PROCEEDINGS OF THE INTERMATIONAL COMFERENCE

ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by 1COT. © ICOT, 1992

926

A Distributed Programming Environment
based on Logic Tuple Spaces

Paolo Ciancarini
Dipgrliveento i Informatice
Universily of Pisa - [taly

E-mail: ciancaddi.unipi.it

Abstract

[n this paper we describe PoliS, a coordination model
based on Multiple Tuple Spaces, Polis addresses the
specification and coordination of logically distributed
systems. We show that it can be used as a basic
model for designing distrilbuted and rule-based soft-
ware development environments. |n {act, Poli5 has
been used in the design of Oikos. & distributed soft-
ware development enviromment, [t has been specified
and implemented using Extended Shared Prolog. a
parallel logic language that smoothly combines the
Poli§ approach. to deal with concurrency and distri-
hution, with Prolog, to deal with rules and deduction.
Such a combination of blackhoard-based commum-
cations and logic programming provides a powerful
framework in which experiments about different en-
vitonment architectures can be performied and evalu-
ated.

1 Introduction

The concept of software develogmen! environment is a
key issue in software engineering. Logic programming
was proposed as an interesting technology for design-
g and implementing innovative environments since
the first FGUS conference [Furukawa ef al.. 1934].
However, only recently a theory for abstractly study-
ing and comparing different sollware development en-
vironments has heen developed [Perry and INaiser,
1991]. Perry and Kaiser introduced a hieracchy of
classes of software development environments, Their
hierarchy is roughly based on the number of program-
mers involved and includes four classes: individual,
family, city, and state. Each class is characterized by
Lhree interrelated components: policies, mechanisms,
and structures. Policies are the strategies and the
constraints imposed on the programmer by the en-
vironment: mechaniging are the tools supported by
the environment: structures are the objects on which
mechanisms operate,

The main condvibution of this paper is the definition

David Gelernter
Dept. of Computer Science
Yale University - [VSA
E-mail: dhgbes.yale.edu

of an abstract paradigm for modeling and implement-
ing a software development environment at the “city™
level, The paradigm is called PoliSpaces, because it
is based on Multiple Tuple Spaces [Gelernter, 1989,
Matsuoka and Kawai, 1988], and it is shortened to
Foli§, from the Greelk word for “town”. Using the ter-
minology introduced by Perry and IKaiser, our model
aliows programmers to express different coordination
policies simply and consistently, giving to the envi-
ronment designer a powerful tool for structuring dis.
tributed software development environments.

Our proposal is twolold. Firstly, we define an ah-
stract coordination model that can be used as & tool
in the design of a distributed software development
envirenment supporting activities by many agents. A
coordination madel is a set of mechanisms for express-
ing and controlling distributed activities [Ciancarini,
1990L, Carriero and Gelernter, 1991]. The activities
themselves can be expressed in any sequential lan-
guage; their interaction with respect to other activi-
ties is defined using the coordination model. To make
clear the coordination issues, we have introduced Ex-
tended Shared Proleg [ESP for short) [Bucci et al.,
1991], a paralle] logic language based on PoliS.

Secondly, we show how a software development en-
vironment can be specified using ESP. The idea is
that the environment enforces protocols that specify
goals, duties, and constraints of the agents involved in
the software development process. We show how ESP
can be used to specifly simple programming environ-
ments corresponding to simple software development
processes, The power of this method has been tested
in the design of Oikes, a fully-fledged distributed en-
vironment [Ambriola el al, 1990b]. Oikos offers a
number of services giving some basic facilities, like
access to databases and privale workspaces, activa-
tion of shells, etc. ESP can be used to reconfigure
and customize the environment.

The paper is organized as follows: Section 2 de-
scribes PoliS, Section 3 introduces Extended Shared
Prolog, a programuming notation hased on PoliS, Sec-
tion 4 shows how ESP can be used in the design of

simple software development environments and pro-
cesses. Section 5 summarizes the main design princi-
ples underlying Oikos.

