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Abstract

Knowledge representation languages and knowledge-
bases play a key role in knowledge information pro-
cessing systems. In order to support such systems. we
have developed a knowledge representation language.
Qurxore, a database management system, Kappe, as
the database engine, some applications on Qrryvors
and Kappa, and two experimental systems for more
flexible contrel mechanisms.

The whole system can be considered as under
the framework of deductive object-oriented databases
(DOODs) from a database point of view. On the other
hand, from the viewpoint of the many similarities be-
tween database and natural language processing, it can
also be considered fo suppert situated inference in the
sense of situation theory. Our applications have both
af these features: molecular biological databases and a
legal reasoning system, TRIAL, for DOOD and a tem-
poral inference system for situated inference,

For efficient and flexible control mechanisms. we
have developed two systems: cu-Prolog based on un-
fold ffold transformetion of constraints and dynamical
programming based on the dynamics of constraint net-
works.

In this paper, we give an overview of RED ac
tivities for databases and knowledge-bases in the
FGCS project, which are aimed towards an integrated
knowledge-base management system.

1 Introduction

Since the Fifth Generation Computer Systemn [FGCS)
project started in 1982, many knowledge informalion
processing systemns have been designed and developed
as part of the RE&ED activities in the framework of logic
and parallelism. Such systems have various data and
knowledge, that is. expected to be processed efficiently
in the form of databases and knowledge-bases such as

electronic dictionaries. mathematical databases. molec-
ular biological databases, and legal precedent databases
!, Representing and managing such large amounts of
data and knowledge for these systems has besn a major
problem. Cur activities on databases and knowledge-
bases are also devoted to such data and knowledge
under logic paradigm.

Since the late seventies, many data models have been
proposed for extension of the relational model i o
der to overcome various disadvantages such as inefli-
cient representation and inadequale gquery capability.
Among their extensions. deductive dolabases atiracted
many researchers not only in logic communities but
also in artificial intelligence communities. because of its
logic platform and strong inference capability. Many
efforts on deductive databases have defined the theoret-
ical aspects of databases and have showed the powerful
capabilitv of query processing. Hewever. from an ap-
plication point of view. the data modeling capability
is rather poor. This s mainly due to representation
hased on first-order predicates, which inherits the dis-
advautages of the relational model. On the otler hand.
object-orienled databases have become popular among
extensions of the relational model for coping with "nwew’
applications such as CAXN databases and multi-media
datahases. The Hexibilite and adaptability of object-
orientation concepts should be examined also in the
context of deductive databases. even il object-oriented
databases have disadvantages such as poor formalism
and semantic ambiguity.

I The boundars hetwesn defobases and buowledge-buses s
apcisar and their usage depends on contexi. Most datshase
conumunities prefer 10 wse the term dafaboss even 0 databeses
store @ sel ol niles and have an mference capahiliny such
as deduction and abduction: eg. deductive dasabases, expert
daisbases. and self-organizable datsbases. lo this paper. we
alse use the term dofebase according 1o this convemion. The
term kvewledge-basr in our title shows ovur view thit an ap-
proach hased oo extensicns of databsses 15 @ better way Lo
rea! knowledge-bases than based on conventional Luowledge-
bases uscd by cxpert systems.
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As 1L is  appropriate fer advanced applications
lo integrate their advantages. we propoesed  de-
ductive  [and] olject-oviented  dolabases  [(DOODs)
[Yokota and Nishio 1989] ? . where exlensions of the
relational model (or deductive databases and object-
criented databases) are considered from three direc
tions: logic, data model. and computational model, The
DOOD can be said to be a framework for such exten-
sicns. On the other haned. considering the many simi-
larities hetween DOODs and patural language process.
g, the framework is also appropriate for situated in-
ference in natural language processing. Such an obser-
vation leads us firmly towards an integrated knowledge-
base management system over databases and knowl-
edge represenlation languages.

In the FGCS project, we focus on DOODs as the
target of knowledge-base management systems, based
on the above observation, and have developed a
knowledge-base {or knowledge representation) language
tharors, its database engine Kappa. and their appli-
cations. Qurroare is a DOOD language. Also, a DOOD
system based on QurveTs has been implemented. We
outline their features n Section 2. In order to process
& large amount of data efficiently in the DOOD system.
there should be a database engine at the lower laver.
The engine is called Kappa, the data model of which is
a nested relational model as a subclass of DOODs, For
more efficient processing, a parallel database manage-
menl svstermn. Nappa-P, has been implemented on par-
allel inference machines. The data medel and svsiem
are described in Section 3. We are also developing some
applications on the DOOD svstem: a legal reasoning
swatemn {TRIALL a molecular biclogical database. and a
temparal inference system in natural language process-
ing. An overview is given in Section 4. Together with
the above works. we are engaged in R&D on more Hexi-
ble control of logic programs: constraint transformation
and dynamical programming. which are expected to be
embedded in Qurvers. We explain these in Section
A, Their relationship is shown o Figure | Finallv we
describe related works and future plans for furiher ex-
tensions of our knowledge-base managenent sysienm.

