PROCEEDIMGS OF THE INTERNATIONAL CONFEREMCE

OM FIFTH GENERATION COMPUTER S5YSTEMS 1992,
edited by ICOT, @ 1COT, 1952

113

CoNSTRAINT LoGIC PROGRAMMING SYSTEM
— CAL. GDCC anp TrER CONSTRAINT SOLVERS —

Akira Aiba and Ryuzo Hasegawa
Fourth Research Laboratory
Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokvo 108, Japan
{aiba, hasegawa}@icot.or.jp

Abstract

This paper describes constraint logic programuming lan-
guages, CAL [ Contrainte Avee Logique) and GDOC
(| Guarded Defintte Clauses with Constraints). developed
at ICOT.

CAL is a sequential constraint logie programming lan-
guage with algebraic, Boolean, set. and linear constraint
solvers. GDCC 1z a parallel constraint logic programm-
ing language with algebraic. Boolean. linear. and integer
parallel constraint solvers.

Since the algebraic constraint solver utilizes the Buch-
berger algorithm. the solver may return answer con-
strainis il:u:ludin,g univariate nonlinear tqua.!.'mus. The
algebraic solvers of both CAL and GDCC" have the fune-
tions to approximate the real roots of univariate equa-
tions to obtain all possible values of each variable. That
is, this funclion gives us the sitvation in which a cei-
tain variable has more than one value. To deal with this
situation, CAL has & multiple environment handler. and
GDOCC has a block structure.

We wrote several application programs in GDCC to
show the feasibility of the constraint logic programming
language.

1 Introduction

The Fifth Generation Computer System (FGCS) project
is & Japanese national project that started in 1982, The
aim of the project is to research and develop new com-
puter technologies for knowledge and symbol processing
parallel computers,

The FGCS prototype system has three layers: the pro-
totype hardware system, the basic software system, and
the knowiedge programming environment. Parallel appli-
cation software has been developed for these. The con-
straint logic progremming system is one of the systems
that form, together with the knowledge base construction
and the programming environment, the knowledge pro-
gramming environment. In this paper, we describe the
overall research results of constraint logic programming

svstems in ICOT.

The programming paradigm of constraint logic pro-
pramming (CLF) was proposed by A, Colmeraver
[Colmeraner 1987] and J. Jaffar and J-L. Lassez [Jaffar
and Lassez 1987] as an extension of legle progranuming
by extending its computation domain. Jaffar and Lassez
showed that C'LP possesses logical. functional. and opera-
tional semantics which coincide with each ather. 1na way
similar to logic programming [van Emden and Kowalski
1976].

In 1936, we bhegan to research and develop high-level
programming languages suitable for problem solving to
achieve our final geal. that is. developing efficient and
POWQIrI.I.]. PZ-I'&'.]I‘.‘I 1::\']..P Iaugungni Il our PI..I.HI]L'I lllﬂl.'h i.!]f.

The descriptive power of a CLP language is strongly
depend on its constraint solver. because a constraint
solver determines the domain of problems which can
ke handled by the CLP language. Almost all existing
CLP languages such as Prolog 1II [Colmerauer 1987] and
CLPiR) [Jaffar and Lassez 1987] has a constraint solver
for linear equations and linear inequalities.

Unlike the other CLP languages. we focused on nonlin-
ear algebraic equation constraints to deal with problems
which are described in terms of nonlinear equations such
as handling robot problem. For the purpose. we selected
the Buchberger algorithm for a constraint solver of our
languages.

Besides of nonlinear algebraic equations. we were also
interested in writing Boolean constraints. sel constraints.
linear constraints. and hierarchical constraints in our
framework. For Boolean constraints. we modify the
Buchberger algorithm te be able to handle Boolean
constraints. and later. we developed the algorithm for
Boolean constraints based on the Boolean unification.
For set constraints, we expand the algorithm for Boolean
constraints based on the Buchberger algorithm. We also
implemenied the simplex method to deal with linear
equations and linear inequalities same as the other CLP
languages. Furthermore, we tried to handle hierarchical
constraints in our framework.

We dE'I.’-E‘].DPEd two CLP Innguagr.- Processors. first we
implemented a language processor for sequential CLP



language named CAL { Contrainte Avec Logique) on se-
quential inference machine PS5l and later, we imple-
mented a language processor for parallel CLP language
named GDOC (| Guerded Definide Clauses with Con-
straints), based on our experiments on extending CAL
processor by introducing various functions.

In Section 2, we briefly review CLP, and in Section 3.
we describe CAL. [n Section 4. we describe GDCC. and in
Section 5, we describe various constraint solvers and their
parellelization. In Section 6. we introduce application
progratns writien in our languages.

2 CLP and the role of the con-
straint solver

CAL and GDCC belong to the family of CLP languages.
The concepl of CLP stems from the commeon desire for
eagy programming. In fact, as claimed in the literature
[Jaffar and Lassez 1987, Sakai and Aiba 1989], the CLP
is 2 scheme of programming languages with the following
outstanding features:

+ MNatural declarative semantics.

¢ Clear operational semnantics that coincide with the
declarative semantics.

Therefore, it gives the user a paradigm of declarative
(and thus, hopefully easy) programming and gives the
machine an effective mechanism for execution that coin-
cide with the user's declaration.

For example, in Prolog (the most typical instance of
CLP), we can read and write programs in declarative
stylelike *... if ... and ...". The system execute these by

a series of operations with unification as its basic mech--

anism.

Almest every CLP langnage has a similar programm-
ing style and a mechanism which plays the similar role 4o
the unification mechanism in Prolog, and the execution
of programs depends on the mechanism heavily. We call
such & mechanism the constraint solver of the language.

Usually, & CLP language aims at a particular field of
problems and its solver has special knowledge to solve
the problems. In the case of Prolog, the problems are
syntactic equalities between terms, that is, the unifica-
tion. On the other hand, CAL and GDCC are tuned to
deal with the following:

» algebraic equations
# Boolean equations
# set inclusion and membership
¢ linear inequalities
These relations are called constrainte.

In the CLP paradigm, a problem is expressed as con-
straints on the objects in the problem. Therefore. an

often cited benefit of CLP is that *One does not need to
write an implementation but a specification.” In other
words, all thal a programmer should write in CLP is
constraints between the objects, but not how to find ob-
jects satisfvinf the relation. To be more precise. such
constraints are described in the form of a logical combi-
nation of formulas each of which expresses a basic unit
of the relation.

Though there are manyv others, the above benefit surely
expresaes an imporiant feature of CLP. Building an equa-
tion 35 usually easier than solving it. Similarly. one may
be able to write down the relation between the objects
without knowing the method to find the appropriate val-
wes of objects which satisfy the relation.

An ideal CLP system should allow a programmer to
write any combination of any well-formed formulas. The
logic programming paradigm gives us a rich framework
for handling legical combinations of censtraints. How-
ever, we siill need a powerful and flexible constraint
solver to handle each constraint. To diseuss the fune-
tion of the constraint solver from a theoretical point of
view. the declarative semantics of CLP [Sakai and Aiba
1989] gives us several criteria. Assume that constraints
are given in the form of their conjunction. Then. the
following are the criteria.

{1} Can the solver decide whether & given constraint is

satisfiable?

{2} Given satisfable constraints, is there any way for the
solver Lo express all the selutions in simplified form?

Prolog's constraint solver, the unification algorithm,
answers these criteria affirmatively and so do the solvers
in CAL and GDCC. In fact. they satisfy the following
stronger requirements almost perfectly:

(8) Given a set of constraints, can the solver compute
the simplest form (called the canonical form of the
congtraints) in a certain sense?

However. these criteria may not be sufficient from an
applicational point of view. For example, we may some-
times be asked the following:

{4) Given satisfiable constraints, can the solver find at
least one concrete solution?

Finding a concrete solution is a question usually in-
dependent of the above and may be proved theoretically
impossible to answer. Therefore, we may need an ap-
proximate solution to answer this partly. As discussed
later, we incorporated many of the constraint solvers and
functions into CAL and GDCC.

Another important feature of constraint solvers is their
incrementality. An incremental solver can be given a con-
straimt successively. It reduces each constraint as simple



as possible by the current set of constraints. Thus. an in-
cremental salver finds the unsatisfiability of a set of con-
straints as early as possible and makes Prolog-type back-
tracking mechanism efficient. Fortunately, the solvers of
CAL and GDCC are fully incremnental like unification.