2 PoliSpaces: A Model for

Coordination

[ntuitively, & PoliSpace is like an abstract town where
there are many places; in each place many agents co-
operate. In the town many activities take place simul-
taneously, mostly independently; however, they are
ruled by constraints that are either physical (e.q., the
available resources, like space and time) or abstract
(e, aset of laws that prohibit some bhehavior).

Formally, a PoliSpace is a distributed system that
is a collection of tuple spaces. A tuple space is a mul-
tiset of buples: a tuple is simply a sequence of fields,
More precigely, in PoliS three concepts are important:
Luples, sgents. and places.

o A tuple is a structured data object that is a se-
guence of values. It is produced by some agent in
some space, and it remains there until some agent
consumes it. A tuple can be “copied” (read) or
“consumed” (read and deleted) only by an agent
included in the same place. Access to a tuple is
assoelalive, fe., iU s done "by conlents™, The
particular access mechanism chosen is a degree
of freedom: e.g., PoliS can accommodate either
a mechanism based on typed pattern matching,
as in Linda [Gelernter, 1985). or a mechanism
based on unification, as in a logic language.

« An agenl 15 an execution thread. e, it is an
abstraction of a running program completely in-
dependent of other agents. An agent is contained
in a particular place and is able to perforn some
operations on the tuples that it contains. The se-
mantics of an agent can be described as follows:
an agent looks cantinously for some tuples; when
they are found, it executes a computation con-
sisting of instructions written in some sequential
programming language; finally, it creates new en-
tities (tuples or places). The sequential language
chosen for programming the internal working of
the agent is left outside the scope of the model
as a degree of freedom, so that agents written in
many different sequential languages can coexist.

s A plaee is a named multiset of tuples (in this pa-
per we will use as synonyms for “place” the terms
tuple apace and blackboard). Places are containers
in the senge that the universe of tuples and agents
is partitioned in a number of places. Places can
be dynamically created by agents. A place is
both a computing space and a communication

927

channel, i.e., a shaved data structure on which
agents read and write data; in fact, an agent can
produce a tuple inside a place and it has access
to every tuple in its own place. An agent cannat
directly read the contents of an external place.

The Poli5 model is enforced by a notation whose
syntax is informally described helow,

2.1 Places

A place is a named multiset of tuples. Syntactically,
we will write places as braced sequences of tuples.

Example: For instance, we write

placel{ (a) (b,X) }

to describe a place named placel containing twa tu-
ples. o

An interesting feature of PoliS places is that they
have names. Agents can send tuples outside their own
place using the name of another place. The name sys-
tem of places is an interesting design choice that has
been left out of PoliS: it is another degree of free-
dom, just like the choice of the matching mechanism
to access the tuples, and the sequential language for
expressing local computations. For instance, in ESP
the names are structured: thev are paths in Unix-like
style.

2.2 Tuples

Tuples are sequences of variables and values. Val-
ues abviously depend on the chosen sequential com-
ponent, i.e.. the sequential programming language
adopted for agents. However, in Poli§ a number of
basic value types, as well as lists of these values, are
allowed. Tuples denote themselves: they are simply
data objects that exist in a place, produced by some
agent and possibly in the future conswmed by some
agent. An important topic is the scope of variables
inside tuples contained in a place: the scope of these
variables spans only the tuple to which they belong.
This means that each tuple inside a Tuple Space is
completely independent from other tuples.

2.3 Agents

Abstractly, agents are execution threads, i.e., an agent
i3 a process executing some program. Syntactically,
an agent is represented by a tuple and executes the
program contained in another (special) tuple, called
program-tuple. An agent can use the following ab-
stract tuple operations for s interaction with the
landscape it lives in:

928

* associative fesf of a tuple contained in the same
place the agent is:

* associative consumption of a tuple from the same
place Lhe agent is;

¢ asynchronous creation of a place or a tuple inside
the landscape the agent knows.

These operations are borrowed from Linda, Ac-
lually, Linda offers an intuitive syntax for Po-
iS5 operations, introducing two different “flavors”
lor the test and consumplion operations (they
can be either blocking or not-blocking), and two
not blocking operators for the creation of en-
Lities, The blocking tesi operation in Linda
is written read(Tuple_schemata), the non-blocking
fesl operation is written readp(Tuple_sehemata)
the blocking eonsumption operation is written
in(Tuple schemata) . the non- blocking conswmplion
operation is written inp{ Tuple_schemafa) {a T
ple_Schemata is simply a tuple containing variables,
i.e., wild cards that match any actual argument inside
& Luple contained in the Tuple Space}.

