PROCEEDINGS OF THE INTERMATIONAL COMFERENCE
OM FIFTH GEMERATION COMPUTER SYSTEMS 1992,
edited by 1COT. © 1COT, 1992

987

Output in CLP(R)

JoxAN JAFFAR®
PETER J. STUCKEY'

Abstract

An important issue in Constraint Logie Programming
(CLP) systems is how to output constraints in a usable
form. Typically, only a small subset £ of the variables in
constraints is of intevest, and s0 an informal statement
of the problem ab hand is: given a conjunction ofF,) of
constraints, express 2§ <%, §) in the simplest form. In
this paper, we consider the constraints of the CLP(R)
system and deseribe the essential features of its cutput
module. In the main, we focus on the well-known prob-
lem of projection in Enear arithmetic constraints, We
start with & classical algorithm and augment it with a
procedure for eliminating redundant constraints gener-
ated by the algorithm, The rest of the paper discusses
the remaining kinds of constraints, equations over trees
and nonlinear equations, and clarifies how they are out-
put together with linear constraints.

1 Introduction

In its simplest description, the output of a constraint
logic programming (CLP) [Jaffar and Lassez 1986] pro-
gram is the collection of all constraintz accummulated
along & successful execution path. However such a col-
lection i8, in general, extremely complex because it is
very large and contains many intermediate variables of
0o intrinsic interest to the user. Therefore, we can infor-
mally state that the problem at hand is: given a set f of
targe! variables and a conjunction C{Z, §j} of constraints,
express 37 C(F,§) in the most usable form. While we
cannot define usability formally, it typically means both
conciseness and readability. In this paper we consider
the constraints of the CLP(R) system [Jaffar et af. 1900]
and discuss the several issues and techniques that arose
in implementing the output moedule for CLP{R).

*IBM T.J. Watson Research Center, PO, Bor T4, Yorktoun
Hedghts, NY 10598, USA.

VDept. of Computer Seience, (nin. of Melbourne, Pardwille,
Victoria 3052, Austrela.

MICHAEL J. MAHER®
RoLann H.C. Yap*

Consider some examples. Where {z, v} are the target
varinbles: (a) the constraints = = fz, 2), 2z = gly, w)
can be output as z = f{g{y, 1), 9ly,-1))%; {b) the
constraints £ = 2 4+ 1,y = 2 %z can be output as
r = 05%y+1; (c] the constraints £ < =2, 2 < p,
z < y+1 can be output as z < y; (d) the constraints
T = 3in z#5in z4c0s 2+c0s 24y can be output as © = 149

We can elassify the simplification of constraints in
Lhree divections:

(I} the elimination of anxiliary variables (as in {a), (b}
and ()

(IT) the elimination of redundant constraints (as in {c}),
and

(I} the replacement of expressions by simpler equiva-
lent ones (as in {d)).

The problem (1) of expressing 37 C{Z.§) as a formula
involving only the variables & is known wvariously as
projection, variable elimination and quantifier elimina-
tion. Full variable elimination is not always possible
in CLP{R), for example, in (a) above, However we
note that it is theoretically possible to eliminate all
auxiliary variables from purely arithmetic constraints
[Collins 1982, Tarski 1951). We will see later that ad-
ditional requirements restrain us from always achieving
this goal. Eliminating redundant constraints (IT} is in
general very difficuit, often more so than the problem of
determining constraint satisfability, Discovering simpler
equivalent expressions (111} is also difficult in general; in
this paper, it affects us only in the nonlinear constraints.

A traditional approach to constraint simplification, is
to use a notion of cancnical form equipped with an effi-
cient algorithm for its computation. Informally, such a
form represents the information content of the original
constraints in a minimal manner w.r.t. the target vari-
ables #. For example, in PROLOG (equations over treea),
constraints can be represented by their mgu, and writ-
ten in the form £ = £(§j) where § are distinct from Z and

"Wnderscore notation is used to emphasize auxiliary variables.

OB8

tis a tuple of terms. For linear equations, a well known
canonical form is called parametric form where equations
are represented in the form & = 1) where § are distinet
from % and ¢ is a tuple of linear expressions. If linear in-
equalities are also considered, there is atill a natural no-
tion of canonical form [Lassez and MeAloon 1988]; how-
ever, it is not clear if there exists an efficient algorithm.
Finally, if nonlinear equations (including functions like
sin() and absl)) are also included, then it i= not elear
what a desired canonical form is, much less if there iz an
algorithm? at all.