2 Knowledge  Representation
Language ( Quzxore)

Our approach to knowledge-bases follows the previ-
cusly mentioned  deductive object-oriented datalbases
(DOODY The language. called Qurvers, designed lor
the Dl}jF‘l‘l‘i'l.-'E" has various features * : a constraint loagie
programming language, a situated programming lau-

*loternational conferences were held i Kyote aond M-
nich [I(illi el al. 198, Delobe] of al Hi'ﬂl.] Lo work towards surh
InLegEALionN.

*See the details in [Yasukawa of of 198

guage, object-orented database programming language.
and a DOOD language. besides the features appearing
in Figure L.

2.1 Basic Concepts

Consider the example[Yoshida 1991] in Figure 2 for the
genetic information processing system. In the figure,

chiect(refl Patterson et al (198117}
1991 /424
[kind| paper).
authors|[ T} Patierson’,
5. Graw’,
UL Jomes”

title{ ' Demonstration by somatic cell genetics of
coordinate regulation of genes for two
engvmes of puring synthesis assigned to
human chromosome 21°),

journal{"'Proc. Natl. Acad. Sci. USA").

volume| 78],

pages{ 405-409),

ryem[lgﬂ_l]

).

Figure 2: A Record (Term) in Prolog

the third argument of the term is peculiar a tuple
{in the form of a list) consisting of pairs of a label
and its value, The cuthor label has a set value. also.
i the form of a list and some values might have a
more complex value {another tuple). User programs
must he responsible for such structure and unification
afmong these terms. The reason wll:.' such a slructure
is necessary is that a record type (2 scheme) cannot be
decided in advance. That is. we can get only partial
information for an object, because the object itsell is
not stable. generally. Such charactenstics do not nec-
egsarily allow application of conventional normalization
in the relational model to the design. By introducing
an identity concept. such a record can be represented
i the form of a set of binary relations. each of which
has an identifier. however this is too inefficient in repre-
sentation.

Ly Qrervers, we introduce the concepts of an oliject
sdendifier (od) and a property. both of which are based
on compler object constreetors. The example w1 Figure
2 can be vepresemied as in Figure 3 in Qurvers. In
the figure. the lefl handd side of =/ is an oid jcalled an
object ferme Lo-term} in Quryvore) and the right hand
dide is the related properties. An oljec! consists of an
oiel and s properties, and can be witten as a set of
atfribute terms (a-ferms) in Quryors with the same
oid as fallows:

ofly=u.ly=h = oflli=al. oflli=H
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Applications
Genome Databases for Genetic Information Processing
Legal Precedent Databases for Legal Reasoning
Dictionaries for Natural Language Processing
Semantic Representation in Natural Langnage
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Figure 1: The Framework of a Knowledge-Base (DOOD) Management Svstem of the FGCS Project

object|ref="Patierson et al (1981)"]/
date=1991/4,/24,
Ind=paper,
authors={'D. Patterson’,
. Graw’,
'C. Jones'

2

title="Demonstration by somatic cell ics of
coo:ﬂ'mﬂt&mgqlntim ol;h,gclnm or tvéut
engymes of punng synthesis assigned to
human chromosome 21°,

journal="Proc. Natl. Acad. Sc1. USA®,

bageed05.109

pagea= '

]}re-ar=1981

Figure 3: An Object in Gurxore

Such description is effective for processing partial in-
formation. Atiributes in an o-term are intringic for the
object:

oll=¢/lh=a,bh=b <= oli=d/l=ch=a,l;=1

where the right hand side, “[--]", of */" is called
the abtrbution of ofl = ¢f. An attribute in an o-term
ie called an infrinsic (or immutable) attribute and an
attribute appearing only in the attribution is called an
extrinsic (or mutable) attribute 1.

*We sometimes sbuse the terms atiribefe and propery. Al
though both an aftribuie and & property are, usually, & pair of a
label and a (possibly complex) value, an afiribute i3 frequently
used in the context of record structure, while a property i fre-

- Another problem is the expressive power-of oids and
properties, First. along the style of logic programming,
an oid can be defined intensionally by a set of rules as
follows:

path{from=X to=Y] < are[from= X to=Y].
path[from= X te=Y] & are[from=X.to=Z].
pathifrom=Z to=Y].

