PROCEEDINGS OF THE INTERNATIONAL CONFEREMCE
OM FIFTH GENERATION COMPUTER 5YSTEMS 1992,
edited by ICOT. @ 1COT, 1992

522

A Forward-Chaining Hypothetical Reasoner Based on
Upside-Down Meta-Interpretation

Yoshihiko Ohta

Katsumi Inoue

Institute for New Generation Computer Technology
Mita Kokusai Bldg. 21F, 1-4-28 Mita, Minato-ku, Tokyo 108, Japan
{ohta, inoune}@icot.or.jp

Abstract

A forward-chaining hypothetical reasener with the
assumption-based truth maintenance system (ATMS)
has some advantages such as avoiding repeated proofs.
However, it may prove subgoals unrelated to proofs of
the given goal. To simulate top-down reasoning on
bottom-up reasoners, we can apply the upside-down
meta-interpretation method to hypothetical reasoning.
Unfortunately, when programs include negative clauses,
it does not achieve speedups because checking the consis-
tency of solutions by negative clauses should be globally
evaluated. This paper describes a new transformation
algorithm. of programs for efficient forward-chaining hy-
pothetical reasoning. In the transformation algorithm,
logical dependencies between a goal and negative clauses
-are gnalyzed Lo find irrelevant negative clauses, so that
the forward-chaining hypotheiical reasoners based on the
upside-down meta-interpretation can restrict consistency
checking of negative clauses to those relevant clauses.
The transformed program has been evaluated with a
logic circuit design problem,

1 Introduction

Hypothetical reasoning [Inoue 88] is a technique for prov-
ing the given goal from axioms together with a set of hy-
potheses that do not contradict with the axioms. fypo-
thetical reasoning is related to abductive reasoning and
default reasoning,

A forward-chaining hypothetical reasoner can be con-
structed by eimply combining a bottom-up reasomer
with the assumption-based truth maintenance system
{ATMS) [de Kleer 86-1] (for example [Flann et al. 87,
Junker 88]). We have implemented a forward-chaining
hypothetical reasoner [Ohta and Inoue 90], called APRI-
COT/0, which consists of the RETE-based inference
engine [Forgy 82] and the ATMS. With this architec-
ture, we can reduce the lotal cost of the label compu-
tations of the ATMS by giving intermediate justifica-
tions to the ATMS at two-input nodes in the RETE-
like networks. On the other hand, hypothetical rea-

soning based on top-down reasoning has been proposed
in [Poole et al. 87, Poole 81). Compared with top-down
(backward-chaining) hypothetical reasoming, bottorm-up
(forward-chaining) hypothetical reasoning has the ad-
vantage of avoiding duplicate proofs of repeated subgoals
and duplicate proofs among different contexts. Bottom-
up reasoning, however, has the disadvantage of proving
unnecessary subgoals that are unrelated to the proofs of
the goal.

To avoid the disadvantage of bottom-up reasoning,
Magic Set method [Bancilhon et al. 6] and Alexander
method [Rohmer ef al. 86] have been proposed for de-
ductive database systems. Hecently, it is shown that
Magic Set and Alexander methods are interpreted as
specializations of the upside-down meta-interpretation
[Bry 90]. The upside-down meta-interpretation has been
extended to abduction and deduction with non-Hern
clauses in [Stickel 91]. His abduction, however, does not
require the consistency of solutions.

Since the consistency requirement is crucial for some
applications, we would like to make programs include
negative clauses for our hypothetical reasoning. When
programs include negative clauses, however, the upside-
down meta-interpretation method does not achieve
speedups because checking the consisteney of solutions
by negative elauses should be globally evaluated.

We present a new transformation algorithm of pro-
grams for efficient forward-chaining hypothetical reason-
ing based on the upside-down meta-interpretation. In
the transformation algorithm, logical dependencies be-
tween a goal and negative clanses are analyzed to find
irrelevant negative clauses, so that the forward-chaining
hypothetical reasoners based on the upside-down meta-
interpretation can restrict consistency checking of nega-
tive clauses to those relevant clauses. The transformed
program has been evaluated with a logic circuit design
problem,

In Section 2, our hypothetical reasoning is defined with
the default proofs [Reiter 80]. In Section 3, the outline
of the ATMS is sketched. Section 4 shows the basic algo-
rithm for hypothetical reasoning based on the bottom-up
reasoner MGTP [Fujita and Hasegawa 91] together with

the ATMS. Section § presents two transformation algo-
rithms based on the upside-down meta-interpretation,
One is a simple trensformation algorithm, the other is
the transformation algerithm with the abstracted depen-
dency analysis. We have implemented the hypothetical
reasoner and these program transformation systems, and
Section 6 shows the result of an experiment for the evalu-
ation of the translotmed programs. In Section 7, related
works are considered.