3 CAL - Sequential CLP Lan-
guage

This section summarizes the syntax of CAL. For a de-
tailed deseription of CAL syntax, vefer to the CAL User’s
Manual [CAL Manual].

3.1 CAL language

The syntax of CAL is similar to that of Prolog, except
for its constraints. A CAL program features two tvpes of
variables: logical variables denoted by a sequence of al-
phamumeric characters starting with an uppercase letter
{as with Prolog variables), and constraint variables de-
noted by a sequence of alphanumeric characlers starting
with a lowercase letter. Constraint variables are global
variables; while logical variables are local varipbles within
the clauses in which they occur. This distinction is in-
troduced to simplify incremental querying.

The following is an example CAL program that fea-
tures algebraic constraints. This program derives a new
property for & triangle, the relation which holds among
the lengths 'of the three edges and the surface area. from
the three known properties.

:- public triangle/4.

surface_area(H,L,8) :- alg:L+H=02%5.
Tight(A,B,C) :- alg:A"2+B~2=C"2.
triangle(h,B,C,5) :-

alg:C=CA+CH,

right (CA.H.4),

right (CB,H,B),

surface_area(H,C,5).

The first clause, “surface_area”, expresses the for-
mula for computing the surface area 5 from the heighe
H and the baseline length L. The second expresses the
Pythagorean theorem for & right-angled triangle. The
third asserts that every triangle can be divided into two
right-angled triangles. (See Figure 1.).

In the following query, heron, shows the name of the
file in which the CAL source program is defined.

?- alg:pra(s,i0), heron:triangle(a,b,c,s).

‘This query asks for the general relationship between
the lengths of the three edges and the surface avea.
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Figure 1: The third clause

The invocation of alg:pre(s,10) defines the prece
dence of the variahle s to be 10. Since the algebraic con-
straint solver utilizes the Buchberger algorithm. order-
ing among monomials is essential for computation. This
command changes the precedence of variables. Initially.
the precedences of all variables are assigned 10 0. There-
fore, m this case. the precedence of variable g is raised.

To this guery. the svstem responds with the following
equation ':

872 = ~1/16%b 441/ 8ea 2" 2-1/16%a" 4
+1/B%c"2%b" 2+ 1 fBec " Twa"2=1/16%c "4,

This equation is. actually. a developed form of Heron's
formula.
When we call the query

?- heron:trianglae(3,4,5,s).
the CAL system returns the following answer:
£°2 = 35

If a variable has finitely many values in all its solutions.
there is a way of abtaining a univariate eguatiocn with the
variable in the Grobner base. Therefore, if we can add
a funetion that enables us to compute the approximate
values of the solutions of univariate equations. we can
approximate all possible value of the variable.

For this purpose. we implemented a method of approx-
imating the real roots of upivarate polyuomials, [n CAL,
all real roots of univariate polynomials are isolated by ol-
taining a set of intervals. cach of which contais one real
root. Then. each isolated real root is approximated by
the given precision.

For application programs. we wanted Lo use approxi
mate values to simplily other constraints. The general
method to do this is to input equations of variables and
their approximate values as constraints. For this pur-
pose, we had to modify the original algorithm to compute
Gribner bases to accept approximate values.

When we call the query

I'This equation represents 1he expression

o 1 1w 1 1 1. . ]
T b — T = —a =W b et =
W TE T S S T
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Fi.EI.IIL" 2: Owerall construction of CAL Ia.nguagr: Proces-
0T

7= alg:set_out_sode(float),
alg:set_errorl{1/1000000) ,
alg:set errorz{1/100000000),
heron:triangle(3,4,5,8),
alg:get_result{eq,1,nonlin R},
alg:find(R,5),
alg:constr{s).

we can obtain the answers 5 = -6.000000038 and & =
§.000000098, successively by backirack.

The first line of the above, 2lg: set_out_mode. sets the
output mode to float. Without this, approximate values
are putput as fractions.

The second line of the above, alg:set_arrorl, spec.
ifies the precision used to compare coefficients in the
computation of the Grobner base. The third line.
set_arror?, specifies the precision used to approximate
real roote by the bisection method.

The essence of the above query is invocations of
alg:pet result/d, and alg:find/2. The fifth line.
alg:get.result, selects appropriate equations from the
Grobner base. In this case, univariate (specified by 1)
non-linear (specified by nonlin) equations (specified by
aq) are selected and unified to a variable B

R is then passed to alg:find to approximate the real
roots of equations in R. Such real roots are obtained in
the variable 5.

Then. 5 is again input as the constraint to veduce other
constraints in the Grobner hase.

3.2 Configuration of CAL system

In this section. we will introduce the overall structure of
the CAL system,

The C'AL Lnn.guugt- pProcessor consists of a translator,
a inference engine. and constraint solvers. These subsys.

tems are combined as shown in Figure 2.
The translator receives input from a wser. and trans-

lates it into ESP code, Thus. & CAL source program

CAL wa 1 {rodvac uy)

T el peein 10, beroncsianglad, 4, 5, a3,
pger_pemlvieg. | maEn. Roaly: RiedoR Sel. il cvannSall

s[5 =261,

Selspr=icabi 935 1054 5 1ER. 768, 5. (1400 12 TRIE S5GE. ST
= e = o DICDOHST),

w = <4

n

e =38
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Figure 3: CAL system windows

is translated into the corresponding ESP program by the
translator. which is executed by the inference engine. An
appropriale constraint solver is invoked everylime the in-
ference engine finds a constraint during execution.

The constraint solver adds the newly obtained con-
straint to-the set-of current-constraints: and-computes
the canonical form of the new set.

At present. CAL offers the five constraint solvers dis-
cussed in Section 1.

3.3 Context

To deal with a sitwation in which a variable has more
than one value. as in the above example, we introduced
context and context tree.

A context is a set of constraints. A new context is
created whenever the set is changed. In CAL, contexts
are represented as nodes of a context tree. The root of
a context tree is called the root context. The user is
supposed to be in a certain context called the current
contexi.

A coutext tree s rhangn:l in the l'u“{:wing CREME:

. Goal execution:
.'J'l. new conlext i.E L'TL‘EtEd ai & Ehl‘jd-lmd(‘ Ur L]:Il' cur=
rent context in the context Lree.

2, C'reation of a new set of constraints by requiring
other answers for a goal:
A new context is created as a sibling node of the
current conlext 1o the context tree.

3. '['l!ang:inﬁ t hre precedence:
A pew context s created as a child-node of the cur-
rent context in the context iree.

Ill H.p“ Cabt's. tJlt" III"I\.'J.;'.' rn:alm] !il'.'l‘d{: rﬁ“]JrEtiE'I.l'lli. LI:IE" 1new
se1 of constraints and becomes the current context.

Several commands are provided to manipulate the con-
text tree: These include a command to display the con-
tents of a context., a command to 81 a context as the



current context, and a command to delete the sub-tree
of contexts from the context tree,

Figure 3 shows an example of the CAL processor win-
dow.

4 GDCC - Parallel CLP Pro-
gramming Language

There are two major levels to parallelizing CLP systems.
One is the execution of the Inference Engines and the
Constraint Solvers in parallel. The other is the execu-
tion of a Constraint Solvers in parallel. There are sev-
eral works on the parallelization of CLP systems: a pro-
posal of ALPS [Maher 1987] introducing constraints into
comanitted-choice language, a report of some preliminary
experiments on integrating constraints into the PEFSys
parallel logic system [Van Hentenryck 1989], and & frame-
work of comcurrent constraint {cc) language for integrat-
ing comstraint programming with concurrent logic pro-
gramming languages [Saraswat 1989,

The cc programming language paradigm models com-
putation as the interaction among multiple cooperating
agents-through the exchange of query and-assertion mes-
sages into & central store as shown in Figure 4.

In Figure 4, query information to the central store is
represented as Ask and assertion information is repre-
sented as Tell

This paradigmn is embedded in a guarded {conditional}
reduction system, where the guards contain the gueries
and assertions. Control is achieved by requiting that the
queries in a guard are true {entailed). and that the as-
serlions are consistent {satisfiable), with respect to the
current state of the store. Thus, this paradigm has high
affinity with KL1 [Ueda and Chikayama 1990). our basic

paralle] language.

