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Abstract

This paper describes the results of the research and de-
velopment of antomated reasoning sysiems(ARS) being
conducted by the Fifth Research Laboratory at ICOT.
The major result was the developrnent of a parallel the-
orem proving system MGTP (Model Generation The-
orem Prover) in KLY on & parallel inference machine,
PIM. Currently, we have two versions of MGTP. One is
MGTP/G, which is used for dealing with ground models.
The other is MGTP /N, used for dealing with non-ground
models.  With MGTP/N, we have achieved a more
than one-hundred-fold speedup for condensed detach-
ment proeblems en & PIM /m consisting of 128 PEz. Nen-
monoctonic reasoning and program synthesis are taken
a5 promising and concrete application area for MGTP
provers, MGTP/G is actually used to develop legal rea-
saning systerns in [COT"s Seventh Research Laberatory.
Advanced inference and learning systems are studied for
expanding both reasoning power and application areas,
Parallel logic programming techniques and utility pro-
grams such as ‘mete-programming’ are being developed
using KL1. The technologies developed are widely used
to develop applications on PIM.

1 Introduction

The final goal of the Fifth Ceneration Computer Sys-
tems (FGCS) project was to realize a knowledge infor-
meticn processing system with intelligent user interfaces
and knowledge base systems on parallel inference ma-
chines. A high performance and highly parallel inference
mechanism is one of the most important technologies to
come out of our pursuit of this goal.

The major goal of the Fifth Research Laboratory,
which is conducted as a subgoal of the problem-sclving
programming module of FGOS, is to build very efficient
and highly parallel automated reasoning systems [ARS)
as advanced inference systems on garallel inference ma-
chines (PIM)}), taking advantage of the L1 language and
PIMOS operating system. On ARS we intend to develop
application systems such as natural language processing,
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Figure 1: Goals of Automated Reasoning System He
gearch at JCOT

intelligent knowledgebases, mathematical theorem prov-
ing systems, and aufomated programming systems. Fur-
thermore, we intend to give good feedback to the lan-
guage and operating systems from KL1 implementations
and experiments on parallel inference hardware in the
process of developing ARS.

We divided ARS research and development into the
following three goals (Figure 1):

{1) Developing Parallel Theorem Proving Technologies
on PIM
Developing very efficient parallel theorem provers on
PIM by squeezing the most out of the KL1 language
is the major part of this task. We have concentrated
on the model generation method, whose inference
mechanism is based on hyper-resolution. We de-
cided to develop two types of model generation the-
orem provers to eover ground non-Hern preblerns
and non-ground Horn problems. To achieve masi-
mum performance en PIM, we have focused on the
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technological issues below:

(a) Elimination of redundant computation
Eliminating redundant computation in the pro-
cess of model generation with the least over-
head is an important issue. Potential redun-
dancy lies in conjunctive matching at hyper-
resolution steps or in the case splitting of
ground non-Horn problems.

(b} Saving time and space by eliminating the over
generation of models
For the model generation method, which is
based on hyper-resolution as a botiom-up pro-
cess, ower generation of models is an essentizl
problem of time and space consumption. We
regard the model generation method as genera-
tion and test procedures and have introduced a
controlling mechanism called Lazy Model Gen-
erafion.

Finding PIM-fitting and scalable parallel archi-
tecture

PIM is a low communication cost MIMD ma-
chine. Qur target is to find a parallel architec-
ture for model generation provers, which draws
the maximum power from PIM. We focused
on OR parallel architecture to exploit paral-
lelism in the case splitting of 2 ground non-
Horn prover, MGTP/G, and on AND parallel
architecture to exploit parallelism in conjunc-
tive matching and subsumption tests of & non-
ground Horn prover, MGTP/N.
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One of the most important aims of developing thea-
rer provers in KL1 is to draw the maximum advan-
tage of parallel logic programming paradigms from
KL1. Programming techniques developed in build-
ing theorem provers help to, or are commonly used
to, develop various applications, such as natural lan-
guage processing systems and knowledge base sys-
tems, on the PIM machines based on logic program-
ming and its extension. We focused on developing
meta-programming technology in KL1 as a concrete
base for this aim. We think it is very useful to de-
velop broader problem solving applications on PIM
and to extend KL1 to support them.

Application

A model generation theorem prover has & general
reasoning power in various Al areas becanse it can
simulate the widely applied tableanx methed effec-
tively, Building an efficient analytic tableaux prover
for modal propositicnal logic on model generation
theorem prowvers was the basic goal of this extension.
This approach could naturally be applied to abdue-
tive reazoning in Al systems and logic programming
with negation as failure linked with broader practi-
cal Al applications such as diagnosis,
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Wefocused on automated programming as one of the
major application areas for theorem provers in the
non-Horn logic systems, in spite of difficulty. There
has been a long history of program synthesis from
specifications in formal logic. We aim to make a
first-order theorem prover that will acl as a strong
support tool in this approach. We have zef up three
different ways of program construction: realizahil-
ity interpretation in the constructive mathematics
to generate functional programs, temporal propesi-
tional logic for protocol generation, and the Knuth-
Bendix completion technique for interface design of
concurrent processes in Petri Net. We stressed the
experimental approach in order to make practical
evaluation,

¢ Advanced Inference and Learning

Theorem proving technologies themselves are rather
saturated in their basic mechanisms. In this sub.
goal, extension of the basic mechanism from deduc-
tive approach to analogical, inductive, and trans-
formational approaches is the main research target.
Machine lesrning technologies on logic programs and
meta-usage of logic are the major technologies thal
we decided to apply to this task,

By using analogical ressoming, we intended to for-
mally simulate the intelligent guesswork that hu-
mans naturally do, so that results could be obtained
even when deductive systems had no means to de-
duce to obtain a solution because of incomplete in-
formation or very long deductive steps.

Taking the computational complexity of inductive
reasoning into account, we elaborated the learning
thecries of logic programs by means of predicale
invention and least-general generalization, both of
which are of central interest in machine learning.

In transformational approach, we used fold/unfold
_ transformation operations Lo generate new efficient
predicates in logic programming.

The [ollowing sections describe these three tashs of re-
search on antomated reasoning in ICOT's Fifth Research
Laboratory for the three years of the final stage of ICOT.

2 Parallel Theorem Proving
Technologies on PIM

In this section, we describe the MGTT provers which run
on Multi-PSI and PIM. We present the technical essence
of KL] programming techniques and algorithins that we
developed to improve the efficiency of MGTP.
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2.1 Parallel Model Generation
Theorem Prover MGTP

The research on parallel theorem proving systems aims at
realizing highly parallel advanced inference mechanisms
that are indispensable in building intelligent knowledge
information systems. We started this research project on
paralle]l theorem provers about two and a half years ago.
The immediate goal of the project is to develop a parallel
automated reasoning system on the parallel inference ma-
chine, PIM, based on KL1 and FIMOS technology. We
airn at applying this system o various fields such as in-
telligent database systems, natural language processing,
and antomated programming.

At the beginning, we set the following as the main
subjects,

* To develop very fast first-order parallel theorem
provers
As a first step for developing KL1-technology the-
orem provers, we adopted the model generation
method on which SATCHMO is based as a main
proof mechanism. Then we implemented a model-
generation based theorem prover called MGTP. Qur
reason was that the model generation method is par-
ticularly suited to KL1 prograrmming as explained
later. Based on experiences with the development
of MGTF, we constructed 2 *TP development sup-
port system " which provided us with vseful facilities
such as a proof tracer and 2 visualizer to see the dy-
namic behavior of the prover.

* To develop applications

Although a theorem prover for first-order logic has
the potential ts cover most areas of Al it has not
been so widely used as Prolog. One reason for
this is the inefliciency of the proof procedure and
the other is lack of useful applications. Howewver,
through research on program synthesis from formal
specification|Hasegawa ef al., 1990], circuit verifica-
tion, and legal reasoning[Nitta et al., 1992], we be-
came convineed that firstorder theorem provers can
be effectively used in various areas. We are now de-
veloping an aulomated program synthesis system,
a specification description system for exchange sys-
tems, and abductive and non-monotonic reasoning
systems on MGTP.

* To develop KL1 programming techniques
Accumulating  KL1  programming  techniques
through the development of thesrem provers is an
important fssue, We first developed KL1 compil-
ing technigues to translate given clavses to corre-
sponding KLi clauses, thereby achieving good per-
formance for ground clause problems. We also devel-
oped methods to parallelize MGTP by making full
use of logical variables and the stream data type of
KL1.

» To develop KL1 meta-programming technology
This is also an important issue in developing theo-
rem provers. This issue is discussed in Section 2.1.2
Meta-Programming in KL1. We have implemented
basic meta-programming tools called Meia-Library
in KL1. The meta-library is a collection of KL1 pro-
grams which offers roufines such as full unification,
matching, and variable managements. '

2.1.1 Theorem Prover in KL1 Language

Recent developments in logic programming have
made it possible to implement first-order theorem-
provers efficiently.  Typical examples are PTTPE by
Stickel [Stickel 1988], and SATCHMO by Manthey and
Bry [Manthey and Bry 1988),

PTTP is a backward-reasoning prover based on the
model elimination method. It can deal with any first-
order formula in Hern clause form without loss of com-
pleteness and soundness.

SATCHMO is a forward-reasoning prover based on
the model generation method. It s essentially a hyper-
resolution prover, and imposes a condition called range-
restricted on a clavse so that we can derive only ground
atoms from ground facts. SATCHMO is basically
a forward-reasoning prover but also allows backward-
reasening by employing Proleg over the Horn clauses.