2 Problem Definition

In this section, we define our hypothetical reasoning
based on a subset of normal default theories [Reiter 30].
A normal defanlt theory (D, W) and a goal @ are given
as follows: .

o W aset of Horn elauses.

A Horn clause iz represented in an implicational
form,
oy A Aay, — 8 (1)

A Ao, = L. (2)

Here, o; (1 < £ < myn = 0) and § are atomic
formulas, and L designates falsity. Function sym-
bols are restricted to U-ary function symbels. All
variables in a clanse are assumed to be universally
quantified in front of the clause. Fach Horn clause
has to be range-restricled, that iz, all variables in
the consequent J have to appear in the antecedent
ey Ao e, A Horn clause of the form (2) is called
a negative clause,

* [& szet of normal defaulis,
A normal default is an inference rule,

a:p
T! {33

where o, called the prerequisite of the normal de-
fault, is restricted to a comjunction ay A - -+ A ay of
atomic formmias and g, called its consequent, is re-
stricted to an atomic formula. Function symbols are
restricted to O-ary function symbels. All variables in
the consequent # have to appear in the prerequisite
o A normal default with free variables is identified
with the set of s ground instances. The normal
default can be read as “ if & and it is consistent to
agsume [, then infer 5",

» goal G a conjunction of atomic formulas.

All variables in & are assumed f.-n be existentially
quantified.

523

Let A be the set of all ground instances of the normal
defaults of D. A default proof [Reiter 80] of G with re-
spect to (D, W) is & sequence Ap,---, Ay of subsets of
A and only if

L. WU CONSEQUENTS{A F G,
2for 1=i<k,
WUCONSEQUENTS(A) +
PREREQUISITES(A;_y),
3. .&j- = H.
4. WUUi, CONSEQUENTS(A;) is consistent,

where
PREREQUISITES(A;_q) = ||r.|||. o

for (et 8/8) € &;_; and
CONSEQUENTS(A) = {8 | (a: B/8) € Ai).

A ground instance 8 of the goal 7 is an answer to &
from (D, W} if

k
W U) CONSEQUENTS(A,) = 68,

where the sequence Ag,-<-,Ai i a default prool of
G with respect to (D,W). If Gf is an answer to
G om (D,W), i3 an answer substitution for
from (D, W). A support for an answer G from
(D,W) is U, CONSEQUENTS(A;), where the se-
quence Ay, -+, Ay is a default proof of 8 with respect
to (D, W). For an answer (349 from (D, W), the mini-
mal supports for G4 from (D, W), written as M S(39),
is the set of minimal elements in all supports for G# from
(D, W). The solution to & from (D, W) is the set of all
pairs (G0, MS(G0)), where G is an answer to (3 from
(D, W) and MS5(G¥) is the minimal supports for G¥.
The task of our hypothetical reasoning is defined to find
the solution to a given goal from a given normal default
theary.

3 ATMS

The ATMS [de Kleer 86-1] is used as one component of
our hypothetical reasoner. The following is the outline

of the ATMS.

In the ATMS, a ground atomic formula is called a da-
tum. For some datam N, T'y designates an assumption.
The ATMS treats both L and T'y as special data. The
ATMS represents each datum as an ATMS node:

{datum, label, justi ficalions).

Justifications correspond to ground Horn clauses and are
incrementally input to the ATMS. Each justification is
denoted by:

Ny, N, =N,

324

where N; and NV are data. Fach datum ; is called an
antecedent, and the datum IV is called a consequent. In
the slot justi fications, the ATMS records the set of an-
tecedents of justifications whose consequents correspond
to the dalum.