The creation operation is written as out { Tuple) in
the case of tuples, and Mame.tsc() in the case of
places {in this paper we assume no structure on the
set of names of Tuple Spaces).

An agent can oulput any of these entities:

® a tuple: the operation is written out{Tuple) in
case of local writing, name.out{Tuple) in case
of outside writing:

e a Tuple Space {i.e., it creates a new place): the
operation is written name._tsc(},

The destination of such operations is always a
place. The target of an out operation is specified
using a record-like notation. If no Larget is specified,
the Tuple Space of the agent is used by default. What
happens if an out operation targets an external tu-
ple space that does not exists? Poli§ tries to follow
the Linda semantics: out is a non-blocking operation
{t.e., the agent that issue it does not wait for any
vesult or error code), that never fails. Thus, commu-
nications among places are supported by a meta Tu-
ple Space where undelivered tuples remain deposited:
whenever a place comes inta existence, the undeljv-
ered tuples “pop up” in the tuple space,

If an agent needs to be certain that a message ar-
rived somewhere, it must explicitly use some protocol.
For instance it could send the message and an agent
that, upon arvival in the tavget Tuple Space, sends
back an ack.

Finally, we note that an agent can tesf or consume
tuples representing other agents. Such operations are
useful to huild agents that schedule agents. Places

cannot be operands neither for testing nor for con-
suming, hecause the obvious semantics for such op-
erations (test a whole place, delete a whole place)
should necessarily manipulate the global state of a
place, sharply contrasting with the asynchronous na-
ture of its internal activities.

PoliS agents have a reactive semantics defined by
a fixed protocol of tuple operations. The hasic pro-
tocol is the following (we borrow some syntax from
regular expressions: with op* we intend a sequence of
indefinite length of tuple operations):

tests; consumes; loc_eval; outs

Syntactically, such a protocol is written inside a
program-tuple.

{Heading: {Test: Consume; Loc_Eval; Out))

The Heading is a normal tuple. Instead, Test,
Consume, and Dut are actually sequences of tuple op-
erations, whereas Loc Eval is a sequential computa-
tion that has no side effect on the place to which the
agent belongs. An agent is activated when the place
contains both a program-tuple and a normal tuple
matching the heading in the program-tuple. The sec-
ond component of a program-tuple is also called a
patfern. Executing a pattern, an agent will do the
following actions:

» it reads associatively something from its place us-
ing any number of fest operations; actvally the
Poli§ test operation has a broader semantics than
read in Linda: a number of predefined tests on
the place are allowed, depending on the chosen
type system for tuple arguments. Some useful
general predefined tests are: relational {binary)
predicates, a var predicate to check if an argu-
ment insicle a tuple is a variable, and a self pred-
icale returning the name of the place in which an
agent is located.

o it deletes some tuples using any number of
conswme aperations.

When an agent has finished testing and deleting
tuples from the place, it “reacts” and starts a compu-
tation that ends by creating some new objects in the
landscape.

® it executes a “Jocal evaluation™ that has no ef-
fect on the place and is invisible from outside
the agent insofar as no operations on the place
are allowed; this local computation is expressed
in & sequential programming language,

* il outputs the results obtained in a number of
places it “knows™: these outputs can consist of
tuples or places:

o at the end of the sequence the agent “dies”, ter-
minating its thread of evaluation; however, we
can specify an ever-lasting agent by inserling
among its outputs the creation of a copy of it-

sell.

Which is the computing model underlying agents’
computations? The idea is that agents are stateless
and reactive, i.e., they compute when a “molecule”
can be built inside the Tuple Space. A molecule is
composed of a program-tuple, a normal tuple match-
ing the first field of a program-tuple, and all the tuples
to be consumed as specified by the consume section in
the program-tuple. The agent “reacts” to its environ-
ment, *burning” the molecule, and as a result creates
new entibies as specified in the creade section. This
~chemical” model is also used in GAMMA [Banatie

and LeMetayer, 1990).