In the context of CLP languages, the constraint simpli
fication problem is compounded by other diffieulties. One
difficulty concerns backtracking: for efficiency the output
module operates directly on the run-time structures rep-
resenting the constraints, and consequently these opera-
tions need to be undone, Another difficulty is that con-
straints are represented in a form designed for testing
satisfiability; this form is often unsuitable for computing
output,

After a brief outline of the CLP{R) system, we focus
on the classical problem of projection in lneor arith-
metic constraints. The core element here is a Fourier
based algorithm for eliminating non-target variables, The
original Fourier algorithm [Fourier 1824) has the funda-
mental problem of generating too many redundant con-
straints, and the svstematic removal of all such con-
straints is prohibitive. A major advance due to Cernikov
[Cernikov 1963] made the Fourier algorithm plausibly
practical by using an efficient, but partial, redundancy
removal method, Combining the Cernikov method with
further redundancy removal is, unfortunately, unseund
in general. The main technical result of this paper shows
that augmenting the Cernikov algorithm with strict re-
dundancy removal is in fact sound,

The rest of the paper discusses the remaining kinds
of constraints: equations over trees and nonlinear equa-
tions. Functor equations are straightforward. For non-
linear constraints, many possible simplifications are not
performed beeauss & nonlinear constraint solver is not
employed. However, we do employ a general heuristic
which iz both efficient and effective. Finally, the vari-
ous sub-algorithms are put together in a specific order,
together with a substitution mechanism, o obtain the
complete algorithm.

2 CLP(R)

Real constants and real variables are both arithmetic
ferms. If ¢, #; and ¢y are arithmetic terms, then so are
(E1 -+ &), (1 — ta), (o * £, (01/ta), abs(t), maz(ty, t1),
min(ty, ty), sin{t), cos(t) and pow(t;,¢;). Uninterpreted

*The satisfiability problam here is in fact undecidable,

constants and functors are like those in PROLOG. Unin-
terpreted constants and arithmetic terms are terms, and
20 i any variable, If f i= an n-ary uninterpreted fune-
tor, n = @, and ty,..., &, are terms, then f{f, .. £,) is
a term. If §; and ty are arithmetic terms, then #; = ta,
t; = tp and & < s are all arithmetic constraints. If at
least one of £, and ¢y is not an arithmetic term, then only
the expression §; = 4 is a constraint.

An atom is of the form p(ty, &y, ..., &,) where p is a
predicate symbaol distinct from =, <, and <, and ¢, ..., £,
are terms. A CLP(R) program is defined to be a finite
collection of rules of the form Ap : ~ oy, 09, . . ., 0 where
each ¢, 0 < i < k, is either a constraint or an atom. A
CLP(R) goal consists of a set of current constraints, and
a goal body. These constraints must be linear consistent,
that is, it can be partitioned into a functor compenent, a
linear component and a nonlinear component such that-
the conjunction of the first two components is satisfable;
the goal body is the same as a rule body. In an initial
goal, the set of current constraints is empty.

Let the goal G be $7— a, oy where W denotes the
current constraints, A derivation step from & is defined
over two cases: if oy 15 & constraint, then & derives ¥ 1
=g, ..., o providing Tl is linear consistent; if o
is an atom A and if there s arule A’ : =), .., S, then
G derives $UA = AT— &, ..., Bn, 09, . .., & providing
TUA = A is linear consistent, When no derivation step
is possible, execution “backtracks” to a point where an
alternate cholee of matching rule is available,

A derivation sequence is a possibly infinite sequence
of goals such that there is a derivation step to each goal
from the preceding goal. A derivation sequence is con-
ditionally successful if it is finite and the body in the
last goal is empty. If, however, the current constraints in
this last goal {sometimes called answer constraints) has
an empty nonlinear component, we say that the deriva-
tion sequence 8 seccessful. Producing appropriate out-
put from these constraints, given as target variables the
variables appearing in the criginal zoal, is the subject of
this paper.

In the CLP{R) system the user can alao eall,
anywhere in the computation, the predefined predi-
cate dump{[r,,...,zx]); this invokes the output mod-
ule on the current constraint set with target wari-
ables zy,....zy. For more details of the CLP(R) sys-
tem and its implementation we refer the reader o
[Jaffar ef ol 19G0].

3 Linear Constraints

Let € denote the collection of linear constraints at
hand, let @y, 29, ... 25 [abbreviated) denote the tar-

959

for{i=Li< Nyi=i+1){
if (r; iz o parameter) continue;

choose the z of lowest priority;
rewrite the equation £ into the form =z =#¢;

} else mark the equation £ as final;

return all final equations;

let £ denote the equation =; = r.h.8.(z;) at hand;
if (r.h.s(z) contains a variable z of lower priority than ;) {

if (2 35 & target variable) mark the equation £ as final,
substitute £ for = in the other linear equations and inequalities;

Figure 1: Lincar equations

get variables within C, and let 37,49, yse (abbreviated
i) denote the remaining aurilfiory variables. The linear
solver in CLP{R) is parlitioned into the equation solver
and the inequality solver for efficiency reasons,

In this section, we describe an algorithm which cutputs
Iy C(&, 9}, where C is linear, in terms of target variables
only, treating first the equations then the inegualities.
The algorithm may produce an output not containing
a particular target variable © which appears in C - for
example, when eliminating y from 3y = = ¥+ 2 — or may
produce an untyped equation - for example, producing
r=zirom Iyr=y+1Az=y+1 Forsuch z, we add
to the output the special constraint real(z) restricting =
to real number values.