Let H be a current set of assumptions. An assumption
set B C K is called an environment. When we denote
an environment by a set of assumptione, each assumption
Iy is written as N by omitting the letier T, Let J be a
current set of justifications. An environment Fis called
nogood if JUE derives L. The label of the datum IV is the
set of environments {Ey,---,E;,---, En)} that satisfles
the following four praperties [de Kleer 86-1]:

1. N holds in each E; (soundness),

2. every environment in which ¥ holds is a superset of
some E; (completeness),

3. each E; is not nogood (consistency),
4. no Ej is a subset of any other (minimality).

H the label of a datum is not empty, the datum iz be-
lieved; otherwise it is not believed. A basic algorithm
to compute labels [de Kleer 86-1] is as follows. When
& justification is incrementally input to the ATMS, the
ATMS updates the labels relevant to the justification in
the following procedure,

Step 1: Let L be the current label of the consequent
N of the justification and I; be the current label
of the i-th antecedent N; of the justification. Set
L'=L U {z|z=UL E, where E; ¢ L;}.

Step 2: Let L" be the set obtained by removing no-
goods and subsumed environments from L. Set the
new label of N to LY,

Step 3: Finish this updating if L is equal to the new
label.

Step 4: [f Vis L, then remove all new negoods from
labels of all data other than L.

Step 5: Update label:s of the consequents of the
recorded justifications which contain WV as their an-
tecedents.

4 Hypothetical Reasoner with

ATMS and MGTP
The MGTP [Fujita and Hasegawa 91] is a model gener-
ation theorem prover for checking the unsatisflability of

a first-order theory P. Each clause in P is denoted by:

ay A Aoy = B Ve B,

where eg(l =i < nin 2 0) and §;(1 € j € mym = 0)
are atomic formulas and all variables in §; V --- V S
have to appear in oy A -+ A o,. Each clause in P is
translated into a KL1 [Ueda and Chikayama 90] clause.
Then, model candidates are gemerated from the set of
KL1 clauses. The MGTP works as a bottom-up reasoner
on the distributed-memory multiprocessor called Multi-
PSLL

As shown in Figure 1, we can comstruct a hypotheti-
cal reasoner by combining the MGTP with the ATMS.
The normal default theory (D, W) is translated into a
program P,

P={ay A Aa, — assume() |
(ex Avehag: BfB)e DIUW,

where assume is a metapredicate not appearing any-
where in D) and W.

Inference Eagine | _Justifications
. ATMS
MGTP B Beliefs

Figure 1: Forward-Chaining Hypothetical Rea-
soner with ATMS and MGTP

procedure R{G, P):
begin

By =0

Jai= {(=8)|(—=FeP}

{ (Ta= f) | (— assume(8)) € P };

L
s :=1
while J,#£ 0 do

begin

=841)

B, := UpdateLabels(J,_,, ATMS);

J, = GenerateJusti fications(B,, P, B,_,)
end;

Solution :=

for each 0 such that G € B, do

begin
Lgg := GetLabel(G8, ATM 8);
Solution := Solution U {{G6, Las)}
end;

return Selution

end.

Figure 2: Reasoning Algorithm with ATMS and
MGTP

The reasoning procedure R(G, P) for the MGTP with
the ATMS is shown in Figure 2. The reasoning proce-

dure consists of the part for UpdateLabels — Clenerafe-
Justifieations cycles and the part for construcling the
golution. The UpdateLabels - GenerateSustificalions cy-
cles are repeated while J, is not empty. The ATMS
updates the labels related to a justification set J,-y
given by the MGTP. The ATMS returns the set B,
of all the data whose labels are not empty alter the
ATMS has updated labels with J,_;. The procedure
UpdateLabels(J,-1, AT M 5) returns a believed data set
B,. The MGTF generates each set J, of justifications
by matching elements of B, with the antecedent of ev-
ery clause related to new believed data, The procedure
GenerateJusti fications{B,, P, By-1) returns a new jus-
tification set J,. If any element in (8, B.-1) can match
an element of the antecedent of any (& A -~ Aan — X
in P and there exists a ground substitution & for all oy
such that oo € B,, then J, is as follows.

o (a0, -+, 0q0,Tg, = o) € J, if X = assume(f).
v (ono,---, o0 = fo) e ,if X =5
v (o, o= L)X =L

The procedure FetLabel{G8, ATMS) returns the label
of (3¢ and is used in constructing the selution. Note
that the label of ¥ corresponds to the minimal sup-
ports for G8. The hypothetical reasoner with the ATMS
and the MGTP can avoid duplicate proofs among differ-
ent contexts and repeated proofs of subgoals. However,
there may be a lot of unnecessary proofs unrelated to the
proofs of the goal.