The major advantage of these systems is because the
input clauses are represented with Prolog clauses and
most parts of deduclions can be performed through nor-
mal Prolog execution.

In addition to this method we considered the following
two alternative implerentations of abject-level variables
in KL1:

(1) representing object-level variables with KL1 ground
terms

{2} representing object-level variables with KLI wvari-
ables

The first approach might be the right path in meta-
programming where object- and meta-levels are sepa-
rated strictly, thereby giving it clear sernantica, However,
it forces us to write routines for unification, substitution,
renaming, and all the other intricate operations on vari-
ables and environments. These routines would become
considerably larger and more complex than the main pro-
gram, and introduce overhead to orders of magnitude.

In the second approach, however, most of operations
on variables and environments can be performed beside
the underlying system instead of running routines on top
of it. Hence, it enables a meta-programmer to save writ-
ing tedious routines as well as gaining high efficiency.
Furthermore, one can also use Prolog var predicates to
write routines such as occurrence checks in order to make
built-in unification sound, if necessary. Strictly speak-
ing, this approach may not be chosen since it makes the



distinction between object- and meta-level very ambigu-
ous. Heowever, from a viewpaint of program complexity
and efficienicy, the actual profit gained by the approach
is considerably large.

In KLL hqwever, the second npproa.ch 15 not aiwa}'ﬁ
possible, as in the Prolog case. This is because the se-
mantics of KL] never allows us fo use a predicate like
Prolog var, In addition, KL1 built-in unification is not
the same as Prolog’s counterpart, in that unification in
the guard part of a KL1 clause is limited to one way and
a unification failure in the body part is regarded 25 a se-
mantic error or exceplion rather than as a failuee which
merely causes backtrack in Prolog. Mevertheless, we can
take Lhe second approach Lo implement a theorem prover
where ground models are dealt with, by utilizing the fea-
tures of KL1 as much as possible,

Taking the above discussions info consideration, we
decided to develop both the MGTP/G and MGTP/N
provers so thaf we can use them effectively according to
the problem domain being dealt with. )

The ground version, MGTP /G, aims to support finite
problem demains, which include most problems in a va-
riety of fields, such as database processing and natural
language processing,

Far ground model cases, the model generation methad
makes it possible to use just matching, rather than full
unification, if the problem clauses satisly the range-
restrictedness condition *.

This suggests that it is sufficient to use KL1's head
unification. Thus we can take the KL1 variable approach
for representing object-level variables, thereby achieving
good performance,

The key peints of KL1 programming techniques devel-
oped for MGTP/G are as follows: (Details are described
in the next section.)

» [irst, we translate & given set of clauses into a cor-
responding set of KL1 clanses. This translation is
quite simple.

* Second, we perform conjunctive matching of & literal
in 2 clause against a model element by using KL1
head unification.

s Third, at the head unification, we can automatically
obtain fresh vanables for a different instance of the
fiteral vzed.

The non-ground version, MGTP/N, supperts infinite
problem domains. Typical examples are mathematical
theorems, such as group theory and implicational calcu-
lus.

For non-ground model cases, where full unification
with occurrence check is required, we are forced to fol-
law the KL1 ground terms approach. However, we do

L4 clause is said to be range-restricted if every wariable in the
clause hes at least one occurrence in its antecedent.

L
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Figure 2: Major Problems and Technical Sclutions

not necessarily have to maintain variable-binding pairs
as processes in KLI. We can mantain them by using
the vector facility supported by KL1, as is often used in
ordinary language processing systemns. Experimental re-
sults show that vector h‘nplm:mtaﬁun is several hundred
times faster than process implementation.

In this case, however, we cannot use the programming
techniques developed for MGTF/G. Instead, we have to
use a conventional technique, that is, interpreting a given
set of clauses instead of compiling it into KL1 clauses.

2.1.2 Key Technologies to Improve Efficiency

We developed several programming techniques in the
pracess of seeking ways Lo improve Lthe efficiency of model
generation theorem provers. Figure 2 shows a list of the
problems which prevented good performance and the so-
lutions we cbtained. In the following sections we outline
the problems and their solutions,

Redundaney in Conjunetive Matehing

To improve the performance of the model generation
provers, it is essential to aveid, as much as possible, re-
dundant computation in conjunctive matching, Let us
consider a clause having two antecedent literals, and sup-
pose we have a model candidate M at some stage iin the
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proof process. To perform conjunctive matching of an an-
tecedent literal in the clause against a model element, we
need to pick all possible pairs of atoms from M. Imagine
that we are to extend M with a model-extending atom
&, which iz in the consequent of the clause, but not in M.
Then in the next stage, we need to pick pairs of atoms
from M U A, The number of pairs amounts to:

(MUAP =M MUMxAUAxMUA x A

However, doing thisin & naive manner would introduee
redundancy. This is because M x M pairs were already
considered in the previews stage. Thus we must oaly
choose pairs which contain at least one A.

(1) RAMS Method

The key point of the RAMS (Ramified Stack)
method is to retain in a literal instance stack the
intermediate results obtained in conjunctive match-
ing. They are instances which are a result of
matching a literal against a model element. This
algorithm exactly computes a repeated combina-
tion of A and an atom picked from M without
duplication([Fujita and Hasegawa 1%90]).

For non-Horn clause cases, the literal instance stack
expands a branch every time case splitting occurs,
and grows like & tree, This is how the RAMS name
was derived. Each branch of the tree represents a
different model candidate.

The ramified-stack methed not only avoeids redun-
daney in conjunctive matching but also enables us
to share a common model. However, it has cne draw-
hack: it tends to require a lot of memory to relain
mtermediate literal instances.

(2) MERC Method

The MERC (Multi-Entry Repeated Combination)
method{[Hasegawa 1981]) tries to solve the above
problem in the RAMS method. This method does
not need a memery to retain intermediate results
obtained in the conjunctive matching. Instead, it
needs to prepare 2" — 1 clauses for the given clause
having n literals as its antecedent.

The sutline of the MERC method is shown in Fig-
ure 3. For a clause having three antecedent literals,
Ay, Az, Ay — C, we prepare seven clauses, each of
which £D[Iﬁpﬂnd$ to a I{:pca.l.(ﬂ:i EDﬂlbiﬂaﬁm Df ﬂ
and M, and perform the conjunctive matching us-
ing the combination pattern. For example, a clause
corresponding to a combination pattern [M, A, M)
first matches literal 4; against A. If the match
succeeds, the remaining lterals, A; and Aa, are
matched against an element picked out of M. Note
that each combination pattern includes at least one
A, and that the [M, M, M) pattern is excluded.

A Az As /a‘.‘- ,.-"JM

A MM ’ﬂmaratur
M A M W | My —C
i -®| G

A A M

oA -3 | FAA —¢
M A A

A& A @) | @ —c

* For groundand A1+ Aas= Ay
[ = means not-unifiable )

Figure 3: Multiple-Entry Repealed Combination
(MERC) Method

" There are some trade-off points between the RAMS
methed and the MERC method. In the RAMS
method, every successful result of matching a literal
A; against model elements is memorized so as not to
rematch the same literal against the same model el-
ement. On the other hand, the MERC method does
not need such & memory to store the mformation of
partial matching. However, it still containg a redun-
dant computation. For instance, in the computation
for (M, &, A] and [M, A, M] patterns, the common
subpattern, [M, A], will be recomputed. The RAMS
method can remove this sort of redundancy.

Speeding up Unifieation /Subsumption

Almost all computation time is used in the unification
and subsumption tests in the MGTP. Term indexing is
a classical way and the only way to improve this process
to one-to-many unification/subsumption. We used the
discrimination tree as the indexing structure.

Figure 4 shows the effect of Term Memory on a typical
problem on MGTP/G.

Optimal use of Disjunctive Clauses

Loveland et. al. |[Wilson and Loveland 1989] indi-
cated that irrelevant use of disjunctive clauses in the
ground medel peneration prover rises useless ease split-
ting, thereby leads to serious redundant searches. Ar-
bitrary selected digjunctive elauses in MGTP may lead
to a combinatorial explosion of redundant models. An
artificial yet suggestive example is shown in Figure 5.

In MGTP/G, we developed two methods to deal with
this problem. One method is to introduce upside-dewn
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Figure 4: Speed up by Term Memory

false: —p(c, X, Y} (1)
false: —q(X,c,Y) (2)
false : —r{X,Y,c) {3)
s(a) (4)
s(t) (5)
s(c) (6)

a(X), s(¥), =(Z) —
p(X, ¥,2);q(X,Y,2); x(X,Y,2) (7)

Figure 5: Example Problem to Relevancy Testing

meta-interpretation{ UDMI)[Sticke] 1991] into
MGTP/G. By using upside-down meta-interpretation,
the above problem was compiled into the bottom-up rules
in Figure 6.

Note that this is against the range restricted rule but
is safe with Prolog-unification.