Figure 4: The cc language schema

GDCC {Guarded Definite Clauses with Constraints).
which satisfies two level parallelism, is a parallel C'LP
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language introducing the framework of ce. It is imple-
mented in kL1 and is currently running on the Multi-
PSI machine. GDCC includes most of KL1. since KL1
built-in predicates and unification can be regarded as a
distinguished domain called HERBRAND [Saraswat 1989].

GDCC contains Séore. a central database to save the
canonical forms of constraints. Whenever the swvstem
meets an Ask or Tell constraint, the system sends it to
the proper solver. Ask constraints are only allowe:d pas-
sive constraints which can be solved without changing
the content of the Store. While in the Tell part. con-
straints which may change the Sterc can be written. In
the GDOC prograni. only Ask constraints can be written
in guards. This is similar to the KL1 guard in which
aclive unification is inhibited.

GDC'C supports multiple plug-in constraint solvers so
that the user can easilv specifv a proper solver for a do-
rmain.

In this section. we briefly explain the language svntax
of GDOC and its computation medel. Then, the outline
of the system is described. For further informartion about
the implernentation and the language specification. refer
to [Terasaki ef al. 1982].

4.1 GDCC language
A clavse in GDOC has the following syntax:
Head := Ask | Tell, Goal.

where, Head is a head part of 2 clause. =[" 15 a commit
operator. (oalis a sequence of predicate invocations. Ask
denotes Ask-constraints and inveeations of KL1 built-in
guard predicates. and Tell means Tell-constraiuts,

A clavse s enfailed if and only if Ask i vedoced e
true, Any clause with guards which cannot be reduced to
either true or fulse is suspended. The body part. the right
hand side of the commit operator. is evaluated il and
ouly if Askis endailed, (lauses whose guards are reduced
true are called candidate elavses. A GDOU program fails
when either all candidate clauses are rejected or there is
a [ailure in evaluating Tell or Cloals,

The next program is pony_and_man written in GDCCH

pony_and_man(Heads Legs ,Ponies,Men) :- true |
alg# Heads= Fonies + Men,

algh Legs= 4=Ponies + Z#Man.

where. true is an Ask constraint which is always reduced
as frue. In the body, equations which begin with algh are
Tell constraints. alg# indicates that the constraints are
solved by the algebraic solver. In a body part. not only
Tell constraints but normal KL1 predicates can be writ-
ten as well, Bi-directionality in evaluation of constraints.
an important characteristic of CLP. is not spoiled by this
limitation. For example. the gquery
?- pony_and man(5,14 Ponies,Men).
will return Ponies=2, and Men=3, and the query
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?- pony_and man(Heads ,Legs.2,3).
will return Heads=5, and Legs=14. same as in (AL,

4.2 GDCC system

The GDCC system consists of the compiler. the shell. the
interface and the corstraint solvers. The compiler trans-
lates a GDCC source program into KL1 code. The shell
translates queries and provides rudimentary debugging
facilities. The debugging facilities comprise the standard
KLI trace and spy functions, together with solver-level
event logging. The shell also provides limited support
for incremental querving. The nterface interacts with a
GDOC program (chiect code). sends body constraints to
a solver and checks guard constraints using results from
a solver,

GDCC soorce
Figure 5: System Configuration of GV

The GDMC system is shown in Figure 5. The com-
ponents are concurrent processes. Specificallv. a GDOC
program and the constraint solvers may execute in paral-
lel, synchronizing only when, and to the extent, necessary
at the program's guard constraints, That is. program
execution proceeds by selecting a clause. and attempi-
ing to solve the guards of all its clauses in parallel. 1f
one guard succeeds. the evaluation of the other guards
15 abandoned, and execution of the body can begin, Iu
paralle]l with execution of the Body goals by the inference
engiie. any coustraints occurring in the body are passed
to the comstraint solver as they are beiug produced v the
inference engine. This style of cooperation is very lovsely
svuchronized and more declarative than sequential CLP.

4.3 Block

In order to apply GDOC to problems such as handling
robot design problem [Sato and Aiba 1991]. there were
two major issues: handling multiple environiments and
svochronizing the inference engine with the constraint
solvers, For instance, when the solution ¥% = 2 js de-
rived from the algebraic solver, it must be solved in more
detail using a function to compute the approximate real

roots in univariate equations. There are two constraint
sets in this rmnp]r.'. one includes ¥ = ﬁ and the other
includes X = —y/2. In the CAL system. the system
selects one constraint set from these two and solves it.
then. the other is compoted by backeracking (i, e. . a
svstem forces a lailure). In committed-choice language
GDCC. however. we cannot use backtracking to handle
multiple environments. A similar problem occurs when a
meta operation Lo constraint sets is required such as when
computing & maximum value with respect to a given ob-
jective function. Before executing a meta operation, all
target constraints muost be semt to the solver. In a se-
guential CLP, this can be controlled when this descrip-
tion is wrillen in & program. While in GDCC. we need
another kind of mechanism to specify a synchronization
point, since the sequence of clauses in a program does
not relate to the execution sequence.

Introdueing local consiraint sets, however, which are
independent to the global ones, can eliminate these prob-
lems. Multiple environments are realized by considering
each multiple local constraint as one context. An infer-
ence engine and constraint solvers can be synchronized
after evaluating & local constraint set,

Therefore. we introduced a mechanism called block to
describe the scope of a constraint set. We can solve a
certain goal sequence with respect to a local constraint
01 im a hlock. To encapsulate failure in a block. the
shoer mechanism of PIMOS [Chikayvama ef al. 1983] is
uzsed.

5 Constraint Solvers and Paral-
lelization

L this section. constraint solvers for both CAL and
GDOC are briefly described. First, we describe the alge-
braic constraint solver for both CAL and GDOC. Then.
we describe two Boolean constraint solvers — one is a
solver utilizing the modified Buchberger algorithm and
the ather is & solver utilizing the incremental Boolean
elimination algorithm, The former iz for both CAL and
GDOC. while the later is for CAL alone, Third. an inte-
ger voustraint sobver for GDOC is descrilied, and fourth,
& hierarchical constraint solver for CAL and GDOC is
described. In the next subsection.a set constraint solver
for CAL is described. And in the last subsection. a pre
liminary consideration on efficiency improvement of the
algebraie constraint solver by applying dependency anal-
veis of constraints,

All constraint solvers for CAL are written in ESP. and
those for GDC'C' are written in KL1.

5.1 Algebraic Constraint Solver

The constraint domain of the algebraic solver is multi-
variate {nou-linear) algebraic equations. The Buchberger



algorithm [Buchberger 1985) is & method to solve non-
linear algebraic equations which have been widely used
in computer algebra over the past years.

Recently, several attempts have been made to paral-
lelize the Buchberger algorithm, with generally disap-
pointing results in absolute performance [Ponder 1990,
Senechaud 1990, Siegl 1980], except in shared-memory
machines [Vidal 1990, Clarke ef al. 1990]. We parallelize
the Buchberger algorithm while laying emphasis on abso-
lute performance and imcrementality rather than on de-
ceptive parallel speedup. We have implemented several
versions and continue to improve the algorithm.

In this section, we outline both the sequential version
and the pw;all:-l version of the Buchbﬂgﬂ a]gurit.l:ul.

5.1.1 Gribner base and Buchberger algerithm

Without loss of gﬂnera.]'tl.:,r, we can assume that all p-n!}'—
normal equations are n the form of p =10 Let £ =
{p=0,...,p.=0) be a system of polynomial equations.
Buchberger introduced the notion of a Grébner base and
devised an algorithm to compute the basis of a given set
of polynomials. A rough sketch of the algorithm is as
follows (see [Buchberger 1985] for a precise definition).

Leta éertain ordering dindng monoiiials and a systein
of polynomials be given. An equation can be considered a
rewrite rule which rewrites the greatest monomial in the
equation to the polynomial consisting of the remaining
monoruals. For example, if the ordering is £ > X >
B = A, a polynomial equation, £ =X+ F = A. can he
considered to be the rewrite rule. £ — X —B4+4. A pair
of rewrite rules L; — Ry and Ly— Ry, of which L; and
Lo are not mutually prime. is called & erifical pair. since
the least common multiple of their left-hand sides can
be rewritten in two different wayvs, The S-pelynomial of
siuch a pair is defined as:

II’.“I']"I .F.'l,f.!
S-poly(Ly, L3) = Rlimr‘f:'z”j - By [L. ]

where lem{L,, Ly) represents the least common multi-
plier of L; and L.