In this program. path[from = X, to=VY] is transitively
defined from a set of facts such as arc[from=a.lo=1}
and so on, and the oid is generated by instantiating X
and ¥ as the result of execution of the program. This
guarantees that an object can have a unique oid even if
the object is generated in different environments. Fur-
thermore. in order to define a circular path. we must
introduce a tag and represent a, so-called. complex ob-
ject with a set and a tuple construetor.

Xbo[l=X] «— X|{X=ofl=X])
oli={a,---.b}] = oll=a]r--- noll=b

The first example shows that a variable X is an oid
with a constraint. X =¢[l = X]. The second shows that
a set in an o-term can be decomposed into conjunction
of o-terms without a set constructor.

quently wsed In the context of object structure. In QUIXYOTE. a
pair of a label and & value {or a sriple of a label, an operator.
and & valoe) is called an aftribude. however, in the context of
inheritance, we use property inheritance as a convention. As
only extrinsic attributes are inherited in CQUIXYOTE. as men-
tioned later, extrinsic atiributes are simply called properties,
Furiherimore. there & a case where an attribute means only a
label, as i an aiteibute-value pair, the meaning., however. is
usually clear in the context.
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On the other hand, properties might be indefinite,
that is, only mn the form of constraints. We introduce
the following operators between a label and & (set of)
value, and transform them into a set of constraints by
introducing dot notation:

of [l=2] of [{od = a}
of(I—+a] of|{o C a}
of[{—a] ofl{od D a}

of {od Zg {a.-- . b}}
of [l = {a,---. b} of[{ed Cg {a.---.b}}
ofll+{a, --.b}] of{o.d Dy {a.---.b}}

The right hend side of */|" is a set of constraints
about properties, where Ty and Jgy are a partial or-
der generated by Hoare ordering defined by C and 2
respectively, and =y is the equivalence relation. If an
attribute of a label [ is not specified for an object o.
¢ is copsidered to have a property of [ without anv
constraint.

The semantics of oids iz defined on a set of labeled
graphs as a subclass of hypersetsjAczel 1988): an oid is
mapped to a labeled graph and an attribute iz related
to a function on a set of labeled graphs. In this sense.
attributes can be considered methods to an object as in
F-logic[Kifer and Lausen 1980].

The reason for adopting a hyperset theory as the
semantic domain is to handle an infinite data structure.
The details can be found in [Yasukawsa ef al. 1992).

ofli={a,--.5})

rrrnes

2.2 ﬁuhsumptiun Relation and Prop-
erty Inberitance

Given a partial order relation in a set of basic (non-
structural} objects. we can constitute a lattice in a set
of ground object terms, the order of which 5 called
the subsumpiion relafion ©. This 15 already used as
a relation for properties as constraints. According to
the relation, properties are inherited dowaward and for
upward among objects. A general properly inheritance
rule is as follows:
0y Cos 3 o Cogl
where intrinsic attributes are out of inheritance. Ac-
cording to the rule, we can get the following;
01 03, oa/[{ey.0 Ca} = of[{a,.iC a}
o C oy, of[{erd Ja} == o03/[{ezd J a}
o Eor E o, oyf[{mpd =a} == o/|{o,lCal.
03/|{0s.l 3 a}
where it can be noted that og/]{os.l E a} is og/[l — al:
that is, property inheritance is constraint inheritance.

In complex o-terms, intrinsic attributes canse the ex-
ception of property inheritance:

ofl=a|C 0. of[l=b] = oll=a]/{l=4a]

Multiple inheritance is defined wpward and downward
as the merging of constraints:

01 C 02, 01 C 03. 02/ [l —a), o3/[I—b]

== of[l = meet{a.b)]
0y Jog. 09 3 a. oaf[lea]. oaf I8

= o[l join{a. b)|

where a set of constraints are reduced by the constraint
solver.

2.3 Program and Database

A module concept is introduced in order to classify
knowledge and handle {local) inconsistencies. Let m be
& modwle identifier (mid) (syntactically the same as an
o-term) and @ be an a-term. then m:a is a propesition,
which means that m supports a. Given a mid m. an
a-term ¢. and propositions py.---, pg, a rule is defined
as follows:
Moa =Py P

which means that a module with a mid m has a rule
such that if py.---.pn hold. ¢ holds in a module with
a mid m. If a mid is omitted in p;, m is taken as
the default and if m i1s omitted, the rule is held in all
modules. @ is called a head and gy, -, py is called a
body. As an a-term can be separated into an o-term
eand a set of constraints. the rule can be rewritten as

follows:
m:of |Chy 4= myteg, - - g 10, ]|Cs-

where a 2 of [Ty, oy = myc oy, and O = (G U
oo Oy is a head constraind and Cg s a body
constrainf, Their domain is o set of labeled graphs.
Note that constraints by a-terms in a body can be
included in Cp. Compared with conventional constraint
logic programming, a head constraint is new.