The other method is to kesp the positive disjunckive
clauses obtained by the process of reasoning. False checks
are made independently on each literal in the digjune-
tive model elements with unit models and if the check
suceeeds then that literal is eliminated. The disjunc-
tive models can be sorted by their length, This method
showed considerable speed-up for n-queens problems and
enumeration of finite algebra.
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true — gplc, X, Y).

gp{c, %, ¥),ple, X, Y} — false. {(1—2)
true — gg(X, ¢, ¥). 2-1)
gq{xmcl‘f},q(x,c,ﬂ—r false. {2“2}
true = gr(L, Y, c). {(3-1)
gr(X, ¥,c),x(X, ¥, c) — false, {3-12)

true — s{a.:l [4]

true — s(b} (5)

true — 5(c) (6

s(%),s(Y), =(Z),
gp(X,Y,Z), gq(X, ¥, Z), gx(X, Y, Z] _'
p(X,Y,Z);q(x, ¥, 2); x(x, Y, 2} (7)

Figure 6: Compiled eode in UDMI

Meta-Programming in KL1

Developing fast meta-programs such as unification and
matching programs is very significant in maling a prover
efficient. Most parts of proving processes are the ex-
ecutions of such programs. The efficiency of 2 prover
depends on how efficient meta-programs are made.

In Prolog-Technology Theorem Provers such as PTTP
and SATCHMO, object-level variables® are directly rep-
resented by Prolog variables. With this representation,
most operations on variables and environments can be
performed beside the underlying system Prolog. This
means that we can gain high efficiency by using the func-
tions supported by Prolog. Also, a progremmer can use
the Prolog var predicate to write routines such as cecur-
rence checks in arder to male built-in unification sound,
if such routines are necessary.

Unfortunately in KL1, we cannot use this kind of tech-
nique. This is because:

1) the semantics of KL1 never allow us to use a predi-
cate like vaz,

2) KL built-in unification is not the same as its Prolog
counterpart in that unification in the guard part of
a KLI clause can only be one-way, and

2} a unification failure in the bedy part is regarded as
a program error or exception that cannot be back-
traclked,

We ghould, therefore, treat an objeci-level variable as
constant data (ground term) rather than as a KL1 vari-
able. It forces us to write routines for unification, substi-
tution, renaming, and all the other intricate operations of
variables and environments. Thess routines can become
extremely large and complex compared to the main pro-
gram, and may make the overhead bigger.

To ease the programmer's burden, we developed Meta-
Library. This is a collection of KL1 programs to sup-
port meta-programming in KL1 [Keshimura et al,, 1990].

tyariables appearing in a set of given clauses
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The meta-library includes facililies such as full unifica-
tion with occurrence check, and variable management
routines. The performance of each program in the meta-
library is relatively good. For example, unification pro-
gram runs at 0.25 ~ 1.25 tirmes the speed of built-in uni-
fication.

The major functions in meta-library are as follows.

unify (X,¥, Env, NewEnv)
unify_sc(X,¥. Env, NewEnv)
match{Pattern,Terget, Env, NewEav)
oneway_unify{Fattern,Tergat, Env, NewEnv)
copy_term(X, "Newk, Env, NewEnv)
shallow(¥,Env, "Newlov)

freezelX, “FrozenX, Env)

melt (X, "MeltedX, Env)
create_anv("Env, Sizae) _
fresh_var(Env, ~“VarindNewEnv)
equal (X,¥, Eov, “YH)
is_type(X,Env, “Type)

unbound (¥, Env, “YN)
database(RequestStraan)
get_object(KLiTerm, ~Object)
get_kli_term{Object, “KLiTerm)

Over-Generation of Models

A more important issue with regard to the efficiency
of model generation based provers is reducing the total
amount of computation and memory space required in
proof processes.

Model-generation based provers must perform the {ol-
lowing three cperations.

» create new model elements by applying the model
extension rule to the given clauses using a set of
model-extending atoms A and a model candidate
set M {model extension).

s make 2 subsumption test for a ereated atom to check
if it is subsumed by the set of atoms already being
created, usually by the current model candidate.

» make a false check to see if the unsubsumed model
element derives false by applying the model rejection
rule to the tester clauses (rejection test).

The problem with the meodel generation method is the
huge growth in the number of generated atoms and in
the computational cost in time and space, which is in-
curred by the generation processes. This problem be-
cormes more critical when dealing with harder problems
which requive deeper inferences (longer proofs), such as
Lukasiewicz problems.

To solve this problem, it is important to recognize that
proving processes are viewed as generalion-and-fest pro-
cesses, and that generation should be performed only
when required by the test.

Table 1: Cemparison of complexities (for unit tester
clause)

Algorithm T 5 oG M
Bome ol | pptm® | gt | gt
Full-test/Lazy pnt prmte me | pmt
Lazy & Lookshead | m?® | {g/p)m® | m/fp m

t m ig the number of elements in 2 medel candidate when
false is detected in the basic algorithm.

1 pis the survival rate of a generated atom, u s the rate of
suecessiul conjunctive matehings (p < p), and ol < o < 2)
is the efficiency factor of a subsamption test,

For this we proposed a lazy model generation
algorithm[Hasegawa et of,, 1992] that can reduce the
amount of computation and space necessary for obtain-
g proofs,

Table 1 compares the complexities of the model gener-
ation algorithms®, where T(5/G) represents the number
of rejection tests (subsumption tests/model extensions),
and M represents the number of atoms stored.

From a simple analysis, it is estimated that the time
complexity of the model extension and subsumption tesi
decreases from O(m*) in the algorithms without lazy con-
trol to Om) in the algorithms with lazy contrel. For
details, refer to [Hasegawa ef of., 1992],

Parallelizing MGTP

There are three major sources when parallelizing the
proving processes in the MGTP prover: multiple model
candidates in a proof, multiple clauses to which model
generation rules are applied, and multiple literals in con-
junctive matching.

Let us assume that the prime objective of using the
model generation methed is te find & model as a solu-
tion. There may be alternative solutions or models for
a given problem. We take it as OR-parallelism to seek
these multiple solutions at the same time.

According to our assumption, multiple model candi-
dates and rmultiple clauses are taken as sources for ex-
ploiting OR-parallelism. On the other hand, multiple
literals are the source of AND-parallelism since all the lit-
erals in a clause relate to a single solution, where shared
variables in the clause should have compatible values.

For ground non-Horn cases, it is sufficient to exploit
OR parallelism induced by case splitting. For Horn
clause cases, we have to exploit AND parallelism. The

The basic algorithm taken by OTTER[MeCuone 1090] gener-
ates a bunch of new atoms before completing rejection tests for
previeusly generated atoms, The full-test algorithm completes the
Lests before the next generation m‘le, but still generates a bunch of
atams each Lime. Lookahssad iz an aptimization method for testing
wider spaces than in Full-teat/Lazy.



main source of AND parallelism is conjunctive matching,
Performing subsumption tests in parallel is also very ef-
fective for Horn clause cases.

In the current MGTP, we have not yet considered the

non-ground and non-Horn cases.

(1) Parallelization of MGTP/G

With the current version of the MGTP/G, we have
only attempted to expleit OR parallelism on the
Multi-PSI machine,

(a} Processor allocation
The processer allocation methods that we
adopted achieve ‘bounded-OR' parallelism in
the sense that OR-parallel forking in the prov-
ing process i3 suppressed so as bo meet re-
stricted resource circumstances.
One way of doing this, called simple alloca-
tion, is sketched as follows. We expand model
candidates starting with an empty model us-
ing a single master processor until the num-
ber of candidates exceeds the number of avail-
able processors, then distribute the remaining
tasks to-slave processors. Bach slave processor
explores the branches assigned without further
distributing tasks to any other processors. This
simple allocation scheme for task distribution
works fairly well since cammunication costs can
be minimized.

(b) Speed-up on Multi-P5I
One of the examples we used is the N-queens
problem given below.

Ci:  true— p(1L,1)p(1,2). . .ip(1,n).

Cnt true— pin,1);p(n,2); ... p(n,n)
Un-r—l : P(XIIK]IP{XEJ .Y’}:-
unaafe{X1,H1x:,Yz]l
— false.

The first N clauses express every possible plac-
ing of queens on an N by N chess board. The
last clause expresses the constraint that a pair
of queens must satisfy. So, the problem would
be solved when either one model (cne solution)
or all the models (all sclutions) are obtained
for the clause set. The performance has been
measured on an MGTP/G prove: running on a
Multi- P51 using the simple allocation method
stated above.

The speedup obtained using up to 16 processors
are shown in Figure 7. For the 10-queens prob-
lem, almost linear speedup is obtained as the
number of processors increases. The spesdup
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Figure 7: Speedup of MGTP/G on Multi-PSI

- [N-queens)

rate is rather small for the d-queens problem
only. This is probably because in such a small
problem, the constant amount of interpretation
overhead would dominate the proper tasks for
the proving process.

(2) Parallelization of MGTP /N

For MGTP /N, we have attempted to exploit AND
parallelism for Horn problems.

We have several choices when parallelizing model-
generation based theorem provers:

1) proofs which change or remain unchanged ac-
cording to the number of PEs used

2) model sharing {copying in a distributed mem-
ory architecture) or model distribution, and

3) master-slave or master-less.

A prooi changing prover may achieve super-linear
speedup while a proof unchanging prover can
achieve, at most, linear speedup.

The merit of model sharing is that time consuming
subsumption testing and conjunctive matching can
be performed at each PE independently with min-
imal inter-PE communication. On the other hand,
the benefit of model distribution is that we can ob-
tain memory scelability. The communication cost,
however, increases as the nomber of PEs increases,
since generated atoms need to flow to all PEs for
subsumption testing.