3.1 Linear Equations

Equations are maintained in porametric form, that is, in
the form @ = ¢(&7) where 4, called the object variables are
distinet from 4, called the parameters. For each object
variable z we write r.h.s.{z) to denote the linear expres-
gion (of parameters) that z is equated to. [nequalities are
always written in terms of parameters alone (in addition
to other restrictions which do not concern us here).

The algorithm, essentially a form of Gaussian elimi-
nation, is described in Figure 1. Tt assumes there is a
priority w among the variables, 7{x,) > - > wlzx) >
@) = o+ > w{yar), expressing the relative importance
of each variable in the output®. The algorithin ensures
that lower priority variables are represented in terms of
higher priority variables. {We will see later how # is used
in the context of functor and nonlinear equations (o min-
imize the number of variables ccourring in the output.)

A erucial point for efficiency is that the main loop in

IThe priotity among the y,'s is arbitrary.

Figure 1 iterates N times, and & < M in general, that
is, the number of targel variables is often far smaller than
the total number of variables in the system.

Mote that the order of variables in the predefined pred-
icate dump([xy, ..., ox]) determines the priority relation
ever these wvartables. Hence the user can influence the
output representation of the constraints.

3.2 Linear Inequalities

The constraint solver stores the linear inegualities in
a Simplex tableau. (See [Jaffar et al. 1990] for details.)
Each linear inequality is expressed internally as an equal-
ity by introducing a slack variable, one whose value is
restricted to be either nonnegative or positive. Qur first
job, therefore, is the elimination of such slack variables.
This is achieved by pivoting the inequality tableau to
make all the stack variables basic so that each appears
in exactly one equation. Hence each row can be viewed
as & = gxp where & = 0 or § > 0, and this equation can
now easily be rewritten into the appropriate inequality
exp = 0 or exp = 0,

The remainder of this section deals with the prob-
lem of eliminating non-target variables which occur in
these inequalities. We use a method based on Fourier's
algorithm [Fourier 1824]. It is well-known that the di-
rect application of this algorithm is impractical because
it generates many redundant constraints, Attempting to
eliminate all redundancy at every step is also impractical
[Lassez et al 1989]. Adaptations of Fourier's algorithm
due to Cernikov [Cernikov 1963] substantially improve
the performance. We show how to incorporate other re-
dundancy elimination methods with those of Cernikov to
obtain a more practical algorithm for eliminating vari-
ables from linear inequalities.

In some cireumstances, especially when constraints

550

when written as a matrix is dense, algorithms not based
on Fourier such as [Huynh et al. 1990} can be more effi-
cient; however, typical CLP(R) programs produce sparse
matrices. In general, the size of projection can grow ex-
ponentially in the pumber of variables eliminated, even
when all redundancy is eliminated. Fourier-based meth-
ods have the advantage over other methods that we can
stop eliminating variables at any time, thus computing
a partial projection.

3.2.1 Fourier-based Methods

We begin with some necessary definitions. A labeled con-
straint I8 a linear inequality labeled by & set of con-
straint names. We say that c is label-subsumed by & if
label(c') € label(c). To simplify the explanation, we will
not consider strict inequalities. We assume all constraints
are written in the form £, amx; < 4.

We shall be using some algebraic manipulation of con-
straints. Let c; be the constraint ¥7, oo < 4;, for
J=1,...,n. Then y=¢; (or y¢) denotes the consiraint
i1 Y¥jsxi < 3; where v is & real number, and c; + e
denotes the constraint ¥ {0y, + o)z < 8+ G Sim-
ilarly, $7_, ¢; denotes an jterated sum of constraints. We
consider constraints ¢ and ¢ equal, e = ¢, ifc= v+ ¢
for some v = 0.

Let € be a set of labeled constraints. Given a variable
4, we divide C inlo three subsets: (.';‘:, those constraints
in which z; has a positive coefficient {i.e. ¢; such that
a;: > 0); g, those constraints in which =, has a neg-
ative coefficient; and CZ., those constraints in which the
coefficient of x; is zero. We omit the subseript when the
given variable is clear from the context.

Let ep € C* and ¢ € €~ and let d = 1fog, * & +
=1/ * cp. Then, by construction, r; does not oceur in
the constraint d. If 8 (S;) is the label of op (o) then o
has label S, U S;. Let T be the collection of all such o
Then PUCY is the result of a Fourier step eliminating
x;. We write fourier;(C) = DUCY, When both C* and
€~ are non-empty then D is non-empty, and the step is
called an active variable elimination. After eliminating z;
the total number of constraints in C increases (possibly
decreasing) by measure(x;,C) = |C*]|x |C=|-|C*| =]C|.