If further rewriting does not succeed in rewriting the
S-polynomial of a critical pair to zero, the pair is said to
be divergeni and the S-polynomial is added to the sys-
tem of equations. By repeating this procedure, we can
eventually obtain a confluent rewriting system. The con-
fluent rewriting system thus obtained is called a Grébner
base of the original system of equations.

If & Griobner base does not have two rules. one of which
rewrites the other, the Gribner base is called reduced.
The reduced Grobner base can be considered a canonical
form of the given constraint set since it 15 unigue with
respect to the given ordering of monomials. If all the
salutions of & equation f = 0 are included in the solution
get of E, then f is rewritten to zero by the Grébner
base of £. On the contrary, if a set of polynomials £

119

has no solution. then the Griébner base of E ineludes
“1". Therefore. this algorithm has good properties for
deciding the satisfiability of a given constraint set.

5.1.2 Parallel Algorithm

The coarse-grained parallelism in the Buchberger algo-
rithm. suitable for the distributed memory machine. is
the parallel rewriting of & set of polynomials. However.
since the convergence rate of the Buchberger algorithm
i5 very sensitive to the order in which polynomials are
converted into rules. nmplementation must carefully se
lect small polvnomials at an early stage. We have imple-
meented solvers in three different architectures: namely,
a pipeline. a distributed architecture. and a master-slave
architecture., We briefly mention here the masier-slave
architecture sinee this solver has comparatively good per-
formance,
Figure & shows the architecture.

Slave

Subsel of £
“G(E)

Figure G: Avchitecture of master-slave type solver

The set of pelvnonuals £ is physically partitionsd with
each slave taking a differemt part. The initial rule set of
G E) 15 duplicated so that all slaves use the same rule
set. New polynomials are distributed to the slaves by the
master. The outline of the reduction cvele is as follows.

Each slave rewrites its own polynomials by the & £).
selects the local minimmm polynomial from them. and
sends its leading power preduct to the master. The mas-
ter processor wails for reports from all the slaves. and se
lects the global minimum power products. The minimum
polynomial can be decided only after all slaves finish re-
porting Lo the master. A polvnomial. however. which is
not the minimum can be decided quickly. Thus. the not-
minimren message is sent to slaves as soon as possible.
and the processors that receive the wof-mnimum mes
sage reduce polynomials by the old rule set while waitiug
for & new rule. While the slave s receiviag the minimum
message. the slave converts the polynomial into & vew
rule and sends it to the master. The master sends the
new rule to all slaves except the owner. If more than one
candidate have egual power products. then all of these
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candidates are converted to rules by slaves and they go
1o final selection at the master,

Table 1 shows the resulte of the benchmark problems,
The problems are adopted from [Boege ef al. 1986, Back-
elin and Friberg 1991). Refer to [Terasaki ef ol 1992
for further details.

Table 1: Timing and speedup of the masier-slave
arch,(unit:sec)
Processors
Problems 1 2 4 [ 16
Katsura-4 £.00 7.00 5.B3 6.53 0.26
1 1.27 1.53 1.36 0.96
Kataura-5 274 BTH]  JOBE  31.ED 3600

1 1.50 2.18 272 241
Cye.b-roots ITHE 2108 1047 19.16 2520
1 1.31 1.43 1.44 1.10
148008 BGI.62 49978 oas2f 32338
1 1.66 3.50 4.20 4.42

Cye.f-roots

5.2 Boolean Constraint Solver

There are several algorithms that solve Boolean con-
straiots, but we do not know so many that we can get
the canonical form -of constraints, one that can caleu-
late solutions incrementally and that uses no parameter
variables. These criteria are important for using the al-
gorithm as a constraint solver, as we described in Section
2. First, we implemented the Boolean Buchberger algo-
rithm [Sato and Sakai 1988] for the CAL system. then
we tried to parallelize it for the GDCC system. This
algorithm satisfies all of these criteria. Moreover, we de-
veloped another sequential algorithm named Incremental
Boolean elimination, that also satisfies all these criteria,
and we implemented it for the CAL system.

5.2.1 Constraint Selver by Buchberger Algo-

rithm

We first developed a Boolean constraint solver based on
the modified Buchberger algorithm called the Boolean
Buchberger algorithm [Sato and Sakai 1988, Aiba ef af.
1988]. Unlike the Buchberger algorithm, it works on the
Baolean ring instead of on the field of complex numbers.
It calculates the canomical form of Boolean constraints
called the Boolean Grébner base. The constraint solver
first transforms formulas including some Boolean opera-
tors such as inclusive-or (V) andfor net (=) to expres-
sions on the Boolean ring before applying the algorithm.

We parallelized the Boolean Buchberger algorithm in
KLl. First we analyzed the execution of the Boolean
Buchberger algorithm on CAL for some examples. then
we found the large parts that may be worth parallelizing,
rewrniting formmulas by applying rules. We also tried to
find parts in the algorithm which can be parallelized by
analyzing the algorithm itself. Then, we decided to adopt
a master-slave parallel execution madel.

In a master-slave model, one master processor plays
the role of the controller and the other slave processors
become the reducers. The controller manages Boolean
equations, updates the temporary Grbner bases (GB)
stored in all slaves, makes S-polynomials and self-critical
pair polynomials, and distributes equations to the reduc-
ers. Each reducer has a copy of GB and reduces equa-
tions which come from the controller by GB. and returns
non-zero reduced equations to the controller. When the
controller, becomes idle after distributing equations, the
controller plays the role of a reducer during the process
of reduction.

For the 6-gueens problem, the speedup ratio of 16 pro-
cessors Lo a single processor is 2.96. Becanse the parallel
execution part of the problem is 77.7% of whole execu-
tion, the maximum speedup ratio is 4.48 in our model.
The difference is due o the task distribution overhead,
the update of GB in each reducer, and the imbalance of
distributed tasks.

Then. we improved our implementation so as not to
make redundant critical pairs. This improvement causes
the ratio of parallel executable parts to decrease. so the
improved version becomes faster than the original ver-
sion. but thie speedup ratio of 16 processors to a single
processor drop to 2,28,

For mere details on the parallel algorithm and results,
refer to [Terasaki ef ol 1992].

5.2.2 Constraint Solver by Incremental Boolean
Elimination Algorithm

Boolean unification and SLe-resolution are well known
as Boolean constraint solving algorithms other then the
Boolean Buchberger algorithm. Boolean unification is
used in CHIP [Dincbas ef al. 1988] and SL-resolution
is used in Pﬂ:-]us m [Culmcta.ucr 198?]. Boolean uni-
fication itself iz an efficient method. [t becomes ewven
more efficient using the binary decision diagrams (BDD)
as data structures to represent Boolean formulas. Be-
canse the solutions by Boolean unification include extra
variables introduced during execution, it cannot caleu-
late any canonical form of the given constraints if we
execute 1t incrementally. For this reason. we developed
a new algorithm. faeremental Boolean elimination. As
with the Boolean unification, thiz algorithm is based on
Boole's elimination. but it introduces no extra variables,
and it can calculate a canonical form of the given Boolean
constraints,

We denote Boolean variables by z,y.z..... and
Boglean polynomials by A, B, C,.... We represent all
Baoolean formulas anly by legical connectives and (x ) and
ezclusive-or (+). For example, we can represent Boolean
formulas FAG, FVGand ~Fby Fu G, FuG4+F4+G
and F + 1. We use the expression F.—q to represent the
formula obtained by substituting all occurrences of vari-
able = in formula F with formula &, We omit = symbols



as usnal when there is no confusion. We assume that
there is a total order over variables.

We define the nermel Boolean polynomials recursively
as follows.

1. The two constants . and 1 are normal.

2, H two normal Boolean polynomials A and B consist
of only variables smaller than r. then Ar + B is
normal, and we denote it by Ar + B. We call 4 the
coefficient of .

If variable r is at a maximum in formula F. then we can
transform F to the normal formula ( Fo—g+ F oy o= Fray.
Hence we assume that all pelynomials are normal.

Boole's elimination says that if a Boolean formula F
is 0, then Foop % Fioy (= &) is alse 0. Because & does
not include x, if F includes z. then & includes fewer
variables than F. Similarly we can get polynomials with
fewer variables gradually by Boole's elintnations.