The master-glave configuration makes it casy to
build a parallel system by simply connecting a se-
quential version of MGTP/N on a slave PE to the
master PE. However, it needs to be designed with
devices so as to minimize the load on the master



140

Table 2: Performance of MGTP/N (Th 5 and Th 7)

Problem 16 FEs 4 PEs
Time (sec) 41725.98 11056.12

ThS Reductions 8070040 40TH9685
KRPS/PE 57.03 57.60
Speedup 1.00 3.7

Time (sec) | 4862993 | 1351447

ThT Reductions 31281411 37407531
KRPS/PE 40.20 43.25
Speedup 1.00 3.60

process. On the other hand, a master-less configu-
ration, such as a ring connection, allows us to achieve
pipeline effects with betier load balancing, whereas
it becomes harder to implement suitable control to
manage collaberative work among PEs.

Our policy in developing parallel theorem provers is
that we should distinguish between the speedup of-
fect caused by parallelization and the search-pruning
effect cansed by strategies, In the preof chang-
ing parsllelization, changing the number of PEs is
merely betting, and may cause the strategy to be
changed badly even though it results in the finding
of a shorter proof.

Given the above, we implemented a proof unchang-
ing version of MGTP/N in a master-slave configu-
ration based on lazy model generation. In this sys-
tem, generator and subsumption processes run in a
demand-driven mode, while tester processes run in a
data-driven mode. The main features of this system
are as follows: ‘

1) Proof unchanging allows ue to obtain greater
speedup as the number of PEs increases;

2) By utilizing the synchronization mechanism
supported by KL1, sequentiality in subsump-
tion testing is minimized;

3) Since slave processes spontanecusly obtain
tasks from the master and the size of each
task iz well equalized, good load balancing is
achieved;

4} By utilizing the stream data type of KL1, de-
mand driven control is easily and efficiently im-
plemented,

By using the demand driven contrel, we can noi
only suppress unmecessary model extensions and
subsumption tests but alse maintain a high running
rate that is the key to achieving linear speedup.

Figure 8 displays the speedup ratic for con-
densed detachment problems #3, #58, and #77,
taken from|[McCune and Wos 1991], by running the

#3

#58

77

idaal
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Figure 8: Speedup ratio

MGTP/N prover on Multi-PSI using 16PEs. The
execution times taken to solve these problems are
218, 12, and 37 seconds. As shown in the figure,
there is no saturation in performance up to 16 PEs
and greater speedup is obtained for the problems
which consume more time.

Table 2 shows the performance obtained by running
MGTP/N for Thesrems 5 and 7 [Overbesk 1890,
which arve also condensed detachment problems, on
MMulti-PSI with 64 PEs. We did not use heuristics
such as sorting, but merely limited term size and
eliminated tautologies. Full unifieation is written in
KL1, which is thirty fo one hundred times slower
than that written in C on SUN/3: and SPARCs.
Note that the average running rate per PE for 64
PEs is actually a little higher than that for 16 PEs.
With this and other results, we were able to obtain
almost linear speedup.

Recently we obtained a proof of Theorem 5 on
FIM/m with 127 PEs in 2870.62 sec and nearly 44
billion reductions (thus 120 KRPS/PE). Taking into
account the fact that the PIM/m CPU is about twice
as fast as that of Multi-PSI, we found that almeost
linear speedup can be achieved, at least up to 128
PEs.

2.2 Reflection and Parallel
Meta-Programming System
Reflection is the capability to feel the current state of the
computation system or to dynamically modify it. The
form of reflection we are interested in is the computa-
tional reflection proposed by [Smith 1984]. We try to



incorporate meta-level computation and computational
reflection in logic programming language in a number of
directions.

As a foundation, a reflective sequential logic language
R-Prolog* has beesn proposed [Sugano 1990]. This lan-
guage allows ue to deal with syntactic and semantic ob-
jects of the language iteelf legally by means of several
coding operators. The notion of computational reflec-
tion is also incorporated, which allows computational
systems to recognize and modify their own computa-
tional states. As a result, some of the extra-logical pred-
icates in Prolog can be redefined in a consistent frame-
wark., We have also proposed a reflective parallel logic
programming language RGHC (Reflective Guarded Horn
Clauses)[Tanaka and Matono 1992], In RGHC, a reflec-
#{ve tower can be constructed and collapsed in a dynamic
manner, using reflective predicates. A prototype imple-
mentation of RGHC has also been performed. It seems
that RGHC is unique in the simplicity of its implemen-
tation of reflection. The meta-level computation can be
executed at the same speed as its object-level compu-
tation. we also fry to formalize distributed reflection,
which allows concurrent executlon of both object level
and meta level computations |[Sugane 1991]. The scope
of reflection is specified by grouping goals that share local
environments. This also models the eventual publication
of constraints.

We have alsa built up
several application systems based on meta-programming
and reflection. These are the experimental ‘program-
ming system ExReps [Tanaka 1991], the process oriented
GHC debugger [Maeda ef ol, 1990, Maeds 1992] and
the strategy management shell [Kohda and Maeda 91a,
Kohda and Maeda 1991b].

ExReps is an experimental programming environment
for parallel logic langnages, where one can input pro-
grams and execute goals. It consists of an abstract me-
chine layer and an execution system layer. Both lay-
ers are constructed using meta-programming techniques.
Various reflective operations are implemented in these
layers.

The process criented GHC debugger provides high-
level facilities, such as displaying processes and streams
in tres views. It can control a the behavier of a pro-
cess by interactively blocking or editing its input stream
data. This makes it possible to trace and check program
execution from a programmer’s point of view.

A strategy management shell takes charge of a
database of load-balancing strategies. When a user job
is input, the current leading strategy and several experi-
mental alternative strategies for the job are searched for
in the database. Then the leading task and several ex-
perimental tasks of the job are started. The shell can
evaluate the relative merits between the strategies, and
decides on the leading strategy for the next stage when
the tasks have terminated.
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3 Applications of Automated
Reasoning

ARS has a wider application area if connected with logic
programming and a formal approach to programming.
We extended MGTP to cover modal logic. This exten-
sion has lead to abductive reasoning in Al systems and
logic programming with negation as failure linked with
broader practical applications such as fault diagnestics
and legal reasoning. We also focused on programming,
particelarly parallel programs, as one of the major appli-
cation ares of formal logic systems in spite of difficulties,
There has been a long history of program synthesis from
specifications in formal logic. We are aiming fo make
ARS, the foundational strength of this approach.

3.1 Propositional Modal Tableaux in
MGTP

MGTPs proof method and the fableaux proof
procedure]Smullyan 1968] are very close in computation-
ally. Each rule of tableaux is represented by an input
clause for MGTP in & direct manner. In other words,
we can regard the input clauses for MGTP as & tableaux
implementation language, as Horn clauses are a program-
ming language for Prolog.

MGTP tries to generate a model for a set of clauses in a
bottom-up manner. When MGTF successfully generates
a model, it is found to be satisfiable. Otherwise, it is
found to be unsatisfiable.

satis fiable

apply(M GTF, ASelO fClauses) = { unsalis fiable

Since we regard MGTP as an inference system, a
propositonal modal tableau[Fiting 1983, Fitting 1988)
as been implemented in MGTP.

spply{ MG TP, Tableauz Prover[ Formula)) = { :fﬁ‘:;:;m
In tableaux, a close condition is represented by a neg-
ative clause, an input formula by a positive clause and
a decomposition rule by a mixed clanse for MGTP in a
direct manner[Koshimura and Hasegawa 1991].

There are two levels in this prover. One is the MGTP
implementation level, the other is the tableaux imple-
mentation level. The MGTP level is the inference sys-
tem level at which we mainly examine speedup of infer-
ence such as redundancy elimination and paralielization.
At the tableaux level, inference rules, which indicate the
property of a proof domain, are described. It follows
that we mainly examine the property of the proof do-
main at the tableaux level. It is useful and helpful to
have these two levels, as we can separate the description
for the property of the domain from the description for
the inference system.
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3.2 Abductive and Nonmonotonic

Reasoning

Modeling sophisticated agents capable of reasoning with
incomplete information has been a major theme in AL
This kind of reasoning is not only an advanced mech-
anism for intelligent agents to cope with some partion-
lar situations but an intrinsically necessary condition to
deal with commonsense reasoning. It has been agreed
that neither human beings nor computers can have all
the information relevant to mundane or everyday situa-
tions. To funetion without complete information, intel-
ligent agents should draw some unsound conclusions, or
augment theorems, by applying such methods as closed-
world assumptions and default reasoming. This kind of
reasoning 15 nenmonotonic: it does not hold that the
more information we have, the more consequences we will
be aware of. Therefore, this inference has to anticipate
the possibility of later revisions of beliefs.

We treat reasoning with incomplete information as a
reasoning system with hypotheses, or hypothetical rep-
soning [Inoue 1988], in which a set of conclusions may be
expanded by incorporating other hypotheses, unless they
are contradictory. In hypothetical reasoning, inference to
reach the best explanations, that is, computing hypothe-
ses Lhat can explain an observation, s called abduclion.
The notion of explanation has been a fundamental con-
cept for various Al problems such as dizagnoses, synthesis,
design, and natural language understanding. We have in-
vestigated methodologies of hypothetical reasoning from
various angles and have developed a number of abductive
and nonmenobonic reasoning systems.