5 TUpside-Down
Meta-Interpretation

5.1 Simple Transformation Algorithm

Bottom-up reasoning has the disadvantage of proving
unnecessarily subgoals that are not related to proofs of
the given goal. We introduce a simple transformation
of & program P on the basis of the upside-down meta-
interpretation for speedups of bottom-up reasoning by
incorporating goal information. A bottom-up ressoner
interprets a Homn clause

a, —

in such a way that the fact So is derived if facts
g, -, aqo are present for some substitution . On
the other hand, a top-down reasoner interprets it in such
a way that goals aqe, .-+, ano are derived if a goal Ao
is present, and fact 8o is derived if both a goal fe and
facts cyer,+ -+, g0 are present. We transform the Horn
clange

g Ao A

g A Aoy, —

323

into
goal{#) — goal{ay)
for every a; {1 <1 <n) and

goal(flAa A--- Aoy —

then a bottom-up reascner can simulate top-down rea-
soning. Here, goal is a metapredicate symbol which does
not appear in the original program P. After some facts
related to the proofe of the goal have derived with the

. upside-down meta-interpretation, those facts may derive

contradiction with bottom-up interpretation of the arig-
inal program. Thus, we transform each negative clause

oy Mo Mooy — L
into
ag Mo oo — L
and
— goal(o)

for every o (1 = i < n). This means that every subgoal
related to negative clanses is evaluated.

Note that (goal(f) — goal(ey)) or (— geal(e;)) may
not be satisfy the range-restricted condition. We have
some techniques which make every clause in transiormed
programs range-restricted. Here, we take a very simple
technique in which only the predicate symbeols are used
as the arguments of the metapredicate goal. When v is
an atomic formula, we denote by 5 the predieate symbol
of =, The algorithm T’ as shown in Figure 3 transforme
an original program F into the program P in which the
top-down information is incorporated. The solution to
(7 from T1((3, P) is always the same as the solution to @
from P because all subgoals related to negative clauses
as well as the given goal are evaluated and every label of
goal(F) for any atomic formula 8 is {#}.

For example, consider a program,

={ = penguin(a),
penguin(X} — bird{X),
bird(X) —+ assume(fiy(X)),
fly(X) Anot fly(X) — L,
penguin| X) — not fly(X) .

By the simple transformation algorithm, we get

Ti(fly, B)=
{ goal(penguin) — penguin(a),
goal(bird) A penguin(X) — bkrd(X),
goal(bird) = goal{penguin),
goal(fly) A bird(X) — assume(fly(X)),
goal(fly) — goal(bird),
Fly(X) Anotfly(X) — L,
— goal(fly),
— goal(not fly),
goal(not fly) A penguin{X) — not fly(X),
goal(not fly) = goal(penguin) }
U{ = goal(fly)}

326

Next, consider the goal kird(X). Then, the transformed
program T'1{bird, B} is the program

T1{bird, B) = {---} U { — goal(bird} },

where only the last element {— goal(fiy)) of T1{ fly, B)
iz replaced with {— goal(bird)). Even if the goal
is bird{X'), both geal(fly) and goal{notfly) are eval-
vated because {---} includes (— goal(fly)) and (—
goal{net fly)) for the negative clause. Then, the compu-
tational cost of R(bird(X), T1(bird, F,)) is nearly equal
to the cost of B{fly(X), TL(fly, F)).

procedure T1(&, P):
begin
Pi=;
for cach (o A---Man— X)EP do
begin
if X=_1 then
begin
Pi= .i'%u[r:q Ao ha, = L)
for j:i=1 until n de
B = PU{— goal(d;)}
end
else if X = asaurne{ﬂ} then
hegin
P:=PFu {goal(8) M ag A -~ Ay, — assume() };
for 7:=1 until n do
P = P U {goal() — goal(a;)}
end
else if X =48 then
begin
P:=PuU{goal(F)hey A+ Aa, — B);
fo\: =1 until n do
Pi= PuU{goal(f) — goal{d;)}
E‘ﬂd
end;
Fi= PU{— goall3)};
return f’
end.