A module is defined as a set of rules with the same
mid. We define the acyclic relation among modules, a
submodule relation. This works for rule inheritance as
fellows:

my Jg mg
My g My U (ms | mg)

where my inherits a set of rules in my, and my in-
herits a set of rules defined by set operations such as
mty U (g mg ). Sel operations such as intersection and
difference are syntactically evaluated. Even if a module
is parametric. that is, the mid is an o-term with vari-
ables, the submodule relation can be defined. In order
to treat the exception of rule inheritance, each rule has
properties such as local and overriding: a local rule is
not inherited to other modules and an overriding rule
obstructs the mheritance of mles with the same head
from other modules.



A program or a defebase is defined as a set of rules
with definitions of subsumption and submodule rela-
tions. Clearly, a program can be also comsidered as
a set of modules, where an object may have different
properties if it exists in different modules. Therefore.
we can classify a knowledge base into different med-
ules and define a submodule relation ameng them. If
a submodule relation is not defined ameng two med-
ules, even transitively, an object with the same oid may
have different (or even incomsistent) properties in its
modules, The semantics of & program is defined on the
domain of pairs of labeled graphs corresponding to a
mid and an o-term. In this framewerk, we can clas-
gify a large-scaled knowledge-base, which might have
ineonsistencies, and store it in a QuiroTe database.

2.4 Updating and Persistence

QurroTe has a concept of nested transaction and al-
lows two kinds of database update:

1} incremental insert of a doefebase when issuing a
query, and

2} dymemic insert and delete of o-ferms and a-ferms
during query processing.

We can issue a query with a new database to be added
to the existing database. 1) corresponds to the case
For example, consider the following sequence of queries
to a database DB:

query sequence to 008 equivalent query

7 begin transactiocn.

7. @y with DB, = T4 to DBUDE,
- begin transaction.

e @@y with DH,, = 7@y te DBUDEUDE.
?- abert_transacticm.

T (a with D8s. = -y to DBUDELUDE;
- Q. = Ty to DBLDE,UDH;

7- and_transaction.

After successful execution of the above sequence, DS is
changed to PP U DB, U DB;. Each DB, may have def-
initions of a subsumption relation or a submedule rela-
tion, whick are merged into definitions of the existing
database, If pecessary, the subsumption or submodule
hierarchy is reconstructed, By rolling back the transac-
tion, such a mechanism can alse be used as hypothesis
reasoning. :

2) makes it possible to update an o-term or its (mu-
table] properties during query processing, where trans-
actions are located as subtransactions of a transaction
in 1), In order to guaraniee the semantice of update,
so-called AND- and OR-parallel executions are inhib-
ited. For example, the following is a simple rule for
updating an employees' salary:

93
pay[year= 1992, dept = X][[raise=Y
<begin_transaction;
employee[num=Z|/[dept =X salory =W}
—employes[num = Z|[[salary =W
© dremployeenum = Z|{[salary = New]:
end transaction
[HNew=W ¥}

il M

where " specifies sequential execution in order to sup-
press AND-parallel execution. "4" means insert. and
“=" means delete,

Excepi for the objects to be deleted or rolled back
during query processing, all {extensional or intensional)
objects in a Qurrors program are guaranteed to be
persistent. Such persistenmt objects are stoved in the
underlying database management svstem {explained in
the next section} or a file system.

2.5 Query Processing and the System

Qurxore is basically a constraint logic programming
language with object-erientation features such as ob-
ject identity, complex object. encapsulation. type hier-
archy, and methods. However. this query processing is
different from conventicnal querv processing because of
the existence of oids and head constraints. For exam-
ple. consider the following program: '

lot[nun = X]/[prize; —a] &= X C 2n.
lotnum= X]/[prizez— b &= X C 3n.
lotfnum=X|/[prize; — ] <= X C 3n.

where 2n iz a type with a mulliple of two, Given
a query Mlot[num = 30)/[prize; = X, prize; = V). the
answer i5 X C meet{a, ) and ¥ — b, that is.

lot[num = 30]/[prize;, — meet{a, ), prize; — b].