Here, we shall present hypothetical reasoning sys-
tems built upon the MGTP [Fujita and Hasegawa 1891].
The basic ides of these systems is to translate formulas
with special properties, such as nonmonotonic provabil-
ity (negation as failure} and consistency of abductive ex-
planations, inte some formulas with a kind of medality
5o that the MGTP can deal with them using classical
logic. The extra requirernents for these special proper-
ties are thus reduced to generate-and-test problems for
madel candidates., These, can, then, be handled by the
MGTP very efficiently through case-splitting of non-unit
consequences and rejection of inconsistent madel candi-
dates, In the following, we show how the MGTP can be
used for logic programs containing negation as failure,
and for abduction.

3.2.1 Logic Programs and Disjunctive
Databases with Negation as Failure

In recent theories of logic programming and deductive
databases, declarative semanties have been given to the
extensions of logie progeams, where the negation-as-
failure operator is considered fto be a nonmonotonic
modal operator. In particular, logic programs or de-

ductive databases containing both negation as failure
(not) and classical megation (=) can be used as &
powerful knowledge representation tool, whose appli-
cations contain reasoning with incomplete knowledge
[Gelfond and Lafschitz 1991], default reasoning, and ab-
duction [Inoue 1991a]. However, for these extended
classes of logic programs, the top-down approach cannot
be used for computation because there is no local prop-
erty in evaluating programs. For example, there has been
ne top-down proof procedure which is sound with respect
to the stakle model semantics for general logic programs.
We thus need bottarm-up computation fer correet evalu-
ation of negation-as-failure formulas.

In [Inoue et af., 1992a], a botlom-up computation of
answer sets for any class of function-free logic programs is
provided. These classes mclude the extended disjunciive
databases [Gelfond and Lifschitz 1991], the proof proce-
dure of which has not been found. In evaluating not P
in a botlom-up manner, it is necessary to interpret not P
with respect to & fixpoint of computation because, even
if P is not currently proved, P might be proved in sub-
sequent inferences. 'We thus came up with a completely
different way of thinking for not. When we have to evalu-
ate not P in a cerrent model candidate we split the model
candidate in two: (1) the model candidate where P is as-
sumed not to hold, and (2) the model candidate where it
is necessary that P holds. Each negation-as-failure for-
mula rot P is thus translated into negative and positive
literals with a modality expressing belief, Le., ®disbelieve
P" {written as —K.P) and “believe P" (written as KP).

Based on the above discussion, we translate any logic
program (with negation as failure) inlo a posilive dis-
junetive program (without negation as failure) of which
the MGTP can compute the minimal models. The fol-
lowing is an example of the translation of general logic
programs. Let II be a general logic program consisting
of rules of the form:

A!!—.r!.r...;,”., Anr““hian':“#-&n'a [1}

where, n 2m>2120,1 21 = 0, and each A; is an atom.
Rules without heads are called infegrity constraints and
are expressed by ! = 0 for the form (1). Each rule in II of
the form (1) is translated into the following MGTF rule:

HJ-'-].:I JER Aﬂd_"-'mﬂl'llll-“:-'mn. Ailmuﬁql e ||{-1.5

For any MGTF rule of the form (2), if a model candidate
5" satisfies Ayq,..., Am, then 5" iz split inton —m 4+ 1
(mzm=10,0=1{=<1)model candidates. Pruning rules
with respect to “believed” or "disbelieved” literals are ex-
pressed as the following integrity constraints, These are
dealt with by using object-level schemata on the MGTR

—KA, A—
KA, KA —

Given & general logic program [, we denote the set of
rules consisting of the two schemata (3) and (4) by tr{II),

for every atom A (3}
for every atom A (4)



and the MGTF rules obtained by replacing each rule (1)
of IT by a rule (2). The MGTP then computes the fix-
point of model candidates, denoted by M(tr(I1)), which
is closed under the operations of the MGTP. Although
each model candidate in A{#r{Il)) contains “believed”
atoms, we should confisn that every such atom is ae-
tually derived from the program. This checking can be
done very casily by wsing the following constraint. Leb
5 e M(ir(II)).

For every ground atom A, if HA € 5, then A € 5.
(5)
Computation by using MGTP is sound and complete
with respect to the stable model semanties in the sense
that: 5 is za answer set (or stable model) of 11 if and
only if 5 is one of the atoms obtained by removing every
literal with the operator K from a model candidate 5 in
M(tr(T1)) such that 5 satisfies condition (5).

Example: Suppose that the peneral logic program I1
consists of the four rules:

R+—notR,
R+,
FPonotd,”
J—notP.

These rules are translated to the following MGTP rules:

— KR, RIKR,
G—A,

= -KQ, P K@,
—-KP Q|KP.

In this example, the first MGTP rule can be further re-
duced to
—+ KE.

if we prune the first disjunct by the schema (3). There-
fore, the rule has c-nmput.a.hma.]ly the same effect as the
integrity constraint:

1—11.5!!R.

This integrity constraint saye that every answer set has
to contain A: namely, A should be derived. Now, it is
easy to see that M(tr(I)} = { 51, 52, 53 }, where 5; =
{K&,~K@Q,P,KP}, 5; = (KR, K@,~KP g, R}, and
S; = {KR,KG,KF}. The only model candidate that
satisfies the condition {5) is 53, showing that {Q, B} is
the unigue stable model of II. Note that {FP} is not
a stable model because 5, contains KR but does not
contain R,

In [Inoue et al., 1992a), 2 similar translation was also
Eiven to extended digjunetive databases which contain
classical negation, negation as failure and disjunctions.
Qur translation method not only provides a simple fix-
point characterization of answer sets, but also is very
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helpful for understending under what conditions each
model is stable or unstable. The MGTP can find all
answer sets incrementally, without backiracking, and in
parallel. The proposed method is surprisingly simple and
dees not inerease the computational complexity of the
problem more than computation of the minimal models
of positive digjunctive programs. The procedure has been
implemented on top of the MGTP on a parallel inference
machine, and has been applied to a legal reasoning sys-
tem.

3.2.2 Abduction

Thers are many proposals for a logieal acecount of abdue-
tion, whose purpose is to generate query explanations,
The definition we consider here is similar to that pro-
posed in [Poole ef al, 1987]. Let T be a set of formulas,
T & set of literals and & a closed formula. A set £ of
ground instances of T' is an explanation of & from (E,T)
if

I.TUFE|=&, and
2, E U F is consistent.

The computation of explanations of G from (E,T) can
be seen as an extension of proof-finding by introducing
a set of hypotheses from T that, if they could be proved
by preserving the consistency of the angmented theories,
would complete the proofs of G. Alternatively, abduc-
tion can be characterized by a conseguence-finding prob-
lem [Inoue 1991b), in which some literals are allowed to
be hypothesized (or skipped) instead of proved, so that
new thecrems consisting of only these skipped literals
are derived at the end of deductions instead of just de-
riving the empty clause. In this sense, abduction can be
implemented by an extension of deduction, in particular
of a top-dewn, backward-chaining thecrem-proving pro-
cedure. For example, Theorist [Poole ef al., 1987] and
S50OL-resolution [Inoue 1991b] are extensions of the Model
Elimination procedure [Loveland 1978].

However, there iz nothing te prevent us from using
a bottom-up, forward-reasoning procedure to implement
abduction. In fact, we developed the abductive reason-
ing system APRICOT/0 [Ohta and Incue 1580], which
consists of a forward-chaining inference engine and the
ATMS [de Kleer 1986]. The ATMS is used to keep track
of the results of inference in order to avoid both repeated
proofs of subgoals and duplicate proofs among different
hypotheses deriving the same subgoals.

These two reasoning styles for abduction have both
merits and demerits, which are complementary to each
other. Top-down ressoning is directed to the given goal
but may result in redundant proofs. Bottem-up reason-
ing eliminates redundancy but may prove subgoals unre-
lated to the proof of the given goal. These facts suggest
that it is promising to simulate top-down reasoning using
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a boltom-up reasoner, or to utilize cashed resulis in fop-
down reasoning. This upside-down meta-interpretation
[Bry 1990] approach has been attempted for abduction
in [Stickel 1991], and has been extended by incorporat-
ing consisiency checks in {Ohta and Inoue 1992).

We have already developed several parallel abductive
systems [Inoue ef al, 1992b] using the the boltom-up
theorem prover MGTP. We cutline four of them below.

1. MGTP+ATMS (Figure 9).

" This is a parallel implementation of APRICOT/0D
[Okta and Inoue 1990] which wtilizes the ATMS for
checking consistency. The MGTP is used as a
forward-chaining inference engine, and the ATMS3
keeps a current set of beliefs M, in which each
ground atom is associated with some hypotheses.
For this architecture, we have developed an upside-
down meta-interpretation method to incorporate the
top-down information [Ohta and Inoue 1992].

Parallelism is exploited by executing the parallel
ATMS. However, becanse there is cnly one chan-
nel beiween the MGTP and the ATMS, the MGTP
often has to wait for the results of the ATMS, Thus,
the effeei of parallel implementation is limited.

2. MGTP+MGTP (Figure 10).

This is a parallel version of the method described
in {Stickel 1991]. In addition, consistency is checked
by calling another MGTP (MGTP_2). In this sys-
tem, each hypothesis H in I’ is represented by
fact(H,{H}), and each Horn clavse in I of the
form:

AiA L AA, DO,
is translated into an MGTP rule of the form:

Fact(Ar, Br), ..., fact(Ag, En) =

fact{C, cc( U Ei))s
i=]
where E; is & set of hypotheses from I' on which A;
depends, and the function cc is defined as:

{E}— £ if EUFE is consistenf,
B = T nil i £UE is not consistent

A current set of beliefs M is kept in the form
of fact(A, E} representing a meta-stalement that
ZUE | A, but is stored in the inference engine
(MGTP_1) itself. Bach time MGTP.]l derives a
new ground atom, the consistency of the combined
hypotheses is checked by MGT P2,

The parallelism comes from calling multiple
MGTF 2% at one time. This system achieves more
speed-up than the MGTP+ATMS method. How-
ever, since MGTFP_1 is not parallelized, the effect of

perallelization depends heavily on how much consis-
tency checking is being performed in parallel at one
time.