Let A be a set of constraints where each constraint
is labeled by its own name. Define Fy = 4 and Firr =
Fourtery (i), Then {Fi}ig,,_ is the sequence of con-
straint sets obtained by Fourier’s method, eliminating,
in order, y,¥s,.... We write F; for {F} g1 i It is
straightforward (see [Lassez and Maher 1988], for exam-
ple) that, if m < n, F, « Feni1, Ymazs -+« v¥n Fm- In
particular, Fy < 3y, 90, , 3 A. Thus Fourier's algo-
rithm computes projections.

However Fourier's algorithm generates many redun-
dant constraints and has doubly-exponential worst-case
behavior. Cernikov |Cernikov 1963] (and later Kohler
[Kohler 1967); see also [Duffin 1974]) proposed modifi-
cations which allow some redundant constrainis to be
eliminated during a Fourier step, and address this prob-
lem. The first method eliminates all constraints gener-
ated at the n'th active step which have 2 label of car
dinality n+ 2 or greater, for every n. A second method
refains, at each step, a set S of constraints such that ev-
ery constraint generaled at this step is label-subsumed
by a constraint in § % The first method eliminates
& subset of the constraints eliminated by the second
These methods are eorrect in the following sense: If
{Ci}izg1.. is the sequence generated by such a method,
then G « Jyy...w A, for every 1.

Although it appears that the Cernikov modifications
to Fourier's algorithm could be augmented by deleting
additional redundant constraints after each step, this is
incorrect in general [Huynh ef el 1990). The following
example highlights this point by showing that the first
Cernikov algorithm, augmented by the simplest kind of
redundancy removal, removal of duplicate constraints, is
unsound.

3.2.2 An Example

Let A denote the following labeled constraints. Labels
appear to the left of the constraints, Ik can be verified
that A containg no redundancy,

{1} w + T +y + 2 =1
{2} w =1z + y + z <1
{3} ~w + T+ oy 4+ oz <1
{4} -w - + ¥y + z <1
{5} v - ¥ <0
{6} —w <0

Upon eliminating v (by adding the last two constrainis),
we obtain in the first (Fourier) step:

{1} w4+ 4+ p+z=l
{2} w -5 + y + z =1
{3} - + ¥ + ¥y + 2z <1
{4} - -z + y + z =1
{56} -y <0
Next we eliminate w obtaining:
{1,3} T+ oy o+ oz <l
1,4} y + z =1
{2,3} ¥+ 7z =1
{2,4} -z + ¥y + z <1
{5|ﬁ} _yl =0

" i1n the English translation of [Cernikov 1963, this is mis-
stated.

Observe that Cernikov’s criterion does not allow us to
delete any constraints. Sinee the second and third con-
straints are duplicates, we could delete one. Howaver, we
chaose not to in this step, Next z is climinated to oblain:

{1,2,3,4)
{1,4}
{2,3}
{5,6}

The frst three constraints are identical, and now we
choose to delete the second and third, obtaining:

{1,2,3,4} y o+ z =1
{56} —¥ <0

‘EIEWE'C&‘IE
+++
WMot e

1A 1A 1A LA

=

In the final Fourier step, we eliminate y to obtain:

{1,2,3,4.5,6} z =<1

Cernikov’s criterion allows us to delete this constraint,
and so we finally obtain an empty set of constraints,
This outcome iz incorrect since it implies Ju, 1w, 1 A
is true for all values of z, and it is steaightforward to
verify that, in fact, Jv,w,z,y A — [z < 1). Observe
that we could have achieved the same incorrect outcome
if, after eliminating w, one of the duplicate constraints
was deleted.

3.2.3 Combining Fourier-based Methods with
Strict Redundancy Elimination

Given a set C of constraints, ¢ € £ is redundant in € if
€+ C—{e]. A subset R of C is redundant if € — C—R.
We define C—%-¢ ifl, for some constraint ¢, € — ¢ and
¢ — cbut ¢ # . Equivalently, (if we are dealing with
only nons-strict inequalities) C—%c means C — ¢ where
c=¢ + {0 < &) for some constraint ¢ and some ¢ > 0.
{Recall that & +{0 < ¢) denotes the sum of the constraint
¢ and the constraint (0 < €).) If also ¢ € € then c is said
to be strictly redundant in C. Geometrically, a strictly
redundant constraind ¢ detlermines a hyperplane which
does net intersect the velume defined by . We write
C—=C" if C—c for every ¢ € C'. A constraint ¢ € C is
said to be quasi-syniactic redundant [Lassez ef al. 1989
if, for some ¢ € C and some ¢ > 0, c = ¢ + (0 < €.
Clearly quasi-syntactic redundancy is one kind of strict
redundancy.