Boolean unification unifies r with { Feap+ Fror +1)u+
F,_q after eliminating variable # from formula F. where
u is & free exira variable. This unification means the
substitution x with {Feeo+ Femg +1u+ Fecp, when a new
Boolean constraint with variable r is given, the result
of the substitution contains u instead of r. Thereforve.
Boolean unification unifies « with a formula with another
extra variable.

Incremental Boolean elimination applies the lollowing
reduction to every formula instead of transforming F =0
to 2 = (Fpmg + Fimy + 1)t + Femo and unifying & with
{ Fewg 4 Fazy + 1)t + Frug. That is why the Incremental
Baclean elimination needs no extra variables.

Reduction A formula Cz (" 2 1) is reduced by the
formula 4z @ B = 0 shown below, This reduction tries
to reduce the coefficient of r to 1 if possible, otherwise it
Lries to reduce it to the smallest formula possible.

Cx—x4+BCL+E
Oz — (A4 1)z + BC

AT+ A4+0=1)
(otherwise)

When a new Boolean constraint is given, the following
operation is executed, since Incremental Beoolean elimi-
nation does not execute unification.

Merge Operation Let Cr & D) = 0 be a new con-
straint. and suppose that we have a constraint Ar-+ B =
0. Then we make the merged constraint [AC+ A+ =
(BD + B + D} = 0 the new solution. If the normal form
of ACD + BC 40D 4 D is not 0, we successively apply
the merge operation to it.

This operation is an expansion of Boole's elimination.
That is, if we have no constraint vet, we can consider 4
and B as 0. In this case, the merge operation is the same
as Boole's elimination.
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Example Consider the following constraints. Exactly
ane of five vardables a. b e, d. e{la<b<c<d <e)is |

anbh=0 arc=0 and=0 are=0. bAe=10
bad=0 hne=0. ('.."u.:;=|:]_ ehe=0. dae =1
aWVhvevdive =1

By lncremental Boolean elimination. we can oltain the
following canonical solution.

¢ = d¥e+bta+l
fedkb+a)xad = 0
0+ ) = 1]
axh = 0

The salution can be interpreted as follows. Because 1he
solution does not have an equation of the form dxe = 5.
variable @ is free. Because @ x & = 0, if ¢ = | then
the variable b is 0. Otherwise b is free. The discussion
continues and. finally, becavse e = d e+ b4 a+ Ll a
b. ¢. o are all 0, then vasiable ¢ is 1. Otherwise ¢ is 0.

By assignment of 0 or 1 wo all variables in increasing
order of < under a solution by Boolean Incremental elim-
ination. we can easily oblain any assignments that satisfy
the given constraints: Thus: by intreducing an adeguate
order to variables. we can obtain a favorite enumeration
of assignments satisfy the given constraints.

5.3 Integer Linear Constraint Solver

The constraint solver for the integer linear domain checks
the copsistency of the given equalities and inequalities of
the rational coetficients. and. furthermore, gives the max-
imum or minimum values of the ohjective linear Tunc-
tion under these copstraint conditions. The purpose ol
this constraint solver is 10 provide an efficient constrain
solver for the integer optimization domain by achieving
a computation speedup incorporating parallel execution
into the search process.

The integer linear solver utilizes the rational limear
solver (parallel linear constraint solver} for the optimiza-
tion procedure to obtain an evaluation of relaxed limear
problems created in the course of its selution. A rational
linear solver is realized hy the simplex algorithm. We im-
plemented the integer linear constraint solver for GUO'C,

5.3.1 Integer Linear Programming and Branch

and Bound Method

In the following. we discuss a parallel search et bl
emploved in this integer linear constraint solver. The
problem we are addressing is a mixed integer progranm-
ing problens. namely. w find the maxinum or mininom
value of a given liuear funcrion under the imeger linear
constraints.

The problems can be defined as follows: The problens is
to minimize the lollowing objective lunction vn varialiles
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x; which run on real numbers, and variables y; which run

oL integers:
" M
&= EPr-fl + Z?:‘ ¥
=l i=1

under the linear constraint conditions:

m
Euﬁxr-i-zmy.-ge_,-. for j=1,....1

i=l i=1

n ™
Zfi!'rl'i‘zdfjl'{: folorj=1..k
iml i=1
where
e Roandz; >0 fori=1...., "
w € F, where ;< <u;.
Lo fori=1,_ ., m
and

@i, b, ey, dip. £p Sy are real constants,

The method we use is the Branch-and-Bound alpo-
rithm. OQur algorithm checks in the first place the selu-
tion of the original problem without requiring variables
v in the above to take integer value, We call this prob-
lern a continuously relaxed problem. If the continuously
relaxed problem does not have an integer solution, then
we proceed by dividing the original problem into two sub-
problems successively, producing a tree structured search
space.

Continuously relaxed problems can be solved by the
simplex algorithm, and if the original integer variables
have exact integer values, then it yields the solution to
the integer problem. Otherwise, we select an integer vari-
able y, which takes & non-integer value g, for the solution
of continuously relaxed problems, and imposes two differ-
ent interval consiraints derived from neighboring integers
of the value §,, {, Sv, <[fi) and [f.] + | <y, <u, to the
already existing constraints, and obtains two child prob-
lems {See Figure 7). Contiouing this procedure, which
is called branching, we go on dividing the search space
to produce more constrained sub-problems. Eventually
this process leads to a sub-problem with the continuous
solution which is also the integer solution of the problem.
We can select the best integer solution from ameng those
found in the process,

While the above branching process only enumerates in-
teger solutions, if we have a measure to guarantee that a
sub-problem cannot have a better solution compared to
the already oblained integer solution in terms of the op-
timum value of the objective function, then we can skip
that sub-problem and only need to search the rest of the
nodes. Continuously relaxed problems give a measure for
this, since these relaxed problems always have better op-
timum values for the objective function than the original
integer problems. Sub-problems whose continususly re-
laxed problems have no better optimum than the integer

@F:
/ \ffsyagut
7 QO O

<y, <7
ir = 7]

[#5]+1 Sy, Sub
7 = [§¥+1

Figure T: Branching of Nodes

solution obtained already cannot give a better optimum
value. which means it i unnecessary to search further
(bounding procedure).

We call these sub-problems obtained through the
branching process search nodes.

The following two important factors decide the order in
which the sequential search process goes through nodes
in the search space:

I. The pricrities of sub-problemsinodes) in deciding
the next node on which the branching process works.

2. Selection of a variable out of the integer variables
with which the search space is divided.

It is preferable that the above selections are done in
such a way that the actual nodes searched in the process
of finding the optimal form as small a part of the total
search space as possible. We adopted one of the best
heuristics of this type from operations research as a basis
of our parallel algorithm{jBenichou &t al. 1971]).

5.3.2 Parallelization of Branch-and-Bound

Method

As a parallelization of the Branch-and-Bound algorithm,
we distribute search nodes created through the branching
process to different processors. and let these processors
work on their own sub-problems following a sequential
search algorithm. Each sequential search process com-
municates with other processes to transmit information
on the most recently found solutions and on pruning sub-
nodes. thus making the search proceed over a network of
processors. We adopted one of the best search heuristics
used in sequential algorithms. Heuristics are used for
controlling the schedule of the order of sub-nodes to be
searched. in order to reduce the number of nodes needed
to get to the fAnal result. Therefore, it is important in de-
signing parallel versions of search algorithms to balance
the distributed load among processors, and to communi-
cate information for pruning as fast as possible between
these processors,



We considered a parallel algorithm design derived from
the above sequential algorithm to be implemented on the
distributed memory parallel machine Multi-PS1

Our parallel algorithm exploits the independence of
many sub-processes created through the branching pro-
cedure in the sequential algorithm and distributes these
processes to different processors (see Figure 8), Schedul-
ing of sub-problems is done by the uge of the priority
control facility provided from the KL1 language {See[Oki
el al. 1989]). The incumbent solufions are transferred
between processors as global data to be shared so that
each processor can update the current incumbent solu-
tion as soon as possible,

-

il

Figure 8: Generation of Parallel Processes

5.3.3 Experimental Resulis

We implemented the above parallel algorithm in the KL1
language and experimented with the job-shop scheduling
problem as an example of mixed-integer problems, Be-
low are the results of computation speedups for a “4 job
3 machine” problem and the total number of searched
nodes to get to the solution.

Table 2: Speedup of the Integer Linear Constraint Solver

PrOCESSORS 1 2 4 B

speedup 10 15 19 2.3
number of podes | 242 248 305 480

The above table shows the increase of the number of
searched nodes as the pumber of processors grows. This
is for one reason becange of the speculative computa-
tion inherent in this type of parallel algorithm. Another
reason is that the communication latency produces un-
necessary computation which could have been avoided if
incumbent solutions are communicated instantaneously
from the other processor and the unnecessary nodes are

pruned.
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It is in this way that we get the problem in parallel
programming of how to reduce the growth in size of the
total search space when multi-processors are used com-
pared with that traversed on one processor using sequen-
tial algorithms.

(7]

5.4 Hierarchical Constraint Solver

5.4.1 Soft Constraints and Constraint Hierar-
chies

We have proposed a logical foundation of soft constraints
in [Satoh 1990] by using & meta-language which expresses
interpretation ordering. The idea of formalizing soft con-
straints is as follows, Let hard comstraints be represented
in first-erder formulas. Then an interpretation which sat-
isfies all of these first-order formulas can be regarded as
a possible solution and soft constraints can be regarded
as an order over those interpretations because soft con-
straints represent criteria applying to possible solutions
for choosing the most preferred solutions. We use a meta-
language which represenls a preference order directly.
This meta-language can be translated into a second-order
formula to provide a syntactical definition of the most
preferred solutions.

Although this framework is rigorous and declarative,
it is not computable in general because it is defined by a
second-crder formula. Therefore, we have to vestrict the
class of constraints so that these constraints are com-
putable,

Therefore, we introduce the following restriction to
make the framework computable.

1. We fix the considered domain so that interpretations
of domain-dependent relations are fixed,

2. Soft and hard constraints consist of domain-
dependent, relations only.

If we accept this restriction, the soft constraints can
be expressed in a first-order formula. Moreover. there
is a relationship between the above resiricted class of
soft constraints and hierarchical CLP languages (HCLP
languages) [Borning ef al. 1989, Satoh and Aiba 1990h),
as shown in [Satoh and Aiba 1990z].

HCLP language is a language angmenting CLP lan-
guage with labeled constraints. An HCLP program con-
sists of rules of the form:

b= by By
where ki is a predicate. and by.....b, are predicate in-
vocations or constraints or labeled constraints. Labeled
constraints are of the form:
labal (7

where (' is a constraint in which only domain-dependent
functional svmbels can be functional symbals and Label
is a label which expresses the strength of the constraint
C.

Ag shown in [Satoh and Aiba 1990a], we can calculate
the most preferable solutions by constraint hierarchies
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in the HCLP language. Based on this correspondence.
we have implemented an algorithm for solving constraint
hierarchy on the PSI machine with the following features,

1. There are no redundant calls of the constraint solver
for the same combination of constraints since it cal-
culates reduced consiraints in a bottom-up manner,

2. If an inconsistent combination of constraints is found
by calling the constraint solver, it is registered as a
nogood and is used for detecting further contradic-
tion. Any extension of the combination will not be
processed 50 28 to avoid unnecessary combinations.

3. Inconsistency is detected without & call of the con-
straint solver if a processed combination subsumes a

registered nogood.

In [Borning et al. 1989), Borning et al. give an algo-
rithm for the solving constraint hierarchy, Howewver, it
uses backtracking to get an alternative solution and so
may redundantly call the constraint solver for the same
combination of constraints.

Cur implemented language is called CHAL | Contrainte
Hierarchiques avec Logique) [Satoh and Aiba 1990b]. and
is an extension of CAL.

5.4.2 Parallel Solver for Constraint Hierarchies

The algorithms we have implemented on the PS] machine
have the following parallelism.

1. Since we construct a consistent constraint set in a
bottom-up manner, the check for consistency for
each independent constraint set can be done in par-
allel.

2, We can check if a constraint set is included in no-
goods in parallel for each independent constraint set.

3. There is parallelism inside a domain-dependent con-
atraint solver,

4. We can check for answer redundancy in parallel.

Among these parallelisms. the first one is the most
coarse and the most suitable for implementation on the
Multi-PS] machine. So, we exploit the first paralielism,
Then, features of the parallel algorithm become the fol-
lowing.

1. Each processor constructs & maximal consistent con-
straint set from a given constraint set in a bottom-up
manner in parallel. However, onee a constraint set is
given, there is no distribution of tasks. 5o, we make
idle processors require some task from busy proces-
sors and if a busy processor can divide its task, then
it sends the task to the idle processor.

2. By pre-evaluation of a parallel algorithm, we found
that the nogood subsumption check and the redun-
dancy check have very large overheads. So. we do
not check nogoed subsumptions and we check redun-
dancy only at the last stage of execution.

Table 3: Performance of Parallel Hierarchical Constraint
Solver{unit: sec)

problems 1 ] 4 8 18
Teled 423 ¥ » n 2
13 134 134 148

1
Squesn B 88 26 21 13

1 1
Bguesn 31T 4 148 m &0
1 196 380 671 1034

Table 3 shows the speedup ration for three examples.
Teled 35 1o solve ambiguity in natural language phrases.
Squeen and fiquecn are to solve the 5 queens and 6§ queens
problem. We represent these problems in Boolean con-
straints and use the Boolean Buchberger algorithm [Sato
and Sakai 1988, Sakai and Aiba 1989] to solve the con-
straints,

According to Table 3. we obtain 1.34 speedup for Teled.
3.63 speedup for Squeen, and 10.34 speedup for Sgqueen.
Although Bqueen s a large problem for the Boolean
Buchberger algorithim and gives us the largest speedup,
the speedup saturates at around 16 processors. This ex-
presses that the load is not well-distributed and we have
to look for a better load-balancing method in the future,

5.5 Set Constraint Solver

The set constraint solver handles any kind of constraint
presented in the following conjunction of predicates.

Ffz. X)

F 3. X)

where each predicate Fi|#, ¥)isa predicate constructed
from predicate symbols €. C., # and =, function symbols
M. U. and -~. element variables #, and set variables ¥,
and some symbols of constant elements.

For the above constraints. the solver gives the answer
of the form:

hiz.X)=0

fil®. .‘1;".”]'= 0
hi(Z)=10

.h.nl::i.] =0

where hy(2) = 0. ..., ha(T) = 0 give the necessary
and sufficient conditions for satisfying the constrainis.
Moreover. for each solution for the element variables, the
system of whole equations instantiated by the solution
puts the original constraints info a normal form {ie. a
solution).

For more detailed information on the constraint solver,
refer to [Sate ef al 1991].



Let us first consider the following example.

A*ncenE = @
CUE 2 B
CUE 2 D
pPnBE~ 2 A
A“nB ¢ D
AuUB 2 D

where the notation A~ denotes the complement of A.
Since a class of sets forms a Boolean algebra, this con-

straint can be considered a Boolean constraint. Hence we

can solve this by computing its Boolean Grébner base:

D = A4 B
Esl = E+4+C+1
AxB = 10

We should note that there is neither an element vari-
able nor a constant on elements in the above constraints.
Hence they can be expressed as Boolean equations with
variables A, 8, C, D and E. This, however, does not nec-
essarily hold in every constraint of sets,

Consider the following constraints with an additional
three predicates including elements.

ATnc nE” = §
CUE 2 B

CUE 2 D

pnE~ 3 A

A“nB € D

ALB 2 D

fﬂﬂ{:}]U{Eﬂ{P}} = pn{z,p}

r & A

P £ B

where T is an element variable and p is a constant symbol
of an element.

This can no longer be represented with the Boolean
equations as above. For example the last formula is ex-
pressed as {p} # B = 0, where {p} is considered a coeffi-
cient. In order to handle such general Boolean equations,
we extended the notion of Boolean Grobner bases [Sato
et al. 1991], which enabled us to implement the set con-
straint solver,

For the above constraint, the solver gives the following

AnSWer:

D = A+B
EsC = E+C+1
_At.ﬂ = 0
{z}+EeB = {z}+E+{z}+«B4{=}
{#}=C+A = {p}eC+{p}+A+{p}
{r}=E = {p}+4A
{r}sC = {2}+B
{z}xA = 0
(p}eB = 0
}efe} = 0
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In this example, {p} * {x} = 0 is the satisfiability con-
dition. This holds if and only if £ # p. In this case.
there are always A, B.C and [ that satisfy the original
constraints. The normal form is:

D = A+B

Eal = E4C4+1

AsB = 0
{z}sEsB = {[z}«E+4 {z])sB+{z]
{phsC=a = {p}*C+{p}sA+{pl

{p}+E = {p}ed

{z}sC = {z}=B

{r}sd = 10

{pl+E = 0

.