. All Model Generation Method.

No matter how good the MGTP4+MGTP method
might be, the system still consists of two differ-
ent components. The possibilities for parallelization
therefore remain limited. In contrast, model gener-
ation methods do not separate the inference engine
and consistency checking, but realize both lunctions
in a single MGTP. In such a method, the MGTP
iz used not only as an inference engine but also as
& generate-and-test mechanism so that consistency
checks are automatically performed. For this pur-
peose, we can utilize the extension and rejection of
moadel candidates supplied by the MGTP. Therefore,
multiple model candidates can be kept in distributed
memeories instead of keeping one global belief set
M, as done in the above two methods, thus great
I-l'l'!.l:l'lll]‘.h! Df Pﬂl'ﬂ.“ﬂ];!m an ]JE- ﬂbt&iﬂ.ﬂd.

The all model generation method is the most direct
way to implement reasoning with hypotheses. For
each hypothesis H in T, we supply a rule of the form:

= H|-KH, (6)

where “HH means that H is not assumed to be true
in the model. Namely, each hypothesis is assumed
either to hold or not to hold. Since this system may
generate 201 model candidates, the method is often
too explosive for several practical applications.

. Bkip Method.

To limit the number of generated model candidates
as much as possible, we can use a method to delay
the case-splitting of hypotheses. This approach is
similar to the processing of negation as failure with
the MGTP [lnoue et al, 1992a], introduced in the
previous subsection. That is, we do not supply any
rule of the form (6) for any hypothesis of T', but in-
stead, we intreduce hypotheses when they are nec-
essary. When & clause in I contains negative occur-
rences of abducible predicates H;, ..., Hn, (H; €T,
m > 0) and is in the form:

AA L NANEA . AH,DC,
abduzibles

we translate it into the following MGTP rule:
Ay oo, Ap—

Hy,...,Ha, C|=KH ] ... | KHan. (T}
In this translation, each h]potheuia.'m the premise

part is skipped instead of being resolved, and is
moved to the right-hand side. This operation is
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Dependencies ATMS
MGTP
Current Sef of it
Beliafs
Model Generation Consistency Checks

Figure & MGTP4ATMS

MGTP 1 Hypotheses
MGTP_ 2
M Sat / Unsat ce
Model Generation Consistency Checks

Figure 10: MGTP+MGTP

a counterpart to the Skip rule in the top-down
approach defined in [Inoue 1991b).  Just as in
schema (3) for negation as failure, a model candi-
date containing both H and —K.H is rejected by the
schema:

-KH, H— for every hypothesis 1.

Some results of evaluation of these abductive systems
as applied to planning and design problems are described
in [Inoue et al, 1992b]. We are now improving their
pecformance for better parallelism. Although we need
to investigate further how to avoid possible combinate-
rial explosion in model candidate construction for the
slip method, we conjecture that the slip method (or
some variant thereof) will be the most promising from
the viewpoint of parallelism. Also, the skip method
may be easily combined with negation as failure so that
knowledge bases can contain both abducible predicates
and negation-as-fajlure formulas s in the approach of
[Inoue 1991a).

3.3 Program Synthesis
by Realizability Interpretation

3.3.1 Program Synthesis by MGTP

We used FRealizabilily Interprefalion (an extension of
Curry-Howard Isomorphism) in the area of constructive
mathematics [Howard 1980], [Martin 1982] in order to
give an executable meaning to proofs obtained by eff-
cient theorem provers.

Our approach for combining prover technologies and
Realizability Interpretation has the following advantages:

¢ This approach is prover independent and all provers
are possibly usable.,

o Realizability Interpretation has a strong theoretical
background.

o Realizability Interpretation is general enough to
COVET ConcurTent programs.

Two systems MGTP and PAPYRUS, developed in
ICOT, are used for the experiments on sorting alge-
rithms in order to get practical insights into owr ap-
proach(Figure 11).

A model generation theorem prover (MGTP) imple-
mented in KL1 runs on a parallel machine:Multi-FPSI.
It searches for proofs of specification expressed as log-
ical formulae. MGTP is a hyper-resolution based bot-
tom up (infers from premises to goal) prover. Thanks
to KL1 programming technology, MGTP ia simple but
works very effidently if problems satisfy the range-
restrictedness condition. The inference mechanism of
MGTP is similar to SATCHMO[Manthey and Bry 1588],
in principle. Hyper-resolution has an advantage for pro-
gram synthesis in that the inference system is consbruc-
tive, This means that no further restriction iz needed to
avoid useless searching.

FAPYRUS (PArallel Program sYnthesis by Rea-
soning Upon formal Systems) is a cooperative work-
bench for formal logic. This system handles the
proof tress of user defined logic in Edinburgh Logical
Framework{ LF)[Harper ef al, 1987, A typed lambda
term in LF represents & proof and a program can be
extracted from this term by lambda computation. This
system treats programs (functions) as the models of a log-
ical formula by user defined Realizability Interpretation.
PAPYRUS is an integrated workbench for logic and pro-
vides similar functions to PX[Hayashi and Nakano 1988,
MNuprl[Constable et al., 1986], and Elf[Pfenning 1988].

We faced two major problems during research process:

¢ Program extraction from a proof in clausal form, and
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Figure 11: Program Synthesis by MGTF

¢ Incorporation of induclion and equality.

The first problem relates to the fact that programs
cannct be extracted from proofs obtained by using the
excluded middle, as done in classieal logic. The rules for
transforming formulae into clansal form confains such a
prohibited process. This problem can be solved if the
program specification is given in clausal form because a
proof can be obtained from the clause set without us-
ing the excluded middle. The second preblem is that all
induction schemes are expressed as second-order propo-
sitions. In order 1o handle this, second-order unification
will be needed, which still is impractical. However, it
is possible to transform a second-crder proposition to a
first-order proposition if the program domain is fixed.

Proof steps of equality have nothing to do with com-
putation, provers can nse efficient algorithms for equality
as an attached precedure.

3.3.2 A Logic System for Extracting Interactive
Processes

There has been some research

[Howard 1980, Martin 1982, Sato 1986] and
[Hayashi and Nakano 1988] into program synthesis from
constructive proofs. In this method, an interprelation of
formulas is defined, and the consistent proof of the for-
mula can be translated into a program that satisfies the
interpretation. Therefore we can identify the formula as
the apecification of the program, proof as programming,
and proof checking as program checking. Though this
method hes many useful points, the definition of 2 pro-
gram in this method is only ") Term {function)”. Thus
it is difficult to synthesize a program as a parallsl process
by which computers can communicate with the outside
world.

We proposed a new logic u, that is, a constructive
logic extended by introducing new operators u and §.
The operator g is a fixpoint operator on formulae. We
can express the non-bounded repetition of inputs and
outputs with operators g and . Further, we show a
method to synthesize 2 program as a parallel process like
COS5[Milner 1989) from proofs of logic p. We also show
the proof of consistency of Logic u and the validity of the
method to synthesize a program.

3.4 Application of Theorem
Proving to Specification of a
Switching System

We apply a theorem proving technique fo the software
design of a switching system, whose specifications are
modeled by finite state diagrams.

The main points of this project are the following:

1) Specification description language Ack, based on a
transition system.

2} Graphical representation in Ack.
3) Ack interpreter by MGTP,

We intreduce the protocsl specification description
language, Ack. It is not mecessary o describe all state
transitions concretely using Ack, because several state
fransitions are deduced from one expression by means
of thecrem proving. Therefore, we can get a complete
specification from an ambiguous cmne.

Ack is based on a transition system (5, sq, 4, T), where
5 iz a set of state, 35 (€ 8) is an initial state, A is a set
of actions, and T{T € 5 x 4 x 5) is & set of transition
relations,
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Figure 12: An example of Ack specification

Graphical representation in Ack consists of labeled cir-
cles and arrows. A circle means a state and an arrow
means an ackion. Both have two colors: black and gray.
This means that when a gray colored state transition ex-
istz a black coloved state transition exists.

Textual phrase representation in Ack can be repre-
gented by a first order predicate logic by the following.

YXIY(A[X] - B[X,Y]).

where A[X| and B[X, Y] are conjunctions of the fol-
lewing atomic formulas. .

state(S) - 5 means a state.

trans(A,Sp, 51) - An action 4 means a2 state 5y to a
sfate 5.

A[X] corvesponds to grayed color state transitions and
B[X, Y] corresponds to black color state transitions,

The Ack interpreter is described by MGTP. This type
of formula is translated inte an MGTP formule. A set of
models deduced from Ack specification formulae form a
complete state transition diagram.

Figure 12 shows an example of Ack specification,

Rule 1 of Figure 1 means the existence of an ac-
tion sequence from an initial state idle(a) such thal
of fhook{a) — dial{a,b) — of fhook(l). This is rep-
resented by the following formula.

— trans({offhook(a), idle(a),dt{a)),
trans(dial(a, b}, dt{a), rbt{a}},
trans{offhook(b), rbt(a), x(a, b)).