Figure 3: S8imple Transformation Algorithm T'1

5.2 Transformation Algorithm with
Abstracted Dependency Analysis

In this subsection, we describe & static method to find
irrelevant negative clauses to evaluation of the goal. If
we can find such irrelevant negative clauses, for every
antecedent o; of each jrrelevant clause, we do not need to
add {— goal{ey)) into the transformed program. We try
to find them by apalyzing logical dependencies between

the goal and each negative clause at the abstracted level.
We do not care about any argument in the abstracted
dependency analysis.

When v is &n atomic formula, we denote by the propo-
sition ¥ the predicate symbol of «. For each negative
clause C, the proposition false(C') is used as the iden-
tifier of C. For every (o — assume(f)), f is called an
assurmable-predicate symbol. For any environment F, its
abstracted environment (denoted by E)is {T3 | T € E}.
The abstracted justifications with respect to P is defined
F-1-H

J= {{'ﬁh"'!ﬁn!rﬁﬂ ,S::I |
(@1 A+ Aay — assume(8)) € P}
U {(@5,- @ = f) [(2 A Aan — B) € P}
U {{&,---, &0 = false(C)) |

C={og M Ao, -+ 1), T € P}

Let A be the set of propositions appearing in J. Note
that A consists of all predicate symbole in F and all
false(C) for © € P. For each proposition N in A, we
compute & set of abstracted environments on which &
depends. Now, we show an algorithm to compute the
set of abstracted eavironments. This algorithm is ob-
tained by modifying the label-updating algorithm shown
in Section 3. The modified points are as follows.
1. Replace Step 2 with

Step 2': Set the new label of WV to L,
2. Remove Step 4.
Every proposition in A is labeled with the set of ab-
stracted environments cbiained by applying the modi-
fied algorithm to the abstracted justifications J. This
label iz called the abstracted label of the proposition.
The system to compute the st of abstracted environ-
ments for each proposition is called an absiracted depen-
dency analyzer. The reasons why we have to modify the
label-updating algorithm are as follows. Firstly, in the
abstracted justifications, every L is replaced with the
proposition false((') for the negative clause O, so that
each abstracted label is always consistent. Thus, we do
not need Step 4. Secondly, each abstracted label may
not be minimal because we replace Step 2 with Step 2.
Suppose that every abstracted label is minimal. Then,
the theorem we present below may not hold., For exam-
ple, let

Po= { —pla), —p(8), —alb), o(X)—t(X),
p(X) — assume(r(X)),
p(X) — assume(s(X))},
rla) =g, r{X)A(X) =g,
(X)) As(X)nt{X) = L}

Consider the problem defined with the goal g and F,.
The abstracted label of g is {{r}, {r,£}} . The abstracted
label of the negative clause is {{r,s}}. The abstracted
environment {r,s} cannot be omitted for g although the
set of minimal elements in the abstracted label of g is

{{r}}-

procedure T2(G,P):

begin
Bi=;
Ji=#
k=0
for mch {og Aoy, = XVEP do
begin
if X=.1 then
begin
k=k+1
J?:=.PLJ-[mh-~-hn:,.—rJ.};
Ji=JU{(&, -, 8, = false(k))};
end
else if X = assume(3) then
begin
P=Pu
{goal(B) Aay A~ A, —+ assume(f)};
=JU{{ﬁl!"'1ﬁn:Fﬁ=}ﬁ}};

for j:=1 until » do
P i= P U {goal(B) — goal(a,)}
end
else f X =7 then
begin
e:=pu{gmf{ﬁ]ﬂm A Aoy — Bl
J = JU{[&1,~-~,5,,=$-E:I};
for j:=1 until n do
P = P U {goal(F} — goal(a;}}
end
end;
UpdateAbstracted Labels{J, ADA);
Lg 1= GetAbstractedLabel(G, ADA);
for i:=1 until & do
begin
Ly := Get Abstracted Label(false(i), AD A);
for each Eg e Lg do
for each F; e l; do
if E;C Es then
for (&, 8 = false(i)) € J do
for ; -—1 until » de
Pi=puy {— goal(&;)}
end;
Bi=pPui= goal(G)};
return P
end,

Figure 4: Transformation Algorithm T2 with Ab-
stracted Dependency Analysis

327

Theorem: Let F be a normal default theory and 3
a goal, J the abstracted justifications with respect to
P, L(G) the abstracted label of & , L(false(C)) the
a]:sl.radad label of false{C) where C E £. I no element
in L(false{C)) is a subset of any element in L{(F), then
the solution to & from P is equivalent to the solution to
G from P\ {C}.