Example:
An ever-lasting chemical reaction can be seen in this
Tuple Space containing two table tennis plavers:

{ta){) {ping)
({a) : (in{ping) jout{pong)out{al))
({b) : (in{pong):outi{ping);outib])) _]

Agent a begins building a molecule with tuple (ping);
it consumes that tuple and produces tuple (pong)
and a copy of itself (a). Then it is the turn of agent. &
which can react and consume tuple (pong) to produce
Ltuple (ping) and a copy of itself (b). and so on, either
forever or until something from outsicde comes to alter
this “chemical solution™. For instance, suppose tlal
an external agent sends a new ping tuple in the above
Tuple Space; as soon as the pew Luple is noticed Ly
agent @, the two agents are no longer seviabized. 0

Even if the relationship among places. agenis,
program-tuples. and local evaluations can look
slightly contrived, actually theiv relative meaning is
yuite simple: a place defines an ANI-parallel compu-
tation of agents; an agent executes the computalion
defined by a program-tuple: the agent reacts o Lhe
contents of its place with a local evaluation followed
|j_'!,-‘ the ereation of new eptitis. el her L|||1|:'.~: oar |:|.'-l<':~.-+,

3 ESP: A programming nota-
tion based on PoliS

Pali§ is a coordination model that could acconmno-
date any sequential language as sequential component
for local computations inside agents. For example. (-
Linda can be considered an instance of PoliS where
the sequential language is O, tuples are built using 1he
 data types and a unique place is allowed for every
program. In Linda tuple operations inside aments are

929

nob stractured (ie., you ean have in, read, and out
in any order), but any sequence of Linda operaticns
can be split in a number of subsequences such that
each begins with read/in operations and terminates
with out operations.

PoliS is a model for designing coordination of dis-
tributed systems. It iz introduced as a paradigm for
explorative distributed programming, and can be con-
siderad a useful prototyping model for distributed ap-
plications. In order to explore s usefulness for this
task, we have defined Extended Shared Prolog (ESF),
a programming language that embeds its main fea-
tures,

ESF 15 a logically distributed extension of the paral-
lel logic language Shared Proleg, which is a logic lan-
guage that uses the blackboard madel for interprocess
communication [Brogi and Ciancarini, 1991]. With
some approximations, Shared Prolog can be consid-
ered a logie counterpart of the Linda family of phys-
ically distributed programming languages [Gelernter,
1935]. The main difference is that Shared Prolog
Eaing in expressive power with respect to Linda by
exploiting unification and backtracking durving syn-
chronization with the blackboard (Linda uses pattern
matching, and no backtracking is allowed). ESP gen-
eralizes Shared Prolog allowing multiple hlackboards
using a hierarchical name system.

3.1 ‘Theories

An ESP program is composed of a set of theories,
Each theory has the following sintactical structure:

theory name(L., Vn):-
eval pallern .. #pallern,
with Prolog_progean

A theery is identified by a naine and zero or more
arguments }; that are logic variables thal scope over
the patterns. The theory interfuce follows the key-
word eval and includes a numhber of patterns, sepa-
rated by the symbol #: the theary implementation 15
the Prolog program that follows the keyword with. [f
we compare ESP with other languages for program-
ming in the large, Lhe set of patterns of a theory can
be considered the interface of a module, while the
Prolog program is the private implementation of the
module.

Logic palierns are clauses that include fest and
consume operations, a loc_evel that is a goal to be
evaluated with respect to the Proleg_program, and
finally some oul operations, For simplicity and con-
sistency with the logic paradigm. test operations are
writlen as goals. whereas consumption and creation
operations are pul hetween braces,

Tast {Cunau.ma} — Goal {Eucceaﬁ} fail
{Failursa)

930

The combination of Test and Consume operations
is a guard: when such a guard is satisfied, i.c., when
all its test and consume operations are completed, the
pattern commits and the Prolog goal is evaluated. To
deal with the possibility of a failure of such a Prolog
goal, creation operations are partitioned in two sets
separated by the keyword fail: if the goal evaluation
succeeds Lhe Success out-set is produced, else the
Failure out-set is produced. Thus, an ESP patiern
is similar to a Concurrent Prolog clause {but ESP
clauses are failure-free), and a theory corresponds to
the definition of a CP predicate,

As a simple example, we show a simple theory in-
cluding one pattern: it defines an agent computing
a value as a function of some inpul. or outputs an
error tuple if the evaluation fails.

theory agent(Statel :-
aval
{tupleflnput}]- % rons e
f(Input, State, Dutput, MowState}
{tupleflutput), agent(NeuSzate)} % 5ncecss
ail {error(f{input, Statal}, agent(State)}
with
#(I,8,0,M8):- ... % Prodog progea

3.2 Agents

Logic agems are represented by active waples; they re-
act Lo the presence of other tuples in their blackboard.
They can vead and delete tuples fromn their hlack
board: they answer by writing tuples in any black-
oard they know. The relation between input aged
output is defined by a Prolog program {(with a sliglt
abuse of language, we will say sometine that the he-
havier of an agent is defined by a theorv). Several
agents with the same theory can be active at the sane
time, in the same blackboard or in different ones.

A notable leature of ESP is that contiol flow of
fest and consame operations is ruled by backtracking,
Each fest or consunre operation «ither is sucoessiul or
fails: a failure activates backtracking 1o the preceding
operation. The formal seiiantics of such & mechani=m
has been studied in [Brogi and Ciancarioi. 1991].

3.3 Blackboards

For reasons that will beconme clear in Sect.5. the nane
system chiosen [or ESP blackboards defines a hierar-
vhical system. In fact. blackbosrd names are patls
in the style of a Unix file system. Such a hierarehy is
ot limiting the conmmunication patierus among the
agents, since blackboard names can be exchanged in
tuples, and an agent can put tuples in any blackhoard.
provided that it knows the name of the destination,
Therefore. highlv dvnamic commmmication palleis

can be set up, even connecting blackboards at differ-
ent levels of the hierarchy, if this is convenient.

Blackboards can be dynamically created by agents
simply outputting an activation goal that specifies a
number of agents. This is the syntax of an activation
goal.

P childqagend), ... , ageni, } & parent.
ek

This goal creates a blackboard named ehild as off-
spring of blackboard parent,

In general, the execution of an ESP goal builds a
tree of blackboards. Syntactically, a blackboard is
o multiset of tuples that are Prolog terms. Seman-
tically, a blackboard defines an AND parallel evalua-
tion that transforms the contents of the blackboard it-
self. The actors of such an evaluation are logic agents,
whose evaluations are defined by Prolog programs.

4 Programming with ESP

The activity of programming with ESP consists of
building distributed systems; this topic has been ex-
plored in another paper [Ciancarini, 1090a). Here we
will show how ESP &an be used as a specification
and design language for software development envi-
Fedn ents,

4.1 A Tiny Programming Environ-
ment

A rule-based distributed software development envi-
ronment can be easily specified in ESP. Rule-based
software development environments have recently be-
come popular [Barghouti and Kaiser, 1990] because
they can he used to support process programming,
i.e., the activity of specifying multiagent software de-
velopiment.

A wery simple programming environment can he set
up including an editor and a compiler. Suppose we
have 1o specify a software development process that
consisis of editing a file, then ecompiling it as soon
as the editing by a programmer is terminated; Fig.1
depicts such an environment as a PoliSpace. If the
compilation gives no errors, the object program has
to he invoked and executed using some test data.

In order to build the ESP program that implements
such a PaliSpace we need three theories: one for an
editing agent, one for a compiler agent, and one for an
executing agent. We show the code for the compiler
theary,

theory compiler:-

eval
{compile(File}}

—

call conpiler(File),

Sa1T camplie

O“\"

Figure 1: A PoliSpace Cooridinalivg o Simple Pro-
gramming Fneironmeint

{compilad(File) }eexee
fail {do.edit(File}}tedit
with.
callcompiler(File) i~ ...
% inveke Profog-Uniz envelope for ce
% fails if compilations fails for erroes

Such a theory is called ewvelopr hecause they in-
rapsulate external seftware tools [Kaiser ef al.. 1987].
Envelopes are useful to mtroduce non-declarative ap-
erators inside a declarative framework. because they
are able 1o call standard Linix wols via sone system
predicates that return a logic resnll { Lo suecess or
lailure}.

This minimal programming environment enforees a
simple edit-compile-erec programming model. Admit-
tedly, something similar is not difficult o do with so-
phisticated editors like GNUEmacs. however in ESP
distribution and remote evaluation are very easy Lo
deal with. Maoreover, it is easy to specilv differ-
ent Interaction paradigms. lor instance the three
agents editor, compiler, and executor are easily
integrated in a unique blackboard. or can he sepa-
rated in different blackboards. as in Fig 1. alming al
enforcing distribution and protection.

4.2 A Multiuser Environment en-
forcing an Access Protocol

A software project is composed of & et of maodules an
which a team ol programmers operate. The updated
public version of the whole project is stored within o
main dafabuse. sers can access e main datalase
in read maode, 10 s nol possible to divecthy change
the main database. The core of the environmen is a
reserve/deposit access protovol to the miain datalsase
which guarantees mutual exclusion and conststency:
the main database always contains a consistent and
updated version of the project. To modily the con-
tents of & module, the user must reserve the module
to gain write gccess. Obvioushy, ar any tiine a morkule
can be reserved just once.

A reserved module is copied into the wser dafabase.
where the user can modify it at will, While a reserved
module is heing edited ina aser ditabase, of her nsers

93]

ST WELry LSET

@

main database

Figure 22 A PoliSpoce Coordinating a Muliinser En-
wiran ment

can access in read moce the old public version of
the module stored in the main database. When the
changes to the module ave completed and tested, the
uzer will deposit the new version back into the main
database. The updated version is then readily acces-
gible by all other nsers.

The PoliSpace realizging such an covironment s
showedl 10 Fig.2

theory user databasée pandger; -

-eyal
self (Idb}, {check.ini(File, Dblain]}

{checkin(File Udb) }ﬁl.'.lhniin

aalf (Udb), {chack.out (File,Dbmaind }

{shack.out (Udb, File) | 8Dbmain

theory main_database manager:-
eval
£i1e(F), not reserved(F,), {checkout(F,F1}

{reserved(F,by(F3}, |1ile(F}])ep

E
not £ilalF), |check.out(P,F}]
{!Irncr{ nofile(F))]W
reserved(F by (0F1), P 3 OF, {check.ous(F,F1}
{mor(ia.’lnckadﬂ'.hﬂﬂ?}})}!F

3 .
fila(F}, not ressrved(F), |{check_in(F,P}}
{error{fileexists(F)) jar

-]

file(F}, resecved(F by(F,0F}, P # OF,
{ check.in(F, P})

{erreriis locked(F by (OP))) &P

not 1ile(F), {checkdn(F.F}}

932

{#ilelF }, {created(F) }4R)

We show anly Lhe
code of the theories user database manager. that
handles the user’s requests in a user database. and
main_database manager. which guarantees Lhe eon-
sistency of the main database,

5 Oikos

Oikos is a distributed software development environ-
ment based on PoliS and written in ESP {Ambriola ef
al., 1990b]. Oikos provides a number of standard fa-
cilities that ean be easily configured using ESP itself.
The overall approach consists of offering mechanisms
that can be easily eomposed, in order to easily explore
different environmen desigis,

The ESP blackboard hierarchy offers a natural
way of structuring a soltware development environ-
ment. It is used to reflect its decomposition in sub-
environments, according to & top-down refinement
strategy. The blackboard hierarchy is not veally
constraining Lhe communication pallerns among the
agents participating in a software development pro-
resy, sinee blackboard names can be exchanged in tu-
ples, and an agent can pul beples oo any blackboared.
provided that it knows the name of the destination.
Therefore. highlv dyvpamic commuication pattetis
van be sel up, even connecting blackboards ar diller-
enl]¢'|.r¢|5 ol Lhe hif']'Eu‘flJ}', il I:IJ';H i \.'{]Il'l.'t‘llit"!ll.

5.1 A Prototype Implementation of
Oikos

The OQikos prototype bas beea iaplemented on top
ol & local network connecting =omne Son workstations
and a Vax mainframe, Oilos is written is ESP. that
provides the basic mechanisms for phvsical distribu-
lion and dynemic activation of communicating pro-
cesses. ESP iwsell is implemented pantly in O amd
partly in Prolog [Bucci ef o, 1991], The stanclard set
of Prolog svstem precicates has been angmented witl
IPC mechanisms using Unis Internet sockers [Ambri
ola ef al. 1990a].

The 1.||J_'f:'|' lavers of the Qikos arelileciure are: e
Oikos runtime support, wlicl s weitten in ESP and
provides escapes o the underlving operating svsten:
a collection of separate processes. that mplement a
distributed ESP run-time systen: the underlying op-
erating system. UNIX in this case. The processes in
L]I.I'.' airl:l:UI1l|]EI:I.'["I e fl:!'l’i{"t‘{l |]"| I:,'iri,'ll'f“.‘s: an EHI) IJ]'\(J'
cess is the local interpreter of the ESP language. and
Lheve are as imany ol them as wachines i the network.
cager to interpret pieces of the FES1Y program, Foe
maore detailed exposition see [Rueci of ol 19911

5.2 Oikos Services

Oikos provides a set of basic services, A service offers
access bo shared resources according to a given proto-
cal. The public interface of a service specifies the pro-
tocol of interaction with the seevice, Le, which Luples
must be put into ils blackboard to obtain its service.
For lack of space, we simply summarize the Cikos
standurd services, which play the role that primitive
operators and data types play in a programming lan-
guage. We discuss here the most meaningful only,
i.¢., those that are [undamental in any software de-
velopment process.

The Tool Kit Server {TKS), the Service and The-
ory Server (8T5) and the History Server (HS) offer
resiricted access 1o databases of system data. eg.,
those modeling the predefined documents. A User In-
terface Service (LIS} is used to interact with running
software process programs, whereas the Workspace
Server (W5 allows users to run the tools and the
executable products of the software process, The
DataBase Server [DB3) offers unrestricted access 1o
a general purpose project database, and is therefore
used to set up specific project databases, Finally, the
Oikos Run Time System (ORTS) can also he seen as
a server offering essential services, like escapes to the
underlying operating svstem. All these services, ex-
copl. ORTS, can be simultaneously activated several
times in different blackboards.

The user accesses Oikos through a special interac-
tive service called User Interface Service (UIS). It is
a service because several different UIS can coexist,
and their definitions are ESP programs found in 5TS.
A U5 shows the user the contents of its blackboard
in a window, and acts according to the user’s input.
A U5 offers also a lexible way to monitor a software
process, sinee Lhe user can activate it on a blackboard,
looking a1 the tuple flow. and even saving some tu-
ples with the history server HS, UISs are the basic
blocks of the role services, i.e., those parts of the pro-
cess program that allows users to interaet with the
software process,

For lack of space. here we do not show how Oikos
is used 0 a real software developrent process. The
interested reacder can see the example contained n
[Ambriola ef ol 1990h)].

6 Conclusions

In this paper we have introduced PoliS, a coordina-
tion madel uselul for designing distributed systems. A
|Jl'ClEI':"I.1'I'.II'I];[]E notation based on PoliS, ESP, has heen
used to illustrate the design of Qikos, a distributed
soltware development environment. The goal of the
ESP/Dikos project is to assess the combination of the
Blackboard nusdel with logie prozramming in the de-

sign of distributed programming envirenments, While
the blackboard model is well known in Artificial Intel-
ligence, its use in Software engineering is quite novel.

After completing the implementation of Oikos. our
[uture plaus lnclude the study of the impact of dif-
ferent models of too] coordination v the definition of
planning tools for assisting vsers in the saftware pro-
cess, and the analysis ol the rele interplay in dealing
with the software process itself,

Acknowledgements P.Ciancarini has been par-
tially supported by C.N R, Progetio Finalizzato Sis-
temi Informatici e Caleolo Parallelo. and M.ULR.S.T.
The authors are very grateful to N.Carriero at Yale,
for many discussions on Linda and PoliS. and to the
Shared Prolog and Oikes groups in Pisa, including
V.oAmbriola. A.Bucel. T.Castaguetti. M, Danelutto.
and C.Monlangero.

References

[Ambriola ef ol 1990a] Vincenzo Ambriola. Paolo
Ciancarini. and Mareo Danelutto, Design ane dis-
tributed implementation ol the parallel logic lan-
guage Shared Prolog. In Procecdings of ACUH Symp.
on Principles and Practice of Puarellel Progee
ming, voluine 25:3 of SIGPLAN Noliees, pages 10
49, 14990

[Ambriola ef ol., 1990L] Viacenzoe Ambriola, Pacle
Ciancarini. and Carlo Montangera. Enacting soft-
ware processes in Oikos. lu Proceedings of ACM
SIGEOFT Conf. on Softeare Derelopment Eori-
vommtend=, volume 15:6 of ACW SIGSOFT Safl
Enginesring Nofes, pages 12 2L 1HI.

[Banalre and LeMetaver, 1990] Jean-Pierne Banatre
and Daniel LeMetayver. The gaonn model and s
discipline of programming. Seieaee af Cowpalsr
Programming, 15:55- 77, U490

|Barghouti and Kaiser. 1990 Naser Barghonti and
Gail Naiser. Modeling concurrency in eide-based
development enviconments, FEEE Fepeel, 5061105
27, December 19490

[Brogi and Clancarini, [991] Antonio Hrogi and
Paole Ciancarini, The concurrem linguage Shared
Prolog., ACM Trans on Programming Langueg s
and Syslems [3[1)09-125. 101,

[Bucci ef al., 1991] Annamaria Bucci. Paolo Clancar-
ini, and Carlo Montangero. Extended Shaved Pro-
log: A multiple tuple space logic language. bn Fra-
ceedings of the 10 Japawese Logie Progeoiem g
Conferenee. |HE.

933

[Carriero and Gelernter, 1991] Nick
Carriero and David Gelernter. Coordination lan-
guages and Lheir significance. Comtwnicalions of
the ACAL 1991

[(ancarini, 1990a] Paclo Ciancarini. Blackboard
programming in Shared Prolog, [n David Gelernter,
Alex Nicolau, and David Padua, editors, Languages
and Compilers for Parallel Computing, pages 170~
185, MIT Press, 1990

[Cianearini, 1990%] Pacle Ciancarini. Coordination
languages tor open system programming. In
Proceedings [EEE Conf. on Compuler Languoges.
pages 120-129, 1990,

[Furukawa ef al. 1984] K. Furukawa. A. Takeuchi.
5. Kunifujii. H. Yasukawa, M. Ohki. and K. Ueda.
Mandala: A logic based knowledge programming
svatenn, ln Procs of the Tl Confo on Fifth Gener-
affon Compuler Systems, pages G13-G22, 1984,

[Gelernter, 1985) David Gelernter. Generative com-
munication in Linda, ACMH Traws. on Programming
Lengnages and Sysiems T(EA0-112, 19835,

[Gelernter. 1989] David Gelernter. Multiple tuple
spaces in Linda. o Proceedings of PARLE 89,
valume 365 ol Lecfare Nodes o Computer Seicnee,
pages 20-27, 1888,

[Kaiser et al., 1937] Gail Kaiser. Simon Kaplan, and
Josephine Micallef, ¥ultinser. distributed language
hased enviromuents. FEEE Softiwvwee, A 1115867,
1037,

|Matsuoka and Kawai. 1933] 5. Matsuoka
and 5. Kawai. Using wple-space communication in
isteibuted object-oriented architectures. In Proe.
OOPSLA #5 volume 2301 of ACH SIGPLAN
Nodiers, pages 276- 284, November 185,

[Perry and Kaiser. 1991] Dewayne Perryv and Gail
laiser, Models of soltware development environ-
ments, JEEE Teaus, on Softwaere Engineering.
ITA)2E3-205 11,