HRule 2 of Figure 1 means that the action of flook{a)

changes any state to idle(a). It is represented by the
following formula.

YWS(state(S) A state(idle(a))
—trans(onhook(a), 8, idle(a))}

Figure 13 shows an interpretation of the result of Fig-
ure 12,

In this example, the following four transitions are au-
tomatically generated.
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Figure 13: An interpretation result of Ack specification

action onhook{a) from idle(a) to idle{a).

action enhook(a) from di{a) to idle{a).

action onhook{a) from rbi{e) to idle(a).

-

action onhook{a) from z(a,b) to idlefa).

3.5 MENDELS ZONE: A Parallel Pro-
gram Development System

MENDELS ZONE iz a software development system for
parallel programs. The target parallel programming lan-
guage is MENDEL, which is a textual form of Petri Nets,
MENDEL is then translated into the concurrent logic
programming language KL1 and execuled on the Multi-
PSI. MENDEL is regarded as a more user-friendly ver-
sion of the language. MENDEL is convenient for the
programmer to use to design cooperating discrete event
systems.
MENDELS ZONE provides the following functions:

1) Data-flow diagram visualizer
[Honiden e af., 1981]

2} Term rewriting system :
Metis|[Ohsuga ef al, 90][Ohsuga et af, 91]

3) Petri Nets and temporal logic based programming en-
vironment
[Uchihira et al., 90a){Uchihira et al., 90b]

For 1), we define the decomposition rule for data-flow
diagram and extract the MENDEL component from de-
composed data-flow diagrams. A detailed specification
process from abstract specification is also defined by a
combination of data-flow diagrams and equational for-
mulas.

For 2), Metis is a system to supply experimental envi-
renment for studying practical technigues for equational
reasoning. The policy of developing Metis is enabling
us to implement, test, and evaluate the latest techniques
for inference as rapidly and freely as possible. The ker-
nel function of Metis is Knuth-Bendix {KB) completion
procedure. We adopt Metie as a tool for verifying the
MENDEL compenent. The MENDEL component can
be translated inte a component of Peiri Nets.

For 3), following sub-functions are provided:



1. Graphic editor

The designer constricts each component of Petri
Nets using the graphic editor, which provides cre-
ation, deletion, and replacement. This editer also
supports expansion and reduction of Petri Nets,

2. Method editor

The method edifor provides several functions spe-
cific to Petri Nets. Using the method editor, the
designer describes methods (their conditions and ac-
tions) in detail using KL1.

3. Component library

Reuszble component are stored in the component
library. The library tool supports browsing and
searching for reusable compeonents.

4. Verification and synthesis toal

Chaly the skeletons of Petri Nets structures are anto-
matically retracted (slots and K11 codes of methods
are ignored) since our verification and synthesis are
applicable to bounded net. The verification tools
verifies whether Pefri Nets satisfy given temporal
logic constraints.

5. Program execution on Multi-PSI

The verified Petri Nets are translated into their tex-
tuat form (MENDEL programs). The MENDEL
programs are compiled inte KL1 programs, which
can be executed on Multi-PS1. During execution, fir-
ing methods are displayed on the graphic editor, and
values of tokens are displayed on the message win-
dow. The designer can check visuelly that program
behaves te satisfy his expectation.

4 Advanced Inference and

Learning

It is expected that we will, before long, face a soffware
erigts in which the necessary quantity of computer soft-
ware cannot be provided even if we were all to engape in
software production. In order to avoid this crisis, it is
necessary for a computer system itself to produce soft-
ware or new information adaptively in problem-solving.
‘The aim of the study on advanced inference and learning
is to explore the underlying mechanism for such 2 system.

In the current stage in which we have no absclute
appreach to the goal, we have had to do erhaustive
searches. We have taken three different but co-operative
approaches: lagical, computational and empirical. In the
logical approach, enalogical reasoning has been analyzed
formally and mechanisms for analogical reasoning have
been explored. [n the computational approach, we have
studied sventing new predieates, which are one of the
most serious problems in learning logic programs, We

have also investigated the application of minimally multi-
ple generalization for constructive logic pograms learning,
In the empirical approach, we have studied automated
programming, especially, the logic program fransforma-
tion and synthesis method based on unfold ffold trans
formation which is a well-known technique for deriving
correct and efficient programe.

The following subsections briefly describe these studies
and their results.

4.1 Analogical Reasoning

Analogical reasoning is often said to be at the very core’
of human problem-solving and has long been studied in
the field of artificial intelligence. We treat a general type
of analogy, described as follows: when two objects, B
(called the base) and T' (called the target), share a prop-
erty 5 [called the similarity), it is conjectured that T
satisfies another property P (called the projected prop-
erty) which B satisfies as well.

In the study of analogy, the following have been central
problems:

1} Selection of an object as a base w.r.t a target,

2) Selection of pertinent properties for drawing analo-
gies..

3) Selection of a property for projection w.r.t. a certain
similarity.

Unfortunately, most previous works were only partially
successful in answering these questions, by proposing so-
lutions a priori.

Chur objective is to clarify, as formally aspossible the
general relationship between those analogical factors T,
8, 5, and P under a given theory A, Tofind the relation-
ship bvetween the analogical factors would answer these
problemns once and for all. In [Arima 1992, Arima 1991],
we clarify such a relation and shew a general solution.

When analyzing analogical reasoning formally based
on classical logic, the following are shown fo be reason-
ahble:

» Analogical reasoning is possible only if a certain form
of rule, called the analogy prime rule (APR), is a
deductive theorem of a given theary. If welet 5{z) =
E(z,5) and P(x) = [I{z, P}, then the rule has the
following form:

Ve, s, o Jau(s,p) A Josj(z,8) A Efz, 5} O 1(=, p),

where each of Jou(s,p), Jas(z,8), E(z,s) and
[z, p) are formulae in which no variable other than
its argument occurs freely,

# An analogical conclusien is derived from the APR,
together with two particular conjectures: one conjec-
tore is J,p( 5, P) where, from the information about



the base case, B(8, 5) (= S(B)) and [I{B, P) (=
P(B)). The other is J.s;(T',5) where, from the in-
formation about the target case, B(T, 5)(= &(T)).

Also, a candidate based on abduction 4 dednction is
shown for 2 non-deductive inference system which can
vield both conjectures,

4.2 Machine Learning of Logic
Programs

Machine Learning is one of the most important themes
in the area of artificial intelligence. A learning ability is
necessary not only for processing and maintaining a large
amount of knowledge information but alse for realizing
a user-friendly interface. We have studied the invention
of new predicates is one of the most serious problems in
learning logic programs. We have also investigated the
application of minimelly multiple generalization to the
constructive learning of logic programs.

4.2.1 Predicate Invention

Shapiro’s model inference gives a very important strat-
egy for learning programs - an incremental hypothesis
search using contradiction backtracing. However, his
theory assurnes that an initial hypethesis language with
enough predicates to describe a target model is given to
the learner, Furthermors, it is assumed that the teacher
knews the intended model of all the predicates. Since this
assumption is rather severe and restrictive, for the prac-
tical applications of learning logic programs, it should be
removed. To construct a learning system without such
assumptions, we have to consider the problem of predi-
cates invention.

Recently, several approaches to this challenging and
diffienlt problem have been pre-
sented [Muggleton and Buntine 1988), and [Ling 1989].
However, most of them do not give sufficient analysis
on the computational complexity of the learning process,
which is where the hypothesis language is growing. We
discussed the problem as nonterminal invention in gram-
matical inference. As is well known, any context-free
grammar can be expressed as a special form of the DCG
{definite clause grammar) logie program. Thus, nonter-
minal invention in grammatical inference corresponds to
predicate invention.

We have proposed a polynomial time learning al-
gorithm for the class of simple deterministic lan-
guages based on nonterminal invention and contradic-
tion backtracking[lshizaka 1990]. Since the class of sim-
ple deterministic languages strictly includes regular lan-
guages, the result is a natural extension of our previous
work[Ishizaka 1989].
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4,2.2 Minimally Multiple Generalization

Another important problem in learning logic programs
iz to develop a constructive algorithm for learning.
Most learning by induction algorithms, such as Shapire's
model inference system, are based on & search or enumer-
ative method. While search and enumerative methods
are often very powerful, they are very expensive. A con-
structive method is usually more efficient than a search
method.

I the constructive learning of logic programs, the no-
tion of least generalization [Plotkin 1970 plays a central
role. Recently, Arimura proposed a notion of minimally
multiple generalization {mmg) [Arimura 1991], a natural
extension of least generalization. For example, the pair
of heads in a clanse in a normal append program is one
head in the mmyg for the Herbrand model of the program.
Thus, mmg can be applied to infer the heads of the tar-
gel program. Arimura has also given a polynomial time
algorithm to compute mmg.

We are now investigating an efficient consfructive
learning method using mmg.

4.3 Logic Program Transformation
/ Synthesis

' Automated programming is one impertant advanced in-

ference problem. In researching
automatic program transformation and synthesis, the un-
fold/fold transformation [Burstall and Darlingten 1977,
Tamaki and Sato 1984] is a well-known program tech-
nique to derive correct and efficient programs.

Though unfold/fold rules provide a very powerlul
methodology for program development, the application
of those rules needs to be guided by strategies to obtain
efficient programs. In unfold/fold transformation, the ef-
ficiency improvement is mainly the result of finding the
recursive definition of a predicate, by performing folding
steps. Introduction of auxiliary predicates often allows
folding steps. Thus, invention of new predicates is one of
the most important problems in program transformation.