5.6 Dependency Analysis of Constraint
Set

From several experiments on writing application pro-
grams, we can conclude that the powerful expressiveness
of these languages is a greal aid to programming, since
all users have to do to describe a program is to define the
essential properties of the problem itself. That is. there
iz no need to describe a method to solve the problem.

On the other hand. sometimes the generality and
power of constraint solvers turn oul Lo be a drawback
for these languages. That is, in some cases, especially for
very powerful constraint solvers like the algebraic con-
straint solver in CAL or GDCC, it is difficult to ime
plement them efficiently because of their generalities, in
epite of great efforts.

As a subsystem of language processors, efficiency in
constraint selving is, of course, one of the major issues in
the implementation of those language processors [Mat-
riott and Sendergaard 1990, Cohen 1990].

In general, for a certain constraint set, the efficiency of
constraint solving is strongly dependent on the order in
which constraints are input to a constraint solver. How-
ever. in sequential CLP languages like CAL, this order is
determined by the position of constraints in a program.
because a constraint solver solves constraints accumu-
lated by the inference engine that follows SLD-resolution.

In parallel CLP languages like GDCC, the order of con-
straints input to a constraint solver is more important
than in sequential languages. Since an inference engine
and consteaint solvers can rum in parallel, the order of
constraints is not determined by their position in a pro-
gram. Therefore, the execution time may vary according
to the order of constraints input to the constraint solver.

In CAL and GDCC, the computation of & Grobner
base iz time-consuming and it ie well known that the
Buchberger algorithm is doubly exponential in worst-case
complexity [Hofmann 1989]. Therefore, it is worthwhile
to rearrange the order of constraints to make the con-
straint solver efficient.
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We actually starled research into the order of con-
strainis based on dependency analysis [Nagai 1991, Nagai
and Hasegawa 1991). Thiz analysis consisted of datafiow
analysis, constraint set collection, dependency analysis
on constraint sets, and determination of the ordering of
goals and the preference of variables,

To analyze dataflow, we use top-down analysis based
on SLD-refutation. For & given goal and a program. the
invocation of predicates starts from the goal without in-
voking a constraint solver, and variable bindings and con-
straints are collected,

In this analysis, constraints are described in terms of
graphical (bipartite graph) representation. An algebraic
structure of s set of constraints is extracted using DM
decomposition [Dulmage and Mendelsohn 1963], which
computes a block upper triangular matrix by canoni-
cal reordering & matrix corresponding to the set of con-
straints,

As a result of analysis. a set of constraints can be parti-
tioned inte relatively independent subsets of constraints.
These partitions are oblained so that the number of vari-
ables shared among different blocks is as small as possi-
ble. Besides this partition, shared variables among parti-
tions and shared variables among constraints inside of a
block are aleo obiasined. Based on these results, the order
of goals and the precedence of variables are determined.

We show the results of this method for two geometric
theorem proving problems [Kapur and Mundy 1988, Kut-
zler 1988): one is the theorem that three perpendicular
bisectors of three edges of a triangle intersect at a point.
and the other is the, so-called, nine points circle theorem,
The former theorem can be represented by 5 constraints
with 8 variables and gives about 3.2 times improvement.
The latter theorem can be represented by 9 constraints

with 12 variables and gives about 276 times improvement. |

6 CAL and GDCC Application
Systems

To show the feasibility of CAL and GDCC. we imple-
mented several application systems. In this section,
two of these, the handling robot design support system
and the Voronoi diagram construction program, are de-
scribed.

6.1 Handling Robot Design Support
System

The design process of a handling robot consists of a fun-
damental structure design and a internal structure design
[Takano 1986]. The fundamental structure design deter-
mines the framework of the robot. such as the degree of
freedom. pumber of joints. and arm length. The inter-
nal structure degign determines the internal details of the

robot, such as the mortar torque of cach joint, The han.
dling robot design support systemn mainly supports the
fundamental structure design.

Currently, the method to design a handling robot is as
follows:

1. First. the type of the robot, such as cartesian manip-
ulator. cvlindlical manipulator. or articulated ma-
nipulator has to be decided according to the require-
ments for the robot.

2. Then. a svstem of equations representing the rela.
tion between the end effeclor and joints is deduced.
Then the svstem of equations is transformed to ob-
tain the desired form of equations.

3. Next. a program to analyze the robot being designed
is coded by using an imperative programming lan-
guage. such as Fortran or C.

4. By executing the program, the design is evaluated.
If the result is satisfactory, then the design process
terminales, otherwise. the whole process should be
repeated until the result satisfies the requirements.

By adopting the CLP paradigm to the design process
of a handling robot, through coding a CLP program rep-
resenting the relation obtained in 2 in the above, the
transformation can be done by executing the program,
Thus. processes 2 and 3 can be supported by a computer.
6.1.1 Kinematics and Statics Program by Con-
straint Programming

Robot kinematics represents the relation between a posi-
tion and the orientation of the end effector, the length of
each arm. and the rotation angle of each joini. We call a
position and an orientation of the end effector. hand pa-
rameters, and we call the rest, joint parameters. Robot
statics represent the relation between joint parameters:
force working on the end-effector, and torque working on
each jeint [Tohyama 1989], These relations are essential
for analyzing and evaluating the structure of 2 handling
robot.

To make a program that bandles handling robot strue-
tures, we have to describe a program independent of its
fundamental structure. That is. kinematics and stat-
ica programs are constructed to handle any structure of
robot by simply changing a query.

Actually, these programs receive a matrix which rep-
resents the structure of a handling robot being designed
in terms of a list of lists. By manipulating the struc-
ture of this argument, any type of handling robot can be
handled by the one program.

For example. the following query asks the kinematics
of a handling robot with three joints and three arms.

robot({[[cos3, sin3, 0, 0, 23, 0, 0, 1],
[cos2, sin2, x2, 0, 0, 1, o, 0],
[cos1, sini, O, O, zi1, O, O, 1]],



5,0,0,1,0,0,0, 1,0,
px, PY, PZ, aX, ay, &z, X, <y, cz}.

where the first argument represents the structure of the
handling robot, px, py, and pz represenis a position, ax,
ay, az, cx, ¢y, and cz represents an orientation by defin-
ing two unit vectors which are perpendicular to each
other. sin's and ces's represent the rolation angle of
each joint, and =3, %2, and =1 represent the length of
each arm. For this query, the program returns the fol-
lowing answer.

cogl™2 = 1-gini™2
cog2™2 = 1-gin272
cogd”2 = 1=-3in3"2
P = -G¥cos2#gind*sini+z_J*sind#sinl
+i*coadrcoal+y_Z¥coal
py = Becopdvginl+x 2*sinl
+Gecosivcoad*gind-z _3+*cosi*sin?
pz = E¥sind+sind+z_1+z_3#cosl
axr = -l#cogl+sini+ainl+cosdscasl
ay = cos3#sinl+cosl®*cos2%sind
ar
= 4

sind®aind

= -j#cogl*sind-cosd*cosl*sinl
¢y = -i*sind+*sini+cosdrcosiscosl
cE = cosl3kgind

That is, the parameters of the position and the orien-
tation are expressed in terms of the length of each arm
and the rotation angle of each joint.

Mote that this kinematics program has the full features
of the CLP program. The problem of calculating hand
parameters from joint parameters is called forward kine-
matics, and the converse is called inverse kinematics. We
can deal with both of them with the same program.

This program can be as a generator of programs
dealing with any handling robot which has a user de-
signed fundamental structure.

Statics bas the same features as the kinematics pro-
gram deseribed. That is, the program can deal with any
type of handling robot by simply changing its query.

8.1.2 Censtructien of Design Support System

The handling robot design support system should have
the following functions '

1. to generate the comstraint representing kinematics
and statica for any type of robot,

2. to solve forward and inverse kinematics,

3. to calculate the tosque which works on each joint,
and

4. to evaluate manipulability.