First, because of the existence of oids, all rules which
possibly have the same oid must be evaluated and
merged if necessary. Therefore, in Qurrors, a query
is always processed in order to obtain all solutions.
Secondly, as a rule in Qurrore has two kinds of con-
straints, a head constraint and a body constraint, each
of which consists of equations and inequations of dot-
ted terms besides the varizble environment. the deriva-
tion process is different from conventional constraint
logie programming:

(Go,B) = --- - (0.C,)

where f; is a set of subgoals and ) is a set of con-
straints of the related variables. On the other hand,
in Qurxete, each node in the dervation sequence is
(G.A,C). where G is a set of subgoals, A is a set of
assumpiions consisting of a body constraint of dot-
ted terms, and C is a set of comclusions as a set
of constraints consisting of a head constraint and a
variable environment. Precisely speaking, the deriva-
tion is not a sequence but a directed acyclic graph in

— [G“C_"} — &
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Qurrore. because some subsumption relation among
assumptions and constraints might force the two se-
quences lo merge: for example, (G A, C) and (& A, O
are merged into {r. A, CUC). Therefore, the derivation

is shown in Figure 4, where the environment to make

(Go. Ao, 0)

e,

I

(Gi. Al Ch) (G A;.C))

{Ge. A Ci)

t“- -"'im'fhn]

Figure £: Derivation in Qurxore

it possible to merge two sequences is restricted: only
results by the. so-called, OR-parallel that includes rules
inherited by subsumption relation among role heads
can be merged innermostly. The current implementa-
tion of query processing in QuTroTe is based on a
tabular method such as QLDT in order to obtain all
solutions. Sideways information passing is also imple-
mented by considering not only binding infertation
but also property inheritance,
We list some features of the Quryors svetem:

» A QuryoTe program is stored in persistent stor-
age in the formy of both the “source’ code and
the -object” code, each of which consists of four
parts: control information. subsumption relation.
submodule relation, and & set of rules. Persistence
i5 controlled by the persistence manager. which
switches where programs should be stored. A set
of rules in the ‘object’ code is optimized to sep-
arate extensional and intensional databases as in
conventional deduective databases,

® When a user builds a huge database in Qurxore,
il can be written as a set of small databases in-
dependently of 2 module concept., These can be
gathered into one database, that is, a database can
be reused in another database.

e When a user utilizes data and knowledge in
Qurrore, multiple databases can be accessed si-
rmultanesusly through the Qurrore server, al
though the concurrency control of the current ver-
sion of QuraoTs is simply implemented.

¢ L'sers can use databases through their applica-
tion programs in ESP [Chikayama 1984] or ELI
[Ueda and Chikavama 1990], and through the spe.
cific window interface called Qmacs.

The environment is shown in Figure 5.

The first version of Qurvers was released in Decem-
ber, 1991. A second version was released in April. 1992,
Both versions are written in KL1 and work on paral-
lel inference machines (PIMs) [Goto ef al. 1988] and its
operating svstem (PIMOS) [Chikayama el al. 1988].

3 Advanced Database Manage-
ment System (Kappa)

In order to process a large database in Qurxors effi-
ciently. a database engine called Rappe has been devel-
oped * In this section. we explain its features,

3.1 Nested Relation and Quzxore

The problem is which part of Qurrores should be sup-
ported by a database engine because enriched represen-
tation is a trade-off in efficient processing. We intend
for the database engine te be able to. also. play the
role of a practical database management system. Con-
sidering the various data and koowledge in our knowl-
edge information processing environment. we adopt an
erfended nested relationel model, which corresponds to
the class of an o-term without infinite structure in
Qurvore. The term "erfended” means that it supports
a mew data type such as Prolog term and provided
extensibifity as the svstem architecture for various ap-
plications, The reason why we adopt a nested relational
model is. not surprisingly. to achieve efficient represen-
tation and efficient processing.

Intuitively. a nesfed refotion is defined as a subset of
a Cartesian product of domains or other nested rela-
tions:

ANR C Eyx---xE,
E; == D|2¥R
where D is a set of atomic values. That is, the relation
may have a hierarchical structure and a set of other re-
lations as a value. This corresponds to the introduction
of tuple and set constructors. From the viewpoint of
svntactical and semantical restrictions, there are vari-
ous subclasses. Extended relational algebra are defined
to each of these.

In Kappa's nested relation, a set constructor is used
only as an abbreviation of a set of normal relations as
follows:

{rih=a.bi={k.---.b: }]}
= {:r'[fi =a,ly=k], -, rllh=ala=b]}

"Sea the desails in [Kawamura et ol 1992).
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Figure 5: Environment of Quryors

The operation of =" corresponds to an unnesf oper-
ation, while the opposite operation (“<=") corresponds
to a mest or group-by operation, although “<=" is not
necessarily congruent for application of nest or group-
by operation Sequences, Thal 35, in Kappa, the seman-
tics of a nested relation is the same as the corespond-
ing relation without set construeters. The reason for
taking such semantics is to retzin first order seman-
tics for efficient processing and to remain compatible 1o
widely used relational databases. Given a nested tuple
nt, let the corresponding set of tuples without a set
constructor be nf. Let a nested relation be

NR= {n!l_....'nfu}
where nj= {1y, dg)} fori=1,--+.n,

then the semantics of V& is

Ulti_= {tllr” L | TTRREI S PR ..t.-,;-_]‘.

imt
Extended relational algebra to this nested relational
database is defined in Kappa and produces results ac-
cording to the above semantics, which guarantees to
produce the same result to the corresponding relational
database, except for treatment of the label hierarchy.