On the other hand, unfold/fold transformation is often
utilized for logic program synthesis. In those studies, un-
fold ffold rules are used to eliminate quantifiers by folding
to sbtain definite clause programs from first order formu-
lae. However, in most of those studies, unfold fiold rules
were applied nondeterministically and general methods
to derive definite clauses were not known,

We have studied logic program transformation and
synthesis method based o unfold/fold transformation
and have cbtained the following results,

(1) We investigated a strategy of logic program irans-
farmation based on unfold /fold
rules [Kawamura 1991]. New predicates synthesized
automatically to perform folding. We also extended
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this method to incorporate goal replacement trans-
formation [Tamaki and Sato 1984].

{2) We showed a characterization of classes of first order
formulae from which definite clause programs can
be derived automatically [Kawamura 1992]. Those
formulae are described by Horn clauses extended
by universally quantified implicational formulas. A
synthesis procedure based on generalized unfeld,/fold
rules [Kanamori and Horiuchi 1987] i= given, and
with seme syntactic restrictions, those formulae soc-
cessfully transformed into eguivalent definite clause
PrOgrams.

5 Conclusion

We have overviewed research and development of parallel
automated reasoning systems at ICOT. The constituent
research tasks of three main areas provided us with the
following very promising technological results.

{1} Parallel Theorem Prover and its implementa-
tion techniques on PIM
We have presented two versions of a model-
generation theorem prover MGTP implemented in
ELl: MGTP/G for ground models and MGTP /N
for non-ground models. We evaluated their perfor-
mance on the distributed memory multi-processors
Multi-P5] and PIM.

Range-restricted problems require only matching
rather than full unification, and by making full use
of the language features of KL1, excellent efficiency
was achieved from MGTF/G.

To solve non-range-restricted problems by the model
generation method, however, MGTP /N is restricted
to Horn clause problems, using a set of KL1 meta-
programming tools called the Meta-Library, to sup-
port the full unification and the other functions for
variable management.

To improve the efficiency of the MGTP provers, we
developed RAMS and MERC methods that enable
us to avoid redundant computations in conjunctive
matching. We were able to obtain good performance
results by using these methods on PSL

To ease severe Lime and space requirements in prov-
ing hard mathematical theorems (such as condensed
detachment problems) by MGTP/N, we proposed
the lazy model generation method, which can de-
crease the time and space complexity of the basic
algorithm by several orders of magnitude. Cur re-
sults show that significant saving in computation
and memory can be realized by using the lazy al-
garithm.

For non-Horn grouad problems, case splitting was
used as the basic seed of OR parallel MGTF/G.

(2)

This kind of problem is well-suited to MIMD ma-
chine such as Multi-PSI, on which it is necessary
to make granufarity as large as possible to mini-
mize communication costs. We obtained an almost
linear speedup for the n-queens, pigeon hole, and
other problems on Multi-PS1, using a simple alloca-
tion scheme for task distribution.

For Horn non-ground problems, on the other hand,
we had to exploit the AND parallelism inherent
to conjunctive matching and subsumption.  We
found that good performance and scalability were
obtained by using the AND parallelization scheme.
of MGTP/N.

In particular, our latest results, obtained with the
MGTP/N prover on PIM/m, showed linear speed-
up on condensed detachment problems, at least up
to 128 PEs. The key technique is the lazy model gen-
eration method, that aveids the unnecessary compu-
tation and use of time and space while maintaining
a high running rate.

The full unification algorithm, written in KL1 and
uged in MGTP /N, is one hundred times slower than
that written in C on SPARCs" We are considering
the incorporation of built-in firmware functions to
bridge this gap. Bul developing KL1 compilation
techniques for non-ground models, we believe, will
further contribute to parallel logic programming on
PIM.

Through the development of MGTP provers, we con-
firmed that KL1 is a powerful tool for the rapid
prototyping of concurrent systems, and that paral-
lel automated reasoning systems can be easily and
effectively built on the parallel inference machine,
PIM.

Applications

The modal logic prover on MGTP /G realizes two ad-
vantages. The first is that the redundancy elimina-
tion and parallelization of MGTP /G directly endow
the prover with good performance. The second is
that direct representation of tableaux rules of madal
logic as hyper-resolution clanses are far more snited
to adding heuristics for performance. This prover
exhibited excellent benchmark results,

The basic idea of non-monotonic and abductive sys-
tems on MGTP is to use the MGTP &s an meta-
interpreter for each system's special properties, such
as nonmeonotonic provability (negation as failure)
and the consistency of abductive explanations, inte
formulae having a kind of modality such that MGTP
can deal with them within classical logic. The ex-
tra requirements for these special properties are thus
reduced to “generate-and-iest” problems of model
candidates that can be efficiently handled by MGTP



E.]:Lmugh the caac—spli.l.ﬁing of non-unit COnSequUEnces
and rejection of inconsistent model candidates,

We used MGTP for the application of program syn-
thesie in two ways.

In one approach, we used Realizability Imierprefa-
tion{an extension of Curry-Howard [somorphism),
an area of constructive mathematics, to give exe
cutable meaning to the proofs ocbtained by efficient
Lheorem provers,

Two systems, MGTP and PAPYRUS, both devel-
oped in ICOT, were used for experiments on sort-
ing algorithms to obtain practical insights into cur
approach. We performed experiments on serting
algorithms and Chinese Reminder problems and
succeeded in obtaining ML programs from MGTP
proofs.

To obtain parallel programs, we proposed a new logic
f, that is a constructive logic extended by introduc-
ing new operators p and §. Operater g is a fix-
point operator on formulae. We can express the non-
bounded repetition of inputs and cutpuis with op-
erators g and §. Furthermore, we showed a methad
of synthesizing “program” 2s a parallel process, like
CCS, from proofs of legic p. We also showed the
proof of consgistency of Logic p and the validity of
the method to synthesize “program”.

Our cther appreach to synthesize paralle]l programs
by MGT_P is the use of temporal logic, in which spec-
ifications are modeled by finite stale diagrams, as
follows.

1) Specification description language Ack, based on
a transition system.

2) Graphical representation in Ack.
3) Ack interpreter by MGTP.

It is not necessary to describe all state transitions
coneretely using Ack, because several state transi-
tions are deduced from one expression by theorem
proving in temporal logic. Therelore, we can oblain
a complele specification from an ambigueus ene.

Another approach is to use lerm rewriling sys-
tems(Metis). MENDELS ZONE is a software de-
velopment system for parallel programs. The target
parallel programming language is MENDEL, which
is a textual form of Petri Mets, that is translated into
the concurrent logic programmiog language KL1 and
executed on Multi-PSL

We defined the decomposition rules for data-flow di-
agrams and subsequently extracted programs. Metis
provides an experimental environment for studying
practical techniques by equational reasoning, of im-
plement, and test. The kernel function of Metis is

(3)
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Lhe Knuth-Bendix (KB) completion procedure. We
adopt Metis to verify the components of Petr1 Nets.

Only the skeletons of Petri Net structures are au-
tomatically retracted (slots and the KL1 codes of
methods are ignored) since our verification and syn-
thesis are applicable to a bounded net. The verifi-
cation fool verifies whether Petri Nets satisly given
temporal logic constraints.

Advanced Inference and Learning

To extend the reasoning power of AR systems, we
have taken logical, computational, and empirical ap-
proaches.

In the logical approech, enalogical reasoning, con.
sidered to be at the very core of human problem-
solving, has been analyzed formally and a mecha-
nism for analogical reasoning has been explored. In
this approach, our objective was o darify a gen-
eral relationship between those analogical factors T,
B, 5 and P under a given theory 4, as formally
as possible. Determining the relationship between
the analagical factors would answer these problems
once and for all. We clarified the relationship and
formulated a general solution for them all.

In the computational approach, we studied the én-
venbing of new predicates, one of the most serious
problems in the learning of logic programs. We pro-
posed a polynomial time Jearning algorithm for the
class of simple delerministic languages, based on
nonterminal invention and contradiction backtrac-
ing. Since the class of simple deterministic languages
includes regular languages, the result is 2 natural
extension of our previous work. We have also inves-
tigated the application of minimally multiple gener-
alizatfon to the consiructive learning of logic pro-
grams. Hecently, Arimura proposed the notion of
minimally multiple generalization (mmg) . We are
now investigating an efficient constructive learning
method that uses mmg.

In the empirical approach, we have studied auto-
mated programming, especially, the logic program
fransformation and synihesis method based on an
unfeld/fold transformation, a well-known means of
deriving correct and efficient programs. We inves-
tigated a strategy for logic program transformation
based on unfold/fold rules. Mew predicates are syn-
thesized automatically to perform folding, We also
extended this method to incorperate a goal replace-
ment transformation.

We also showed a characterization of the classes of
first order formulae, from which definite clause pro-
grams can be derived automatically. These formulas
are deseribed by Horn clauses, extended by univer-
sally gquantified implicational formulae. A synthe.
sis procedurs based on generalized unfold/fold rules
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is given, and with some syntactic restrictions, these
formulae can be successfully transformed into equiv-
alent definite clause programs.

These resulis contribute to the de.vclnpmcnt aof FG':E,
not only in Al applications, but also in the foundation of
the parallel logic programming that we regard as being
the kernel of FGCS.
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