The handling robot design support system consists of
the following three GDCC programs in order to realize
these functions,

Kinematics a kinematica program

127

Statics a statics program
Determinant a program to calculate the determinant
of a matrix

Kinematics and Statics are the programs we de-
scribed above., A matrix to evaluate the manipulabil-
ity of a handling robot, called a Jacobian matrix. is ob-
tained from the Staties program. Determinant is used
to caloulate the determinant of a Jacobian matrix. This
determinant is called the manipulability messure and it
expresses Lthe manipulability of the robot quantitatively
[Yoshikawa 1984).

To obtain concrete answers. of course. the svstem
should utilize the GDCC ability to approximate the real
roots of univariate equations,

6.2 Constructing the Voronoi Diagram

We developed an application program which constructs
Voranot Diagram written in GDCC.

By using the constraint pa.radigm. we can make a pro-
gram without describing & complicated algorithm. A
Woronoi diagram can be constructed by using constraints
which describe only the properties or the definition of
the Voronoi diagram.: This program can compute the
Voronei polvgon of each point in parallel.

6.2.1 Definition of the Voronei Diagram

For a given finite set of peinls § in a plane. a Voronoi
diagram is a partition of the plane so that each region
of the partition is a set of points in the plane closer Lo
a point in 5 in the region than to any other poinis in 5
[Preparata and Shamos 1985].

In the simplest case, the distance between two points is
defined as the Euclidian distance. In this case, a Vorono
diagram is defined as follows,

Given a set 5 of N points in the plane, for each point
P in 5. the Voronoi polygon denoted as V{ P} is defined
by the following formula.

ViP) = {P|d\P F) < d{F,P;)¥j # i}

where d{ P. F;) is a Euclidian distance between P and F.
The Voronoi diagram is a partition so that each region
is the Voronoi polygoen of each point {see Figure 9). The
vertices of the diagram are Voroned vertices and its line
segments are Voronoi edges.
Voronoi diagrams are widely used in various applica-
tion areas, such as physics, ecology and urbanology.

6.2.2 Detailed Design
The methods of constructing Voronoi diagrams are clas-
sified into the following two categories:

1. The incremental method{[Green and Sibson 1978]},
and
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Figure 9: A Voronoi Diagram

2. The divide-and-conguer methed{[Shameos and Hoey
1973]).

However, the simplest approach to constructing a
Voronoi diagram iz, of course, constructing its polvgons
one at a time.

(Given two points, F; and F;, a set of points closer to
F; than to F; is just a half-plane containing £ that is
divided by the perpendicular bisector of FF;. We name
this line H{P,, P,).

The Voronoi polygen of F, can be obtained by the fol-
lowing formula.

VIF) =Nz HIF.F) . p

By using the linear constraint solver for GDCC. the
Voronoi polygon can be constructed by the following al-
gorithm which utilizes the above methed Lo obtain the
pelygon directly.

E,={x20, y20. 2 < Taass ¥ S YUMoz

iloop a}
fori= | ton
' Fg = lincar_comstraint solver{ E, )
forj=1t%ton
Hfj & i) then
Ey — ¥ < (Pie = P} /(Piy = Py)- 2
P+ PL - PL— BL)[2-(Py — Py

OF; — ]mm_mmm,lnlrer{E‘, UCF;_)
Let {2q),eq2. ....eqe {0 < k < n) be
& set of equations obtained by changing
inequality symbels in CF) to equation symbels.
{loop b}
forl=1tok
vertices == {}
mi=1
whila (m =< k &
pumber of elements of vertices = 2)
pp +— interseciion(eqr, egm )
if pp satisfies the constraint set OF;
then vertices := {pp} U vertices
mi=m+1
add the line segment between vertices
to Voronoh edges.
end.

In this algorithm, the first half computes the Voronoi
polygon for each point’s F; by obtaining all perpendicular
bisectors of segments between F; and other points and
eliminating redundant ones. The second half computes
the Voronoi edges.

*This inequality represents a half plane divided by a perpendic-
ular bisector of (F;, Fj)

Table 4: Runtime and reductions

Processors Reductions

Poinis 1 2 4 & 15 { = L000)

10 130 67 33 17 16 Ao
1 15936 3044 7877 T.344

20 G0 447 241 123 1] 42460
1 1880 3685 T216 10097

50 4341 2187 1102 566 36 210490
1 2007 3981 7.74%  13.085

10 | 1787 4578 4305 391 1263 230500
1 2015 4.014 7887 15.679

00 { 52360 26095 13028 G508 3500 2468420
1 2004 4.008 B.04T 14.958

400 | 20704 110208 54543 27318 14R10 10161530
i 2.003 4048 K082 1458090

To realize the above algorithm on paralle]l processors,
each procedure for each ¢ in loop a in the above is as-
signed to a group of processes. That is, there are n
process groups. Each procedure for each [ in the loop
b is assigned to & process in the same process group.
This means that each process group contain k processes.
These n = k processes are mapped onto mu!t.] -Processor
machines.

6.2.3 Resultz

Table 4 shows the execution time and speedup for 10 to
400 points with 1 to 15 processors.

According to the results, we can conclude that. when
the number of points is large enough, we can obtain ef
ficiency which is almost in proportion to the number of
PTOCEsaoTs.

By using this algorithm, we can handle the problem of
constructing a Voronol diagram in a very straight forward
manner, Actually, comparing the size of the programs,
this algorithm can be described in almost one third of
the size of the program that is used by the incremental
method.

T Conclusion

In the FGCS project, we developed two CLP languages:
CAL, and GDCC to establish the knowledge programm.--
ing environment, and to write application programs. The
aim of our research is to construct a powerful high-level
programming language which is suitable for knowledge
processing. It is well known that constraints play an im-
portant role in both knowledge representation and knowl-
edge processing. That is, CLP is a promising candidate
as & high level programming language in this field.

Compared with other CLP la.nglugas such as CLP(R),
Prolog ITI, and CHIP, we can summarize the features of
CAL and GDCC as follows:

¢ CAL and GDUC can deal with nonlinear algebraic
constraints.



s In the algebraic constraint solver, the approximate
values of all possible real solutions can be computed,
if there are only finite number of solutions.

e CAL and GDCO bave a multiple environment han-
dler. Thus, even if there iz more than one answer
copstraints, users can manipulate them fexibly.

‘s Users can use multiple constraint solvers, and fur-
thermore, users can define and implement their own
constraint solvers,

CAL and GDCC enable us to write possibly nonlinear
polynomial equations en complex numbers, relations on
truth values, relations on sets and their elements, and
linear equations and linear inequalities on real numbers.

Since starting to write application programs for the al-
gebraic constraint solver in the field of handling robot,
we have wanted to compute the real roots of univariate
nonlinear polynomials. We made this possible with CAL
by adding a function to approximate the real roots, and
we modified the Buchberger algorithm able to handle ap.
proximation values.

Then, we faced the problem that a variable may have
more than one value, To handle this situation in the
framework of logic programming, we introduced a con-
text tree in CAL. [n GDCC, we introduced blocks into
the language specification. The block in GDCC not only
handle multiple values, but also Iocalize the failure of
constraint solvers,

As for CAL, the following issues are still to be consid-
ered:

1. Meta facilities:
Users cannot deal with a context tree from a pro-
gram, that is, meta facilities in CAL are insufficient
to allow users to do all possible handling of answer
constraints themselves.

2. Partial evaluation of CAL programs:
Although we try to analyze constraint sets by adopt-
ing dependency analysis, that work will be more f-
fective when combined with partial evaluation tech-
nology or abstract interpretation.

3. More application programs:
We still have a few application programs in CAL. By
writing many application programs in various appli-
cation field, we will have ideas to realize a more pow-
erful CLP language. For this purpose, we are now
jrnplementing CAL in a dialect of ESP, called Com-
mon ESP, which can run on the UNIX operating
system to be able to use CAL in various machines.

As for GDCC, the following issues are still to be con-
sidered:

1. Handling multiple contexts:
Although current GDCC has functionalities to han-
dle multiple contexts, users have to express every-
thing explicitly. Therefore, we can design high-level
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tools to handle multiple contexts in GDMCC's lan-
guage specification.
2, More efficient constraint solvers:
We need to improve both the absolute performance
and the parallel speedup of the constraint solvers.
3. More application programs:
Since parallel CLP language is quite new language,
writing application programs may help us to make
it powerful and efficient.

Considering our experiences of using CAL and GDCC
and the above issues, we will refine the specification and
the implementation of GDCC.

These refinements and experiments on various applica-
tion programs clarified the need for a sufficiently efficient
constraint logic programming system with high function-
alities in the language facilities.
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