We capture Cernikov's modifications of Fourier's al-
gorithm and others in the following definition. Let + be
& constraint deletion procedure which, at step #, deter-
mines a redundant subset of F; as a function of the se-
quence Fy. Let a Fourier-based algorithm be one which
generates a sequence of constraint sets {C}iag,, . Where
ﬂﬂ = A and C‘i-t—l = fml'.'i"!lﬂfi+1[C,:] — I'{F.'.H_:I. It is im-
portant to note that, in gemeral, it is not necessary
for a Fourier-based method to compute the sequence

991

{Fi}i=na,... Indeed, these methods are valuable to the
extent that they do not compute F;. All that is recuired
is that C; can be viewed as being computed using a fune-
tion of this sequence.

Let v be the function associated with a Fourier-based
method, and let & map every constraint set to a subset
obtained by deleting some strictly redundant constraints,
The sequence of constraint sets {K;}i.g,, where K = A
and Ky = sl fourieri (K} = r(Fygq)) 18 the result of
augmenting the Fourier-based method with the deletion
of (some) strictly redundant constraints.

We let D; denote the set of constraints deleted by
s at step 4, that is, D; = (fourier(Key) — r(F,))
s fourierd]2_q) = v(F)). A removed constraint in (; is
defined Lo be a constraint in C; which uses some con-
steaint in Dy, 7 = i during generation. That is, for some
J =i, if we view generation of C as starting from C; (in-
stead of Op) then ¢ is generated using constraints from
Dy. Ry denotes the set of all removed constraints in C;.
Clearly F; 2 G 2 K, K =0 — Ry, and D, TR,

Mumbers denoted by M's, p's, v's and ¢'s are non-
negative throughout. Thus (0 < €) is a tautologous con-
straint. The notation var(c) denotes the set of variables
with non-zero coefficient in constraint o

The following theorem from the folklore underlies all
the work below.

Theorem 1 Let C = {og,0q,..., 00} be a consistent sef
of constraints and lef ¢ be o consiraint. ¢ — ¢ iff ¢ =
v o dici+ (0 < €) where the A's and € are non-negative.
]

The nesxt lemma shows that all strictly redundant con-
straints can be deleted simultaneously from a consistent
set of constraints. Consequently it is meaningful to spealk
of a strictly redundant subsst of C. It also shows that a
set of redundant constraints can be deleted simultane-
ously with & set of strictly redundant constraints. The
corresponding results for the class of all redundant con-
straints do not hold,

Lemma 2 Let C be a consistent set of constraints,

1. IfDCC and each ¢ € T is strictly redundant in C
thenC = 0= D,

2. If & is strictly redundant in C and B i redundant
in C then SUTR is redundani in &, O

We now prove that elimination of strict redundancy
does not affect correctness of Fourier-based methods.

992

label(c) = {c} for cach c € C;
n=1;
while {there exists an auxiliary variable = in C) {

D=C

HcH »0and [C2|>0) {
n=n+1; /+ count active eliminations =/
for (each pair o, €CF, g € C7)

label{d) = label(c,) U label(g);

D =DU{d} - E;

{ = initial set of inequalities (after linear substitutions);

choose a variable = with minimal measure(z,C);

if (|label{cy) U label(c;}| = n + 2} continue; /« first Cernikow method +/
d is the constraint obtained from e, and & eliminating =;

if (d is not quasi-syntactic redundant wrt) {
F = quasi-syntactic redundant constraints in T wrt o

T second Cernikov method
if (d is label-subsumed in D)
D =D - {d};
else {
F' = constraints in I label-subsumed by o)
D=D-F,
}
LEET
}
}
C=7
}
return O

Figure 2: Linecar inequalifies

Theorem 3 Suppose A is congistent and {C;} is correct,
Then {K;} 15 correct.

Proof: Nole that, since A is consistent, 5, is consistent
for every n, and consequently so are &, and K. Suppose
c € R, and ¢ depends on constraints in D, m < n;
say ¢ = 3; ey + £ ppd; where d; € Dy, for each j and
£; € G — Dy, for each 4, and for some 7, p; > 0. Mow for
each j, since C,—9D,, (Lemma 2), d; = T+ (0 <
€;) where ¢; > 0, and ¢; € C,, = Dy, for each i. Hence
o= 3lA+E; gy e+ (0 < ') where ¢ = 375 pye; and
>0 Letd =T M+ pr)asothate= +(0<
£}

Now F,,, — ¢ since every o € Fp,. Furthermore F, — ¢
sinee var(d'} = var{c) C {Vui1: Vasa. - .-} (gince ¢ € 7).
Since {C;} is correct, C, — ¢, that is, C,—c.

By applying this argument for every ¢ depending on Dy,
and every m < n, (,—¢ for every ¢ € Ty, By Lemma
2,0y~ Oy = Ry. But &y = Ry = Ky Henee K, «— Oy

and, since {C;} is correct, &, «— F.. O

This result extends to sets of constraints containing
both strict and non-strict inequalities. Fourer’s algo-
rithm and Cernikov's modification extend straightfor-
wardly. The definition of =% stands, but it is no longer
equivalent to C — « and ¢ = ¢+ (0 < ¢}, for some e = 0.