A query can be formulated as a first order language.
we, generally, consider this in the form of a rule con-
structed by nested tuples. As the relation among facts
in a database is conjunetive from a proof-theoretic
point of view, the semantics of a rule is clear according
to the above semantics. For example, the following rule

rlh =X h={a,b.c}]
= B,ri=Y L=ld ¢}, h=2], F.

can be transformed into the following set of rules with-

oul set constructors:

I‘[h =X, h = E]

= B.rly=Y h=d =2 r[li=Y.la=c. [h=2]. B"
."[h =X !-3 = bl

= A. J"IJT; =Y.ly=d.l3= E]~ ’Jl['l‘ =¥V.lz=c.lz= 2’] B
F‘[I| =.X. E-; =1‘.,'-]

= Bor'ily=Y h=d li=2] v [l=Y.lz=c. lh=7] B
That is. each rule can also be unnested. The point
of efficiently processing Kappa relations is fo reduce
the number of unnest and nest operations: that is. to
process sets as divect]y as possible.

Under the semantics. guery processing to nested rela-
tions is different from conventional procedures in bogic
programming. For example. consider a simple database
consisting of only one tuple:

ffly = {a.b) .4y = {b.c}].

For & query 7-r|l; = X. L = X]. we can get X = {b}.
that is. an intersection of {a.b} and {br}. That is.
a concept of wnification should be extended. In order
to generalize such a procedure, we must introduce two
concepts into the procedural semantics[Yokota 1988}

1} Residue Coals
Consider the following program and a query:

rli=5"1+= B.
Tarli=5].

If 505 is mot an emply set during unification
between r[l = 5] and [l = 5']. new subgoals are
to be r[l = 5\ 5. B. That is. a residue subgoal
rll= 5" &' is generated if 5\ 53 is not an empty
set. otherwise the unification fails. Note that there
might be residue subgeals if there are multiple set
values,

2) Binding as Constraint
Consider the following database and a guery:

) i'1_“|=f"1]. )
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F'glig =|'.;"=]-
=X [l =X

Although we can get X = 5) by unification he-
tween r|ly = X] and n[l; = 51] and & new subgoal
rally = 5;], the subsequent unification results in
rglls=5;1M5;] and a residue subgoal rafla= 5,3 5.
Such a procedure is wrong, because we should
have an answer X = ;1 5. In order to avoid
this situation, the binding information iz tempo-
rary and plays the role of constraints to be re-
tained:

rll = X, rajls = X]
= ry[ly = X]|{X € 5}
= ||{X € 5 5]

There remains one problem where the unigue represen-
tation of a nested relation is not necessarily decided in
the Kappa model. as already mentioned. In order to
decide a unigue representation. each nested relation has
a sequence of labels to be nested in Kappa.

As the procedural semantics of extended relational
algebra in Kappa is defined by the above concepts, a
Kappa database does not necessarily have to be now-
malized also in the sense of nested relational models.
in principle. That is, it is unnecessary for users to be
conscious of the row nest structure.

Furthermore, nested relational model is well known
to reduce the number of relations in the case of multi-
value dependency. Therefore. the Kappa model guar
antees more efficient processing by reducing the num-
ber of tuples and relations. and more efficient repre-
sentation by complex construction than the relational
model.

3.2 Features of Kappa System

The nested relational model in Kappa has been im-
plemented. This consists of a sequential database
management svstem Kappa-IT [Yokota ef al. 1988] and
a paralle]l database management system Rappa-P
[Kewammura et al. 1992]. Kappa-II, written in ESF.
works on sequential inference machines {PSls) and its
aperating system (SIMPOS). Kappa-P, written in KL1,
works on parallel inference machines (PIMs) and its op-
erating system (PIMOS). Although their architectures
are not necessarily the same because of envircnmental
differenices, we explain their common features in this
subsection,

& Data Type ) .
As Kappa aims at a database management system
{DBMS) in a knowledge information processing en-
vironment, a new data type, term, is added. This

i5 because various data and knowledge are fre-
guently represented in the form of terms. Unifica-
tion and matching are added for their operations.
Although unification-based relational algebra can
emulate the derivation in logic programming. the
features are not supported in Kappa because the
algebra is not so efficient. Furthermore. Kappa dis-
criminates one-byte character [ASCIL) data from
two-bvte character (JI5) data as data types. It
contributes te the compression of huge amounts of
data such as genetie sequence data.

o Command fnterfaces
Kappa provides two kinds of command interface:
basic commands as the low level interface and ex-
tended relational algebra as the high level inter-
face. In many applications. the level of extended
relational algebra. which 5 expensive, is not al-
ways necessary, In such applications, users can re-
duce the processing cost by using basic commands.