Sketch of the proof: Let € be (¢ — L) and P!
be P\ {C}. Assume that 8,, is any answer substitution
for G from P’ and o}, is any answer substitution for o
from P'. Let M5(ac;) be the minimal supports for aum,
from P' and M 5{G#,,) be the miniral supports for G,
from . Suppose that no clement in L{ false(C)) is a
subset of any element in L{F). From the supposition and
similarity belween ATMS labels and abstracted Iabsls,
no element in MS(ao,) is 2 subset of any element in
MS(G8n). Therefore, the solution to G from P*U {G]'
is the same as the solution to & from F'.

On the basis of the theorem, we can omit consis-
tency checking for a negative clause ' if the condition
of the theorem is satisfied. The transformation algo-
rithm T2(G, P) with the abstracted dependency analysis
is shown in Figure 4 for the program P and the goal G
In Figure 4, Update AbstractedLabels(J, ADA) denotes
the procedure which computes abstracted labels from ab-
stracted justifications J with the abstracted dependency
analyzer ADA, and GetAbstractedLabel((F, ADA) de-
notes the procedure which returns the abstracted label of
G from the abstracted dependency analyzer ADA. The
procedure transforms an original program into the pro-
gram in which the top-dewn information is incorporated
and consistency checking is restricted to those negative
clauses relevant to the given goal, -

Consider the same example F;, shown in the previ-
ous subsection, in case that the goal is bird(X). The
abstracted justifications J; is

{ (=> penguin), (penguin = bird), (bird, Ty, = fly),

(fly,notfly = false(1)), (penguin = notfly) }.

As the result of the abstracted dependency analysis,
the abstracted label of false(l) is {{fly}} and the ab-
stracted label of bird is {#}. Then, no element in the
abstracted label of false(1) is a subset of any clement in
the abstracted label of bird, so that we do not need to
evaluate this negative clause. As a consequence, we have
the transformed program:

To(bird, B)=
{ goal(penguin) — penguin(a),
goal(bird) A penguin(X) — Wrd(X),
goal{bird) — goal(penguin),
goal(fly) A bird(X) — assume(fly(X)),
goal(fly) — goal{bird),
F19(X) Anetfly(X) — 1,
goal(not fly) A penguin(X) — not fly(X),
goal(not fly) — goal(penguin) }
U { - goal(tird) }.

528

Since the transformed program does not include {—
goal(fly)) and {— goal(net fly)), the reasoner can amit
solving both the goal fly(X) and the goal not fly(X).

6 Evaluation with Logic Design
Problem

We have taken up the design of logic circuits to caleu-
late the greatest common divisor (GCD) of two integers
expressed in § bits by using the Buclidean algorithm.
The solutions are circuite calenlating GCD and satisfying
given constraints on area and time [Maruyama el ol 88),
The program Fy contains several kinds of knowledge:
datapath design, component design, technolegy map-
ping, CMOS standard cells and constraints on area and
time [Ohta and Inoue 30]. The design problem of calcu-
lators for GOCD includes design of components such as
subtracters and adders.

Table 1 shows the expermental result, on a Peudo-
Multi-PEI system, for the evaluation of the transformed
programs. The run time of a program P for a goal @
is denoted by Thyg,r. The predicate symbol G of each
goal & is adder (design of adders), sublracter (design of
subtracters) or eGCD (design of caleulators for GCD).
The run time Trie p,) of each goal (7 is equal to the others
on the original program Py,

Table 1: Run Time of Program

Goal G| Trig.ey) [8] | Trie.m) 5] | Trie.m 5]

adder 10.7 17.5 0.4
subtracter 10.7 17.3 0.6

eld 0D 10.7 17.3 16.8

Let B be the simple transformed program of F;. The
experiment on the simple transformation time shows that
it takes 6.35 [s] for making Py from Py. However, the run
time Tryg p) for each goal G is nearly equal to the oth-
ers because constraints on area and time of the GCD
calculators are represented by negative clauses. Even if
we want to design adders or subtracters, the hypotheti-
cal reasoner cannot aveid designing GCD calenlators for
consistency checking,