Before discussing our algorithm, we briefly outline the
coats of various redundancy elimination procedures. Let
C be a set of m inequalities involving n variables, ob-
tained in & Fourier-based method from my original in-
equalities. Full redundancy elimination wsing the sim-
plex algorithm has exponential worst-case complexity,
although in the average case it is O{m®n). Strict re-
dundancy elimination has essentially the same cost as
full redundaney elimination. Quasi-syntactic redundancy
elimination on the constraints C has worst-case complex-
ity O[m®n}. The cost of eliminating redundancy in C
using the first Cernikov method has worst-case complex-
ity Ofmmg), and it has the important advantage that
a constraint can be deleted before the (relatively expen-

sive) process of explicitly constructing it. Application of
the second Cernikov method has worst-case complexity
O{m*mq).

In [Cernikov 1963] it is recommended that the first,
and then the second Cernikov elimination method be
applied at each step, The wvariation in which the sec-
ond method is applied only intermittently is suggested in
[Kohler 1967]. If we want to incorporate the elimination
of strict redundancy, the above complexity analysis sug-
gests that guasi-syntactic redundancy elimination may
be most eost-effective. The analysis also supgests that
thiz elimination should be performed between the first
and second Cernikov methaods,

Our tests tended to support this reasoning. Using the
first Cernikov method followed by gquasi-syntactic re-
dundancy elimination prodiuced significant improvement
over the first method alone. However further process-
ing in accord with the second Cernikov method only
marginally reduced the number of constraints eliminated
and led to an overall increase in computation time. Full
redundancy elimination after each Fourier step, which is
incompatible with the Cernikov methods, slows compu-
tation by an order of magnitude. Full strict redundancy
elimination added to the Cernikov method is also un-
profitable.

The algorithm is shown in Figure 2. Tt uses a heuristic
{from [Duffin 1974]} attempting to minimize the number
of new constraints generated. There remains the mat-
ter of verifying the correctness of the algorithm. Tt is
easy to see that a step 1 is active in {F;} il it is active
in {K;} iff it is active in {C;}. Thus the first Cernikov
method is Fourier-based, and the corresponding part of
the algorithm implements this method, and so is correct.
The second part of the algorithm deletes some remaining
quasi-syntactic redundancies and, by the previous theo-
rem, is correct. If the third part, which is commented
out in Figure 2, is included in the algorithm then theo-
rem 3 does not apply directly. However it is not difficult
to show that this algorithm is equivalent to eliminat-
ing some of the constraints eliminable by applying the
second Cernikov method en bloc and then eliminating
gome strictly redundant (not necessarily quasi-syntactic
redundant) constraints, Thus the theorem applies and
the algorithm is correct.

4 Constraints over Trees

The constraints at hand are equations involving uninter-
preted functors, the functor equations. As in PROLOG
systems a straightforward way of printing these equa-
tions is to print an equation between each target variable
and its value.

9493

Consider equivalence classes of variables obtained as
the reflexive, symmetric and transitive closure of the re-
lation: {{z,%) : = is bound to y}; write rep{x) to denote
the variable of highest priority equivalent to x. Now de-
fine the printable value of a variable as:

vatwe(f{ty, -, b)) = flvalue(ty), -, value(t,));

value(z) = { value(t), if x is bound to & term ¢;
i replaz), if z is unbound

The output is & set of equations of the form r = value(x)
for each target variable &, excepling those variables r for
which value(s) is =z itself. We remark that most PRO-
LOG systems do not wse equivalence classes as above,
and thus for example, the binding structure r — 1,3 —
-1 is generally not printed as = y.

One well-known drawback of the above output method
iz that the output can be exponentially larger than
the original terms involved. For example, the output of
I = f(T2,%2), 32 = f(Xa,Za),.. - Tn1 = flZn:Ta) Tn =
a, where x;,...,T, are target variables, iz such that
the binding of z, is a term of size O[2%). This ex-
ponential blowup can be avoided by, other metheds
[Paterson and Wegman 1978], but in practice it oceurs
rarely. Hence the binding method is adopted in Lthe
CLP(T) system.

The output of functor equations in the context of
other {arithmetic) constraints raises another issne. Re-
call that is not always possible to eliminate non-target
variables appearing in functor equations (e.g. eliminat-
ing z in x = f{z}). Consequently, arithmetic constraints
which affect these unavoidable non-target variables must
also be output. We resolve this issue by augmenting the
problem deseription sent to the linear constraint oubput
module (c.f. Section 3) as follows: the target variables
now consist of the original target variables and the un-
avoidable non-target variables, with the latter having pri-
ority intermediate between the original target variables
and remaining variables.

These secondary target variables are given lower pri-
ority than the original target variables in order to min-
imize their ocourrence in the output. The lower prior-
ity ensures thal such variables appear on the left hand
side of arithmetic equations a3 much as possible, We can
then substitute the right hand side of the equation for
the variable and omit the equation, thus eliminating the
variable. For example, if 7 and y are the target variables
inz = flz),y = 2+ 2 the output is v = fly— 2}, We
dizeuzs this further in section 6.

994

5 Nonlinear Constraints

In general all nonlinear constraints need to be printed,
regardless of the target variables, becanse omitting them
may result in an output which is satisfiable when the
original set of constraints iz not. For example, given the
consiraints # < 0,y * y = —2 and target variable x, we
cannol simply output = < 0. This problem arizes sinee we
have no guarantes that the nonlinear constraints are sat-
isfiable. When the only nonlinear constraints are caused
by multiplication the auxiliary variables in the nonlin-
ear constraints can, in theory, be eliminated. However
this approach is not practical with current algorithms
{Collins 1982 and not possible onee trigonometric func-
tions are introduced. Thus, as with functor equations,
the nonlinear equations contribute additional target vari-
ables. These are simply all the variables which remain
in the nonlinear constraints, and we give them priority
lower than the target variables but higher than the vari-
ables added from functor equations.

However, there is one observation which can signifi-
cantly reduce the number of nonlinear equations printed
and the number of additional target variables: Sup-
pose a non-targed variable y oceurs exactly once in the
comstraints, say in the constraint o, and p(Z) implies
Ay elE,) = (&), for some constraint ¢ and some con-
dition p, then ¢ can be replaced by ¢, provided the re-
maining constraints imply that p(#) holds. Some specific
applications of this observation follow.

If y oceurs in the form y = f{Z) then this constraint
can be eliminated provided f is a total function on the
real numbers (this excludes functions such as exponen-
tiation and division®). If y neours as y = 2° then we
can delete the constraint, provided we know that > 0
or z is an integer other than 0. Similarly, we can delete
T = ¥ provided that x >0, z > Uand z # 1, and delete
t = y* provided £ > 0 and z ¢ 0. A constraint = = |y|
can be replaced by = = 0; r = siny {and = = cosy)
can be replaced by =1 < x < 1; £ = min(y, z) can be
replaced by z < z (and similarly for maz). A constraint
x = y*z {equivalently y = x/z) can be eliminated, pro-
vided it is kmown that z # 0. In this latter case, which
can be expected to ocour more often than most of the
other delayed comnstraints, we can use linear program-
ming techniques on the linear constraints to test whether
z is constrained to be non-zero. Specifically, we add the
constraint z = 0 to the linear constraint solver and if the
solver finds that the resulting set of constraints is incon-
sistent then we delete T = y = z. We undo the effects of
the additional constraint using the same mechanism as
usad for backtracking during execution of a goal,

38trictly speaking, division is not a function, since y = =z is
defined to be aquivalent to r = y+z and so 0/0 can take any value.

There is a significant complication due to the linear
constraints which are generated as a result of simplify-
ing nonlinesr constraints. As each such linear constraint
is generated, it is passed to the linear constraint solver
so that a consistency check can be performed®. If the re-
sulting constraint system is not consistent then the sim-
plifications are undone and the system backtracks to the
nearest choice-point as it normally does after executing
a failure.

6 Summary of the Output Mod-
ule

We now present the oulput algorithm in its entirety, a
collation of the various sub-algorithms described above
corresponding to the different kinds of constraints. Note
that the order in which the sub-algorithms are invoked
is important; essentially, the processing of functor and
nonlinear equations must be done first in order to de-
termine the set of secondary target variables. Then the
linear constraints are processed in such a way as to max-
imize the number of secondary target variables that can
be eliminated. Step V below, not previously described,
performs this elimination. It suffers the same drawback
as processing funclor equations - potentially the size of
output is exponential in the size of the original equations.

Stap 1
Process the functor equations, in order to obtain the
gecondary target variables. These are essentially the
non-target variables appearing in the bindings of the
primary target variables. Obtain a {possibly empty)
collection of functor equations,

Step 11
Simplify the nonlinear equations, and expand the
set of secondary target variables to include all the
variables in the simplified collection. Obtain a col-
lection of nonlinear equations. This step might also
produce additional linear equations.

Step I1I

Process the linear equations {Figure 1) with respect
Lo the primary and secondary target variables, using
some priority such that the primary variables are
higher priority than the secondary variables and the
auxiliary variables are of the lowest priority. Obtain
a colleetion of final linear equations involving only
target variahles,

Step IV
Process the linear inequalities (Figure 2), and note
that these may have been modified as a result of

EThus the eutput module implements & more powerful con-
straint solver than that used during run-time,

Step 111 above, using the primary and secondary tar-
get variables, Obtain a collection of linear inequali-
ties involving only target variables,

Step V

For each secondary target variable i appearing in a
lingar equation of the form y = ¢, substitute £ for y
everywhere, and remove the equation. For each sec-
ondary target variable ¢ appearing in a nonlinear
equation of the form y = {, where y appears else-
where but not in ¢, substitute ¢ for y everywhere,
and remove the equation.

Step VI
Output all the remaining constraints.

7 Conclusion

The cutput module of CLP{R) has been desecribed.
While a large part of the problem coincides with the
classical problem of projection in linear constraints, deal-
ing with funetor and nonlinear equations, and working
in the context of a CLP runtime structure, significantly
increase the problem difficulty.

The care element of our algorithm deals with project-
ing linear constraints; it extends the Fourier/Cernikov
algorithm with strict redundancy removal. The rest of
the paper deals with functor and nonlinear equations and
how they are output togethar with the linear constraints.
What is finally obtained is an output module for CLP{R)
which has proved to be both practical and effective,

We finally remark that the introduction of meta-
level facilities [Heintze et al. 1989] in a future version of
CLP{TR) significantly complicates the output problem,
since the constraint domain is expanded to inelude rep-
resentations/codings of constraints.

References

[Cernikov 1963] S.N. Cernikov. Contraction of Finite Sys-
tems of Linear Inequalitics {In Russian), Deklady
Akademiia Nauk S5SR, Vol. 152, No. 5 {1963}, pp-
1075 - 1078, (English translation in Seviet Mathemai-
ics Doklady, Vol. 4, No. 5 (1963}, pp. 1520-1524.)

[Colling 1982] G.E. Colling. Quantifier Elimination for Real
Closed Fields: a Guide to the Literature. In Compufer
Algebra: Symbolic and Algebraic Computation, Com-
puting Supplement #4, B. Buchberger, . Loos and
G.E. Collins (Eds), Springer-Verlag, 1982, pp. 79-81.

[Duffin 1974] R.J. Duffin. On Fourier's Analysis of Linear In-
equality Systems. Mathematical Programming Study,
Vol. 1 (1974), pp. 71-95.

595

[Fourier 1824] J-B.). Fourier. Reported in: Analyse des
travanx de I"Acadamie Royale des Sciences, pen-
dant l'anpee 1824, Partie mathematigue, Histotre de
P'Aeademie Royale des Sciences de ['nstitut de Franee,
Vaol. 7 (1827), pp. xlvii-lv. (Partizl English translation
in: D.A. Kohler, Translation of a Report by Fourier
on his work on Linear Ineguakities. Opsearch, Vol. 10
{1073), pp. 38-42.)

[Heintze ef al. 1980] N.C. Heintze, 5. Michaylov, P.I
Stuckey and R Yap. Meta-programming in CLP{R).
In Proc. Norih Americen Conf. en Lagic Program-
ming, Clevaland, 1989, pp. 1-19.

[Huynh ef af. 1990] T. Huynh, C. Lassez and J-L. Lasses.
Practical Issues on the Projection of Polyhedral Sets.
Annals of Mathematics and Artificial ntelligence, to
appear. [Alsa: [BM Research Report RC 15872, IBM
T.). Watson Research Center, 18990.)

[Jaffar et al 1990] J. Jaffar, 8. Michaylov, P. Stuckey and R.
Yap. The CLP(R) Language and System, ACM Trans-
actions on Programming Lenguoges, to appear, (Also:
IBM Research Report RC 16292, 1BM T.J. Watson
Research Center, 1950.)

[Jaffar and Lassez 1086] J. Jaffar and J-L. Lassez. Con-
straink Logic Programming. Technical Report 86/73,
Dept. of Computer Seience, Monash University (June
1086). (An abstract appears in: Proe. 14" Principles
of Programming Lenguages, Munich, 1987, pp. 111-
119.)

[Kohler 1967] DA, Kohler. Projections of Polyhedral Sets.
Ph.D. Thesis, Technical report ORC-67-20, Opera-
tions HResearch Center, University of California at
Berkeley (August 1067).

[Lassee et al. 1989] J-L. Lassez, T. Huynh and K. MeAloon.
Simplification and FElimination of Reduosdant Lin-
ear Arithmetic Constraints. In Proc. Nerth American
Conference en Logic Programmang, Cleveland, 1989,
pp. 35-51.

[Lasser and MeAloon 1988] J-L. Lassex and K. MeAloon.
Generalized Canonical Forms for Linear Constraings
amd Applications. In Pree. fnt Conf. on Fifth Cen-
eration Computer Systems, [COT, Tokyo, 1988, pp.
TO3-T10.

|Lassez and Maher 1988] J-L. Lassez and M. Maher. On
Fourier’s Algorithm for Linear Arithmetic Constraints.
Jonrnal of Aufomated Reasoning, to appear,

[Paterson and Wegman 1978] M.S. Paterson and M.N. Weg-
man. Linear Unification. Jouwrna!l of Computer and
System Sciences, Vol. 16, No. 2 (1978), pp. 158-167.

[Tarski 1951] A. Tarski. A Decision Method for Elementary
Algebra and Geomefry. University of California Press,
Berkeley, USA, 1951,