In order to reduce the communication cost be-
tween a DBMS and a user program, Kappa pro-
vides user-definable commands, which can be exe-
cuted in the same process of the Kappa kernel (in
Kappa-1I) or the same node of each local DBMS
[in Kappa-P, to be described in the next subsec-
tion).

The user-definable command facility helps users
design any command interface appropriate for
their application and makes their programs run
efficiently. Kappa's extended relational algebra is
implemented as parts of such commands although
it is a built-in interface.

o Proctical {lse
As already mentioned, Kappa aims. not only at
a database engine of Qurxore, but also at a
practical DBMS, which works independently of
Qurrore. To achieve this objective. there are
several extensions and facilities. First, new data
tvpes. besides the data tvpes mentioned ahove. are
introduced in order to store the environment un-
der which applications work. There are list. bag,
and ppol. Thev are not., however, supported fully
in extended relational algebra because of sementic
difficulties.
Kappa supports the same interface to such data
types as in SIMPOS or PIMOS.
In order to use Kappa databases from windows,
Kappa provides a user-friendly interface, like a
spreadsheet, which provides an ad hoc query fa-
cility including update, a browsing facility with
various output formats and a customizing facility.

o Main Memory Database
Frequently accessed data can be loaded and re-



tained in the main memory 28 a main memory
database. As such a main memory database was
designed only for efficient pracessing of temporary
relations without additional burdens in Kappa. the
current implementation does not support conven-
tional mechanisms such as deferred update and
synchronization. In Kappa-P. data in a main
T Y database are pranemeﬂ at least three
times more efficiently than it a secondary storage
database,

From an implementational point of view. there are
several points for efficient processing in Kappa. We
explain two of them:

& [D Structure and Sel Operalion

 Each nested tuple has a unique tuple identifier
(ntid) in a relation, which is treated as an "ob-
ject’ to be operated explicitly. Abstractly speak-
ing, there are four kinds of ‘ohject’s, such as a
nested tuple, an niid, a sel whose element is a
ntid, and a relation whose element is a nested
tuple. Their commands for transformation are ba-
sically supported, as in Figure 6, although the set

Fignze 6: ‘Objact’s in Kappa and Basic Operstions

is treated as a sfreamn in Kappa-P. Most operations
are processed in the form of an ntid or a set.

In order to procesa a selection result, each subtu-
ple in & nested tuple also has a sub-niid virtually.
Set operatiops (including vnoest and nest opera-
tion) are processed mainly in the form of & [sub-
jntid or a set without reading the corresponding
tuples.

» Storage Structure
A nested tuple, which consists of unnested tuples
in the semantics, is also considered as a set of
unnested tuples to be accessed together. So. a
nested tuple is compressed withouw! decomposition
and stored on the same page, in principle, in the
secondary storage. For a huge tuple, such as a
genelic sequence, contiguous pages are used. In
‘order to accese a tuple efficiently, there are two
considerations: how to locale the necessarv tuple
efficiently, and how to extract the necessary at-
tributes efficiently from the tuple. As in Figure 7.
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Kappa is equipped with an efficient address trans-
lation table between an ntid and a logical page
{lp), and between a logical page and a phvsical
page (pp). This table is used by the underlying
file svatem. For extraction purposes. each node af

nested relatin

t

nested tuple

ntid Y value —'@ﬂ_}— ntid ? value

value

value

Figure 7: Access Network for Secondary DBMS

a nested tuple has & local pointer and counters in
the compressed tuple. although there is a trade-off
in update operations’ efficiency.

Each entrv in an index reflects the nested struc-
ture: that is. it contains amy necessarv sub-ntids.
The wvalue in the entry can be the result of string
operations such as substring and concatenation
of the original values, or a result extracted by a
USET 5 Program.

3.3 Parallel Database
System (Kappa-P)

Management

Kappa-P has various wunigwe features as a parallel
DBMS. In this subsection, we give a briel overview
of them.

