ogy, Department of Computer Science, University of
Quesnsland, February 1990,

{Cheng ef al. 1991] A.5.K. Cheng, P.J. Robinson and
J. Staples, Higher Level Meta Programming in Qu-
Prolog 3.0, Proc. of 8th International Conference on
Logic Programming, Paris, June 1991,

[Miller and Nadathur 1985] D.A. Miller and Q. Na-
dathur, Higher-order Logic Programming, Proc. of $rd
International Conference on Logic Programming, Lon-
don, July 1986.

[Naish 1986] L. Naish, Negation and Quantifiers in NU-
Prolog, Proc. of 3rd International Conference on Logic
FProgramming, London, July 1986,

{Paterson 1989] R.A. Paterson, Unification of Schemes
of Quantified Terms, Technical Report No. 154, Key
Centre for Software Technology, Department of Com-
puter Science, University of Queensland, Dec, 1985,

[Paterson and Hazel 1990] R.A. Paterson and D. Hazel,
Qu-Prolog 3.0 - Reference Manual, Technical Report
Mo, 195, Key Centre for Software Technology, Depart-
ment of Computer Science, University of Queensland,
1950.

[Paterson and Staples 1988]) R.A. Paterson and J. Sta-
ples, A General Theary of Unification and Solution of
Constraints, Technical Report No. 90, Key Centre for
Software Technology, Department of Computer Sci-
ence, University of Queensland, 1988,

[Staples et al. 1988a] J. Staples, P.J. Robirson, R.A.
Paterson, R.A. Hagen, A.J. Craddock and P.C. Wal-
lis, Qu-Prolog: an Extended Prolog for Meta Lovel
Programming, Proc. of the Workshop on Meta Pro-
gramming in Logic Programming, University of Bris-
tol, June 1988,

[Staples et al 1988b] J. Staples, R.A. Paterson, P.J.
Robinson and G.R. Ellis, Qu-Prolog: Higher Level
Symbelic Computation, Key Centre for Software
Technology, Department of Computer Science, Uni-
versity of Queensland, 1988,

[Robinson and Tang 1991] P.J. Robinsor and T.G.
Tang, The Demonstration Interactive Theorem
Prover: Demo2.1, Technical Report 91-4, Software
Verification Researeh Centre, University of Queens-
land, September 1991,

{Warren 1983] D.H.D. Warren, An Abstract Prolog In-
struction Set, Technical Note 309, Artificial Intelli-
gence Center, Computer Science and Technology Di-
vision, SHI International, 1983.