Let P be the transformed program with the ab-
stracted dependency analysis. The experiment on the
transformation time with the abstracted dependency
analysis shows that it takes 6.63 [g] for making 5 from
Fy. The transformation time with the abstracted de-
pendency analysis is a litile bit lenger (0.28 [5]) than
the simple transformation time. When & is adder or
sublracter, the run time Trg p,) is6 much shorter than
the run time for the design of GCD calculators. This is
because the program can aveid consistency checks for
negative clauses representing constraints om area and

time of the GED calculators when the design of adders
or the design of subtracters is given as a goal. The re-
sult show that each total of the transformation time with
abstracted dependency analysis and the run time of the
transformed program is shorler than the run time of the
original program when the problem does not need the
whole of the program.

7 Related Work

The algerithm for firat-order Horn-clause abduction with
the ATMS is presented in [Ng and Mooney 91). The sys-
tem is basically a consumer architecture [de Kleer 86-3]
introducing backward-chaining consumers. The algo-
rithm avoids both redundant proofs by introducing the
goal-directed backward-chaining consumers and dupli-
cate proofs among different contexts by using the ATMS.
Their problem definition is the same as [Stickel 90],
whose inputs are a goal and a set of Horn clanses without
negative clauses. When there are negative clanses in the
program, they briefly suggest that forward-chaining con-
sumer can be used for each negative clause to check the
consistency. On the other hand, since we only simulate
backward-chaining by the forward-chaining reasoner, we
do not require both types of chaining rules. Moreover,
we see that when the program includes negative clauses,
it is sometimes difficult to represent the clauses as a set
of consumers. For exarmple, suppose that the axioms are

{e—=ec bod cAdsg c—e,d=afenf— 1}
and the goal is g. Assume that the set of consumers is

{{e+=a), (d<b), (g +=¢d),
(e<+=c), (f +=d), (&, f = J-}]'n

where < means a backward-chaining consumer and
= means a forward-chaining consumer. Then, we
get the solution {(g, {{g}.{a,b}, {a,d}, {c, b}, {e,d}}}}.
However, the correct solution is {(g,{{g}})} because
{a,b},{a,d},{c,b} and {c,d} are nogood. To guaran-
tee the consistency when the program includes negative
clavses, for every Horn clavse, we have to add the corre-
sponding forward-chaining consumer. Such added con-
sumers would cause the same problem as the program
that appeared in using the simple transformation algo-
rithm,

In [Stickel 81], deduction and abduction with the
upside-down meta-interpretation are proposed. This ab-
duction does not require the consistency of solutions.
Furthermore, rules may do duplicate firing in different
contexts since it does not use the ATMS. This often
canses a problem when it is applied to practical programs
where heavy procedures are attached to rules. '

Another difference between the frameworks of
[Mg and Mooney 91, Stickel 91] and ours is that their

frameworks treat only hypotheses in the form of no:-
mal defanlts without prerequisites, whereas we allow for
normal defaults with prerequisites.

8 Conclusion

We have presented & new transformation algorithm of
programs for efficient forward-chaining hypothetical rea-
soning baaed on the ups.i-.‘lu—duwn metaainterpretnﬁon. In
the transformation algorithm, logical dependencies be-
tween & goal and negative clauses are analyzed at ab-
strocted level to find irrelevant negative clauses, so that
consistency checking of negative clauses can be restricled
to those relevant clauses. It has been evaluated with a
logic circuit design problem on a Pseudo-Multi-PSI sys-
lermn.

We can also apply this abstracied dependency anal-
yois to transformed programs based on Magic Sei and
Alexander methods. Qur dependency analysis with only
predicate symbols may be extended to an analysis with
predicate symbols and their some arguments.

Acknowledgments

Thanks are due to Mr. Makoto Naksshima of JIPDEC
for implementing the ATMS and combining it with the
MGTP, We are Era.tsfnl to Prof. Mitsuru Ishizuka of the
Univarsity of Tokys for the helpful discussion. We would
aleo like to thank Dr. Ryuzo Hasegawa and Mr. Miyulki
Koshimura for providing us the MGTP, and Dr. Koichi
IMurukewa for his advise. Finally, we would like to ex-
press our appreciation to Dr. Kazuhico Fuchi, Director
of JOOT Research Center, whe provided vs with the op-
porfunity to conduct this research.