The overall configuration of Kappa-P is shown in
Figure 8. There are three components: an interface
(I/F) process. a server DBMS. and & local DBEMS. An
I/F process. dynamically created by a user program.
mediates between a user program and (server or lo-
cal) DBMSs by streams. A server DEMS has a global
map of the location of local DBMS: and makes a user's

" stream connect directly to an appropriate local DBMS

{or multiple local DBMSs). In order to aveid a bottle
neck 0 communication. there rn.i,ght he many server
DBMSs with replicates global maps. A local DBMS can
be considered as a single nested relational DBMS. cor-
responding to happa-Il. where users” data i stored.
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Figure 8: Configuration of Kappa-P

Users' data may be distributed {even horizontally par-
titioped} or replicated inte multiple local DBMSs. I
each local DBMS 15 put mm a shared memory parallel
processor, called a elusfer in PIM, each local DBMS
works i parallel. Multiple local DBMSs are located in
each node of disteibuted memory parallel machine, and.
together, behave like a distributed DBMS.

User's procedures using extended relational algebra
are transformed into procedures written in an interme-
diate language. the syntax of which is similar to KLI,
by an interface process. During the transformation, the
interface process decides which local DBMS should be
the coordinator for the processing, if necessary. Fach
procedure is sent to the corresponding local DBMS, and
processed there. Results are gathered in the coordina-
tor and then processed.

Kappa-P is different from most parallel DEMS. in
that most vsers' applications also work in the same
parallel inference machine. If Kappa-P coordinates a
result from results obtained from local DBMSs, as in
conventional distributed DBMSs. even when such co-
ordination is unnecessary, the advantages of parallel
processing are reduced. In order to avoid such a situ-
ation, the related processes in a user’s application can
be dispatched to the same node as the related local
DBMS as in Figure 9. This function contributes not
only to effident processing but also to customization
of the command interface besides the user-defined com-
mand facility.

4 Applications

We are developing three applications on Quryore and
Kappa. and give an overview of each research topic in
this section. :

User local
Process, GHHS)
User local
Process, DBEMS,

Figure 9: User’s Process in Kappa Node

( User yr
Process Process

4.1 Molecular Biological Database

Genetic information processing systems are very impor-
tant not only from scieatific and engineering points of
view but also from a social point of view, as shown in
the Human Genome Project. Also, at ICOT. we are en-
gaged in such syvstems from thr viewpoint of knowledge
information processing. In this subsection. we explain
such activities. mainly focusing on moelecular biological
databases in Qurxere and Kappa ®.

4.1.1 Reqguirements for Molecular Biological

Databases

Although the main objective of genetic information
processing is to design proteins as the target and to
produce them. there remain too many technical diffi-
culties presently. Considering the whole of proteins, we
are only just able to gather data and knowledge with
much noise.

In such data and knowledge there are varieties such
a8 sequences. structures, and functions of genes and
proteins. which are mutually related. A gene in the

“See the details in [Tanaks 1992).



genetic sequence (DNA) in the form of a double helir
is copied to & mRNA and translated into am amino
acid sequence, which becomes a part (or a whole) of a
protein. Such processes are ealled the Central Dogma
in biology. There might be different amino acids even
with the same functions of & protein. The size of a
unit of genetic sequence data ranges from a few charac-
ters to around 200 thousand. and will become longer as
genome data is gradually analyzed fyrther. The size of
a human genome sequence equals aboutr 3 billion chai-
acters, As there are too many unknown proteins. the
sequence data 15 fundamental for homology searching
by a pattern called a motil and for meltiple alignient
among sequences for prediction of the functions of up-
known proteins from known cnes,

There are some problems to be considered {or molec-
ular biological databases:

¢ how to store large values, such as sequences. and
process them efficiently.

s how to represent structure data and what opera-
tions to apply them,

s how to represent functions of protein such as
chemical reactions, and

¢ how to represent their relations and link them.

From a database point of view, we should consider
some points in regard to the above data and knowl-
edge:

» representation of complex data as in Figure 2.

# ireatment of partial or noisy information in unsta-
ble data,

# inference rules representing functions, as in the
above third item, and inference mechanisms, and

s representation of hierarchies such as biological con-
cepts and molecular evalution.

After considering the above problems, we choose to
build such databases on a DOOD | QuiyeTe, conceptu-
ally), while a large amount of simple data is stored in
Kappa-P and directly operated through an optimized
window interface, for efficient processing. As coop-
eration with biologists is indispensable in this area,
we also implemented an environment to support them.
The overall configuration of the current implementation
is shown in Figure 10,

4.1.2 Molecular Biological Information in
Ouzxere and Kappa

Here, we consider two kinds of data as examples: se-
quence data and protein function data.

First, consider a DNA sequence. Such data does not
need inference rules. but nesds a strong capability for
homology searching. In our system. such data is stored
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( