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Abstract

As a logic programming language, Prolog has shortcom-
ings. One of the most sericus of these is in arithmetic.
CLP(R) though a vast improvement, assumes perfect
arithmetic on reals, an unrealistic requirement for com-
puters, where there is strong pressure to use floating.
point arithmetic. We present an adaptation of CLP(R)
where the errors due to floating-point computation are
absorbed by the use of intervals in such a way that the
logical status of answers is not jeopardized. This system
is based on Cleary’s "squeezing” of foating-paint inter-
vals, modified to fit into Mackworth's general framework
of the Constraint-Satisfaction Problem. Our partial im-
plementation consists of a meta-interpreter executed by
an existing CLP(R) system. All that stands in the way
of correct answers involving real numbers is the planned
addition of eutward rounding to the current prototype.

1 Introduction

Mainstream computing helds that programming should
be improved by gradual steps, as exemplified by the
methods of structured programming and languages such
as Pascal and Ada. Revolutionaries such as Patrick
Hayes and Robert Kowalski advocated radical change,
as embodied in Hayes's motto: “Computation is de-
duction.” [Hayes 1973] According to this approach, pro-
grams are definitions in a declarative language and every
computation step is a valid inference, so that results are
logical consequences of program and data. Logic pro-
gramming, Prolog and the CLP scheme are examples of
this radical alternative in programming languages and
method. Where Prolog coincides with logic program-
ming, certainty of knowledge is obtained,

In sumerical analysis there is a similar tension between
mainstream thinking and the radicals. The first is satis-
fied without rigorous control of errors. When successive
approximations differ by a small amount, it is assumed
that a result has been obtained with an error of approxi-
mately that amount. Of course sophisticated error anal-
yses can be made to suggest more certain knowledge.

But such analyses are typically valid only asymptotical-
ly. In practice one does not know whether one iz cloge
enough to the true value for the asymptotic analysis to
be applicable at all.

The radical alternative in numerical computation is
represented by interval methods, where the ideal is to be
sure that the true value is contained in an interval. It is
then the purpose of iteration to shrink such an interval
Lill it is no greater than an acceptable width. Here again
the goal is certainty of knowledge.

In the research reported in this paper, we bring these
two radical streams together. Both streams are, in their
present form, deficient. Logic programming lacks in con-
trol of numerical errors. Interval methods rely on conven-
tional algorithmic languages and hence lack computation
as deduction. We show that the two can be combined in
such & way that rigorously justified claims can be made
about the error in numerical computation even if con-
ventional floating-point arithmetic is used,

Problem statement. Logic programming, exempli-
fied hy Prolog, is the most successful realization of
Hayes's motto. In certain application areas, Prolog
can be used to program efficient computations that
are also logical deduetions. However, Prolog arithme-
fic primitives, which are functional in nature, are in-
compatible with the relational paradigm of logic pro-
gramming. The advent of CLP(®), an instance of the
CLP scheme [Jaffar and Lassez 1987), takes us closer to
relational arithmetic but its implementation CLP(R)!
[Jaffar et al. 1990] is obtained by substituting each real
number by a single floating-point approximation. As a
result, round-off errors destroy soundness and disqualify
CLP(R) computation as deduction.

Solution. Qur selution consists of three parts. First,
we tackle the round-off error problem with interval arith-
metic introduced in [Moore 1966). Instead of operating
on individual Aeating-point numbers, interval arithmetic

'In this paper, we use CLP{R) to dencte the OLP instance with
B being the algebraic strocture of finite trees of reals; and CLP(R)
i5 the name of a CLP{R) implementation,



manipulates intervals. The guaranteed inelusion proper-
ty of interval arithmetic ensures the soundness of com-
putation.

Second, traditional interval arithmetic is function-
al and has been embedded in functional or impera-
tive languages. To develop the required relational ver-
GIOM, We use an interval na.rruwing; up:::rai.iun based on
work in [Cleary 1987] and similar te the one used in
[Sidebottom and Havens 1992).

Finally, we make a modification to the CLP scheme by
including an operation that reduces goal to normal form
and show that interval narrowing is such an operation.
By medifying a meta-interpreter for CLP(R) according-
ly, we obtain a prototype implementation.

The paper is organized as follows, Section 2 discusses
related work. Relational interval arithmetic, which con-
sists of interval narrowing and a relaxation alporithm,
is presented in section 3. In section 4, we describe the
semantics of ICLP(R), which is CLP(R) extended with
relational interval arithmetic. We summarize and con-
clude in section 5.

2 Related Work

Interval arithmetic. While it is important to derive
new and more efficient interval arithmetic algorithms and
ensure delivery of practical interval bounds, recent devel-
opment in interval arithmetic [Moore 19588] emphasizes:
{1) automatic verification of computed answers, and (2)
clear mathematical description of the problem. Users of
numerical progeams are usually only interested in the so-
lution of & problem. They do not want to take the burden
{a) to understand how the problem is solved, (b) to vali-
dale the correctness of the answers, and (¢} to calculate
errar bounds. Logic programming shares these goals.

Constraint interval arithmetie. Constraint inter-
val arithmetic stems from constraint propagation tech-
niques. It is a form of “label inference,® where
the labels are intervals |Davis 1987].  ENVISION
[de Kleer and Brown 1984] performs qualitative reason-
ing about the behaviour of physical systems over time.
TMM [Dean 1985] is a temporal constraint system that
records and reasoms with changes to Lhe world over
time, SPAM [McDermott and Davia 1984] performs spa-
tial reasoning., These systems are based on consistency
techniques [Mackworth 1977], which handle only static
constraint networks, To be able to generate constraints,
the described systems are equipped with programming
languages tailored to the application.

Constraint logic programming. Cleary incorpo-
rates a relational version of interval arithmetic, which
he calls Logical Arithmetic [Cleary 1987), into Prolog.
He intreduces a new term “interval”, which requires an

997

extension of the unification algorithm. Cleary presenta
several “squeezing” algorithms that reduce arithmetic
constraints over intervals. A constraint relaxation cy-
cle coordinaies the execution of the squeezing algo-
rithms. However, there is a semantic problem in this
approach, Variables bound to intervals, which are terms
in the Herbrand universe, can be re-bound te small-
er intervals, This is not part of resolution, where on-
ly & variable can be bound. [t is not clear in what
other, if any, sense this may be a logical inference.
BNR Prolog [Older and Vellino 1990] has a partial im-
plementation of logical arithemetic, which only han-
dles closed intervals, The Echidna constraint reason-
ing syshem also supports relational interval arithmetic
[Sidebottom and Havens 1992). It is based on hierar-
chical consistency techniques [Mackworth et al. 1085].
Echidna is close to CHIP [Dincbas et al. 1988]; where.
as we remain within the CLP framework.

3 Relational Interval Arithme-
tic

Cleary describes several algorithme to reduce eonstraints
on intervals [Cleary 1987]. These algorithms werk under
a basic principle: they narrow intervals associated with
a constraint by removing values that do not satisfy the
constraint. We study the set-theoretic aspect of the algo-
rithms and generalize them for narrowing intervals con-
gtrained by a relation p on F™ We then discuss interval
narrowing for several common arithmetic relations. In-
terval narrowing is designed for the reduction of a single
congbraint. Typically, several constraints interact with
one another by sharing intervals, resulting in & constraint
network. We present an algorithm that coordinates the
applications of interval narrowing to constraints in the
network.

3.1 DBasics of Interval Arithmetic

We use I to denote the set of real numbers and ' a set
of floating-point numbers. We also distinguish between
real intervals and floating-point intervals. The set of real
intervals, I{MR), is defined by

IR) = {(a,bljee RU{-2c},be R} U
{la,b)|a € B, be RU {+a0}} U
{la,8]|a,be i} 1)

{{a,b)|a € RU {—cc},be RU {-+o0}}.

Replacing | by & in the definition of J{), we obtain
the definition of floating-point intervals. The symbols
—oo and 4oo are used to represent intervals without low-
er and upper bounds respectively, Every interval has the
usual set denotation. For example, [e,r) = {z]|e <z <
7} (—o0,4.5] = {z |z < 4.5}, and {—ee,+o0) = . We
impose & partial erdering on real intervals; an interval £,
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is smaller than or equal to an interval & if and only if
Iy € L. Given a zet of intervals T. 7 £ T is the smallest
interval in T if T is smaller than or equal to I for all
I'el.

Conventionally, real numbers are approximated by
floating-point numbers by means of rounding or trunca-
tion. We approximate real intervals by floating-point in-
tervals using the cutward rounding function, £ - I{IR) —
I{IFF); if Iis & real interval, £(1) is the smallest floating-
point interval containing 1. It follows that £(I) = I for
each floating-point interval . The IEEE floating-point
standard [IEEE 1987] provides three user-selectable di-
recled rounding modes: round toward +oc, round toward
—co, and round toward 0. The first two modes are es-
sential and sufficient to implement outward rounding: we
round toward +co at the upper bound and toward —co at
the lower bound. In most hardware that conforms to the
IEEE standard, performing directed rounding amounts
to setting a hardware flag before performing the arith-
metic operation.

We state without proof the following properties of the
outward rounding function.

Lemma 1: If A € J{f) and a’ € £(A), then there exists
a € A such that a' € £([a, a]). "

Lemma 2: If A € I(FF),a’ € 4, and a € £([a",a’]), then
a € A L

3.2 Interval Narrowing

An i-constraint is of the form (p, I}, where p is a relation
on Y and § = {fy,..., [;) i3 & tuple of Aoating-point
intervals. Note that the number of intervals in the tuple

I is equal to the arity of p. For any relation p of arity n,
we can associate n set-valued functions with p:

‘F’l:p}{‘slh' . -:Si-iyst'.{.]_,.. .13“_:]
{8i|(81-- -, 84) € S(p)}
m(S(p)),

where i = 1,...,n, the §;'s are sets, =, is the projection
function defined by =i(p)} = {s:|(51,-..,5x) € p}, and
S(p) = (51 % -+ % Ficq ¥ milp) % Siqn % -+ % 5)Np-

To ensure that the result of narrowing is an interval,
we consider only relations p on Ji®, such that each Fi{p)
maps intervals to intervals. We now specify interval nar-
rowing as an input-output pair.

Input: [= (Ry.ooy Ia), where

I; is a floating-point interval {1 < ¢ < a).
Output: ' = {11,..., 1), where

I = ENEFp) 11y oo Jica Jisay - In))

The application of £ in the formula ensures that the
output intervals are floating-point intervals. If one or
more I is empty, then interval narrowing fails and the i-
constraint {p,f} is i-inconsistent. Otherwise it succeeds

with f7,..., ] as output. Note that the output interval
I is a subset of the corresponding input interval I;.

For example, the Fi(add)'s of the relation add =
{{ml H'-,,I] II,I,I'-,IE R1+ v= 3’} are

Fil{add)(Iy, Iy) = Lo Ly,  Fladd)(l, L) = kel
Fyladd)(fy, 2} = 1) @ I,

where AG B = {a+b|leoec Abe Bl and A8 B =
{a—blac Abe B}

The following thesrem shows the soundness and com-
pleteness of interval narrowing.

Theorem 3: Let C be (p, {Ty,.... o)) B{zy, ... z0)
€ pand {If,...,I.) are the output intervals obtained
from interval narrowing of O, then (zq,...,2,) € [ x
coo T ifand only if (2, ., 20) € 13 200 = I7,

Proof: Since 17«3 I} © Fyw-oo Iy, the if-part of the
lemrna is true. In the following, we prove the only-if-part
of the lemma.

Suppese (2y,...,2a) € lyx--- = JuNp. Wehaves; € I;
for i = 1,.. vy T and %; & E‘{P](Iil---pIl'—l;nrt'+1|"'rfﬂ]
by definition. Therefore »; & If and (z,...,7.) € [} %
vee o JEL ]

The next lemma assists in expressing inteeval narrow-
ing in terms of relational operations.

Lemma 4: For A € I{JF) and B € I{R), ANEB) =
§(ANB). -

We rewrite the output of interval na.r_rowing as follows:

-lr: L'ne[ﬂ{.p][Ils“':Ili-r!:-'rl'+lr“~1rn}}
SLNFi(p) - s Lics Digas oy Tn)) by lemma 4
LiN=d(Z(p)))

E(L N =i (71, .-, 7a) € Z(p)})

{({=i € L (24, ...,24) €I(p)})

f[{xilizls-- . s:n] = {l:II Hoeen M Iﬂ]np}}]
Eml(h % - x L)Np)),

(I % «o- x Ly = mip) = i x

- % I, 1p.  In essence, interval narrowing com-
putes the intersection of [; = -.- » I, and p, and
oulward-rounds each projection of the resulting rela-
tion.  We show in [Lee and van Emden 1991b] that
interval narrowing is an instance of the LAIR rule
[Van Hentenryck 1989], which is based on the arc consis-
tency techniques [Mackworth 1977). Figure 1 illustrates
the interval narrowing of the constraint (le,{fy, f3}),
where le = {(z,y) |z, € R,z £ y}. In the diagram,
the initial floating-point intervals are f; and I;. The dot-
ted region denotes the relation le; the region for [y x s is
shaded with a straight-line pattern. Interval narrowing
returns I and I; by taking the projections of the inter-
section of the two regions. There is no need lo perform
outward-rounding in this example since the bounds of 1
and I} share those of I; and I,

LU | (T

where I(p) =
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Figurg 1: Pictonial illustration of interval na.rn:rwing.

3.3  Arithmetic Primitives

A useful relational interval arithmetic system should sup-
port soime primitive arithmetic constraints, such as ad-
dition and multiplication. More complex constraints can
then be built from these primitives. To ensure that a
relation p is suitable for interval narrowing, we need to
check that each Fy(p) maps from real intervals to real
mtervals. If p is one of

eq = {{I,:r”a:['—.ﬂ},

add = {({z,y,z)|z 0z € R,z+y=z},
le = {(r,y)|z,ye K, z<y},

1t = {(z,y)|z,y€ M x<yl,

we can verify easily that the F;(p)'s satisfy the criterion.

The case for the multiplication relation sultiply =
{{z,¥,2)| z,5, 2 € I, zy = z}, requires further explana-
tion. Consider

F.{multipl;,r}{f;, .{3} = f:, e .lrg and
Fylmaltiply)( ]y, fz) = L@ L,

where A@ B = {afble € Ab € B,b # 0], Note
that 4 @ B is not an interval in general. For example,
[1,1]@[-2,3] = (—o,—1/2] U [1/3,+c0) is a union of
two disjoint intervals. The multiply relation does not
satisfy the criterion for interval narrowing,

As suggested in [Cleary 1987], we can circumvent the
problem by partitioning sultiply into multiplyt and
multiply—, where

mltiplyt = {{z,y,2)|z,9,2€ R,22 0,7y =z},
multiply™ = {(z,y,2)|=z,p,z€ R,z <0 zy=1z}.

By restricting interval narrowing to one partition or the
other, we can guarantee that the result of interval divi-
sion is an interval. When a multiply constraint iz en-
countered, we choose one of the partitions and perform
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narrowing: the other partition is visited upon automatic
backtracking or under user control.

An advantage of relational interval arithmetic is that
we do not have the division-by-zero problem. For exam-
ple, the i-constraint (multiply*, ((4,+e0), 0, [—3,5))) is
reduced to (multiply™, ({4, +oc),0,0)).

Relations induced from transcendental functions and
the disequality relation, such as sin = {(z,y}|=z,¥ €
R,y = sin{z)} and dif = {(z,y)|z,y € H,z # vy},
also suffer from the same problem as the multiply rela-
tion. Similarly, we can solve the problem by appropriate
partitioning of the relations.

3.4 Constraint Networks

The interval narrowing discussed so far reduces individ-
ual i-constraints. In practice, we have more than one
constraint in a problem, These constraints may depend
on one ancther by sharing intervals. By naming an in-
terval by 2 variable and by having a wvariable occur in
maore than one constraint, we indicate that constraints
share infervals. Note that the material in this section
is not related to logic programming but is in conven-
tional notation with destructive assignment®. We define
an -nefwork to be a set of t-constraints. Consider the
quadratic equation #* — # — 6 = 0, which can be rewrit-
ten te ®{r — 1) = 6. Suppose our initial guess for the
positive root of the equation is [1,100). We can express
the equaticn by the following i-network:

{(add, (¥, [1,1], V}), (multiply*, (V, 14, [6, 6]))},
where the variables ¥ and ¥ are intervals [1, 100] and

(—oo, +oa) respectively.

Our goal is to use interval narrowing to reduce i-
networks. Note the following two observations. First,
the reduction of an i-constraint ' in the i-network affects
other i-constraints that share variables with C, Second,
interval narrowing is idempotent as shown in the follow-
ing lemma.

Lemma 5: Let [ = (e dndy F {(f,..., 1), and
"= {I", ..., I"} be tuples of loating-point intervals and
p a relation on ™. If, by interval narrowing, I is ob-
tained from [ and J" is obtained from f", then ['= J".
Proof: To prove the equality of /' and ¥, we prove
[l=Ilori =1,...,n. By the definition of interval
narrowing and lemma 4, we have

fl'! — EEI.”E{PJ[I], . .--,Ii,—h f.'_”,., '!Iﬂ-}}!
1 = E(IN Bp)Lsr . o T Ty o L),

It is obvious that I C I, Next we prove J! C TP,
Suppose af € [!. There exists
ai € (VRN o Jicas Tipra o Ja))

*In seclion 4, we show how we use logical variables to replace
the conventional variables.
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such that a} £ £([a;, a)]) by lemma 1. By the definition of
Fifp),for 3 =1,...,i—1,141,...,n, there exists a; € I
such that {a,...,8,) G p. Since a; € I, we havea; € .f;
for each j. Thus, &; € Fp)(f,.... [l 3. 841, I2)
This implies that a; € I". By lemma 2, o} € II'. "

An i-constraint (p, I) is stable if applying interval nar-
rowing on I results in [, An i-network is stable if every
i-constraint in the i-network is stable. The reduction of
an i-network amounts to transforming it into a stable
0T,

A naive approach for the reduction of an i-network s
to reduce each i-constraint in the i-network in turn un-
til every i-constraint becomes stable. As suggested by
lemma 3, this method is inefficient since much compu-
tation is wasted in reducing stable j-constraints. Algo-
rithm 1, which is based on the constraint relaxation al-
gorithm described in [Cleary 1987], i the pseudocode of
a more efficient procedure. The algorithm tries to avoid
reductions of stable i-constraints and, in this respect,
it is similar to AC-3 [Mackworth 1977] and the Waltz
algorithm [Waltz 1975]. Without loss of generality, we
assume that every i~constraint in the i-network is of the
form (p, (VM,..., ¥5}), where V%s are interval-valued vari-
ables.

imitialize list A Lo hold all i-constraints in the i-network
initialize P to the empty list
while 4 is not empty
remove the first i-constraint, (p, l-:'L from A
apply interval narrowing on V to obtain W
if intervel narrowing fails then
exit with failure
else if V £ V' then
Ve
foreach i-constraint (¢, ¥) in P
if V and ¥ share narrowed variable(s) then
remove (g, ¥) from P and append it to 4
endif
endforeach
endif
append (p, V) to the end of P
endwhile

Algorithm 1: A Relaxation Algorithm,

Algorithm 1 resembles a classical iterative numerical-
approximation  technique  called “relaxation”
[Southwell 1946], which was first adopted in a constraint
system in [Sutherland 1963). Numerical relaxation may
have numerical sLabi]il}r pmhl:nla; the pro:;\edura may
fail to converge or terminate even when the constrainis
have a solution. Algorithm 1 does not suffer from this
problem as shown in the following theorem.

Theorem 6: Algorithm 1 terminates, The resulting i-
network ie either i-inconsistent or stable. n

The validity of theorem 6 is easy to check since the
precision of a floating-point system is finite and thus in-
Lerval narrowing cannot occur indefinitely due to the use
of outward rounding,

In the following, we show how algorithm 1 finds the
positive root of the equation & — z — 6§ = 0 with initial
guess in [1,100]. Initially, the passive list, P, is empty
and the active list of i-constraints, 4, is [, T3], where

]
5

{add, (Wi, [1,1], V) and
(maltiply*, (V,¥1,[6,6]).

We remove the first i-constraint < from A and reduce
it as shown in fizure 2.

The updated values of V' and Vi are [1,100] and
[0,99] respectively. Similar narrowing is performed on
the multiply* i-constraint. The process repeats until
the precision of the underlying floating-point system is
reached and no more narrowing takes place. The history
of the values of 4, F, V, and V;, with four significant
figures, after each narrowing is sumrnanzed in table 1.

Table 1: Traces of A, P, V, and ¥.

A P Vv "
[Ch, C 1} [1,100] (—oo,+eo)

(C3] (] [1,100] (0,99]

[cl] [c'i] [11 ]m] [0051 E]

3] [Ch] [1.06,7] [0.06, 6]

(€] (=] [1.06,7)] {0.8571,5.661)
(3] [Cy] | (1.857,6.661) | (0.8571,5.661)
(€] [Ca] | (1.857,6.661) | (0.9009,3.231)
[Ca] [Ci] | (1.900,4.231) | (0.9009,3.231)
(1] [Ca] | (1.900,4.231) | (1.418,3.157)
i (€1, Ca} | (2.999,3.001) | (1.999,2.001)

It is well-known that arc-consistency technigues are
“incomplete® [Mackworth 1977]: a network can be sta-
ble but neither a selution nor inconsistency is found. In
the finite domain case, enumeration, instantiation, and
backiracking can be used to find a particular solution af.
ter the constraint network becomes stable. This method
is infeasible for interval domains, which are infinite sets.
We use domain splitting [Van Hentenryck 1989] in place
of enumeration and instantiation. When an i-network
becomes stable, we split an interval into two partitions,
choose one partition and visit the other upon automatic
backtracking or user control.



Toput Intervals = {1y, Iz, Ja} [—eo,teo) [1,1] f1,100]
Fi(add) = [L,100] & [1,1] [0, 99]
Fyfadd) = [1,100] © (—co,+e0) (—co, +o0)
Fa,l:add} = [—oco,+o0) & [1,1] (—oo, +oo)
Output Intervals = (I, B, I%) [0,99] L] [T, 100]

Figure 2: Interval narrowing of an add constraint.

4 ICLP(R)

8o far, we have explained how a network of constraints
in terms of floating-point intervals can be made sta-
ble. We have not considered how such networks can
be specified. One langoage is CLP{TR). An i-constraint
{p.{f,...,1a)) can be expressed in CLP(R) as

X‘I ] jl|-~-;xn € In1p'[xl1n'"rxn]:

where X; € I; stands for an appropriate set of inequali-
ties. In this representation, we don’t need conventional
variables. Constraints share intervals when they share
logical variables.

When a query to a logic program is answered accord-
ing to the CLP scheme at each step, a network of con-
straints is solved. A special case of such a constraint is
a variable’s membership of a domain. According to the
CLP scheme, it is possible al any stage that the domain
inclusions of the current set of comstraints is inconsis-
tent in Mackworth's sense of the Constraint-Satisfaction
Problem. We modifly the basic CLP scheme by inserling
& constraint simplification step and show that interval
narrowing is a constraint simplification operation.

In principle, any of the constraint-satisfaction algo-
rithms by Mackworth can be used. In this paper we are
concerned with real-valued variables, As we argued, the
only known way of obtaining correct answers involving
real numbers on a machine with floating-point number-
s is to use interval arithmetic. Accordingly, we explain
the theory of ICLP{R), where the sub-network consist-
ing of i-constraints is narrowed according to the method
described above.

An example. The i-constraint

(add, {[0,2}, [1,3], [4,6]))
is mprmnitcd by
X>0,X<2,¥>1,Y<3,Z24Z<6,X+Y =2

However, if we submit the rbove example as a query to
CLP(R) Version 2,02, we get the answer constraint

X=-Y4+224Y=2E2Y2132Y,224,
OBz EX =D

Examining the answer more carefully, we note that
X=-VY+EZ2=X+VY=Fand 24V =Z=X <2

Thus the answer constraint is the criginal query disguised
in a slightly different form. CLP(R) only checks the
solvability of the constraint bul does nol remove unde-
sirable values from the intervals. A more useful answer
constraint is

X2lLX<2V22Va3,224Z255X4Y=2

The modified CLP scheme ICLP(R)is CLP(R) en-
hanced with interval narrowing and algorithm 1. The
operational semantics of ICLP(R) is based on a general-
ization of Ady-derivations [Jaffar and [assez 1986]. Let
P be a CLP(X') program, where &' is a structure with
model My, and +— & be a goal. +— &y is M -derived
from « G; if

L. = &' is M y-derived from +~ &}, and

2. = Gia = v[e= '), where v is a normal-form
function that maps from goal to goal such that
P Emy 3G) & P e 3Gin)-

An M'y-derivation is a, possibly infinite, sequence of
goals (7 = Gy, &1, Gz, ... such that Gy, is M'-derived
from ;. A MY-derivation is suceessful if it i finite
and the last goal contains no atoms. The soundness and
completeness of M'y-derivations follow directly from the
soundness and completeness of M y-derivations and the
definition of the normal-form function. A M'y-derivation
is finitely-failed if it is finite, the last goal has one or more
atoms, and condition | dees not hold.

The MYy-derivation step is nol new. In fact, it
has been implemented in other CLP sysiems as a con-
straint simplification step. The A y-derivation step on-
ly checks the solvability of the constraint accumulated
g0 far. Therefore, the answer constraint of a successful
M p-derivation is usually complex and difficult to inter-
pret. A useful system should simplify the constraint to
& more “readable” form. For example, CLP(R) sim-
plifies the constraint {A + ¥ = 44X -V = 1} to
{X =25,Y = L.5). Suppose the goal «— &, A" is M-
derived from « ¢, A. CLP(R) simplifies ¢' to ¢’ such
that [=ae, () &=, 3(e") and thus

P e, 3(d, A & P, 3 A
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CLP{R) is based on Ad)y-derivation.
Theorem 7; If

€ = {X1€h,...,.Xn € Iny (X1, ..., Xn)} and
¢ = {Xiel,.. X,e'p{X,.... X0}

where I is obtained from J7; by interval narrowing for
i=1,...,n, then =, JC) S, 3C).

Proof: The theorem follows directly from thecrem 3. m

Theorem T guarantees that interval narrowing trans-
forms a constraint into a stable constraint with the same
solution space. Algorithm 1, which performs narrew-
ing repeatedly on i-constraints in & network, is thus a
normal-form function.

Partitioning of relations can also be expressed com-
pactly in ICLP{R). For example, the multiply relation
can be defined by

multiply(X,¥,Z) :- X = O,multiply +{X,¥,Z}.
multiply(X,¥,Z} :- X < 0,multiply~(X,Y,Z).

A meta-interpreter ICLP(R) written in CLP(R) is de-
seribed in [Lee and van Emden 1991a]. We have not yet
included outward rounding in the current implementa-
tion. Table 1 is derived from a trace produced by our
prototype, except that the sutward rounding has been
added manually.

5 Concluding Remarks

We have developed the essential components of a rela-
tional interval arithmetic system. Interval narrowing es-
tablishes (1) the criterion that an arithmetic relation has
fo satisfy to be used as arithmetic constraint in relation-
al interval arithmetic, and (2) the reduction of arithme-
tic eonstraint using the interval funetions induced from
the constraint. Algorithm I then coordinates the appli-
cations of narrowing Lo transform a consiraint network
into its stable form.

The incorporation of relational interval arithmetic in
CLP{R) makes it possible to describe programs, con-
stramts, gueries, intervals, answers, and variables in a
coherent and semantically precise lanpuage—Iogic. The
semantics of ICLP{T} is based on AM/y-derivation, which
is & logical deduction. Consequently, numerical computa-
tion is deduction in ICLP(R), which is a general-purpose
programming language allowing compact description and
dynamic growlh of constraint networks. One advantage
of ICLP(R) over CLP(R) is the ability to handle non-
linear constramts, which are delayed in CLP(R). It is
important to note that ICLP(R) is not another instance
of the CLP scheme. Tt is a correct implementation of
CLP(R).

The ICLP(R) meta-interpreter shows the feasibility of
our approach, Future work includes extending CLP{R)

at the source level, to ICLP(R) to improve efficiency. We
also plan to investigate applications in such areas as finite
element analysis, and spatial and temporal reasoning.
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