References

[Bancilhon et al. 86] F. Bancithon, D. Maier, Y. Sagiv
and J.D. Ullman, Magic Sets and Other Strange
Ways to Implement Logic Programs, Proc. of ACM
PODS, pp.1-15 (1986).

[Bry 90] F. Bry, Query evaluation in recursive databases:
bottom-up and fop-down reconciled, Dals &
Knowledge Engineering, 5, pp.289-312 (1990).

[de Kieer 86-1] J. de Kleer, An Assumption-based TMS,
Artificial Intelligence, 28, pp.127-162 (1986).

[de Kleer 86-2] J. de Kleer, Extending the ATMS, Arti-
ficial [nielligence, 28, pp.163-196 {1986).

[de leer 86-3) J. de Kleer, Problem Solving with
the ATMS, Avkificial Intelligence, 28, pp.197-224
{19886)

[Flann et al. 87) N.S. Flann, T.G. Dietterich and
IR Curp:;nu, Parward G]:la.inlng Luglc Prqgra.lrl-

329

ming with the ATMS, Proc. of AAAI-8T, pp.24-20
(1987).

[Forgy 82] C.L. Forgy, Rete: A Fast Algorithm for the
Many Pattern/Many Object Pattern Match Prob-
lem, Artificial fntelligenee, 19, pp.17-37 (1052).

[Fujita and Hasegawa 91] H. Fujita and B. Hasegawa,
A Model - Generation Theorem Prover in KL1 Us-
ing a Ramified-Stack Algorithm, Proc, of ICLP 91,
pp.494-500 (1991).

[Ingue 88] K. Inoue, Problem Solving with Hypothetical
Reasoning, Proc. of FGCS ‘88, pp. 1275-1281 (1988).

[Junker 88] 1. Junker, Reasoning in Multiple Contexts,
GMD Working Paper No.334 (1988).

[Marmyama e of. 88] F. Maroyama, T. Kakuda, ¥, Ma-
sunaga, Y. Minoda, 5. Sawada and N. Kawato, co-
LODEX: A Coocperative Expert System for Logic
Design, Proc. of FGCS 88, pp.1299-1306 (1988).

[Ng and Mooney 91] H.T. Ng and R.J. Mooney, An Ef-
ficient First-Order Abduction System Based on the
ATMS, Technical Report AT 91-151, The University
of Texas at Austin, Al Lab. (1991).

[Obia and Inowe 30] Y. Ohta and K. Inoue, A Forward-
Chaining Multiple-Context Reasoner and Its Appli-
cation to Logie Desigil, Proc, of TEEE TAI pyp 386
302 (1900).

[Poole et al. 87] D. Poole, R. Goebel and R. Aleliunas,
Theorist: A logical Reasoning System for Defaults
and DHagnosis, M. Cercone and G, McCalla (Eds.),
The Knowledge Frontier: Essops in the Hepreszen.
talion of Knowledge, Springer-Verlag, pp.331-352
(1987). _

[Pocle 81] D. Poole, Compiling a Default Ressoning Sys-
tem into Prolog, New Generation Computing, 9,
pp.3-38 (1991).

[Reiter 80] I3 Reiter, A Logic for Default Reasoning, Ar-
tificial Intelligence, 13, pp.81-132 (1980),

[Rohmer ef al. 867 J. ERohmer, K. Lescoeur and
J.M. Kensit, The Alexander Method — A Tech-
nigue for The Processing of Recursive Axioms in
Deductive na.t.aha.aua, New Generation G'nmpuiing.
4, pp.273-285 (1986).

[Stickel 30] M.E. Stickel, Rationale and Methods for Ab-
ductive Reasoning in Natural-Languege Interprete-
Lion, Leciure Nodes in Ariificial Mnielligence, 459,
Springer-Verlag, pp.233-252 (1990).

[Stickel 91]

M.E. Stickel, Upside-Down Meta-Interpretation of
the Model Elimination Theorem-Prover Procedure
for Deduction and Abduction, ICOT Technical Re-
port TR-664, 1ICOT (1991).

[Ueda and Chikayama 90] K. Ueda and T. Chikayama,
Design of the Kernel Language for the Parallel In-
ference Machine, The Computer Journal, 33, 6, pp.
494-500 (1930).

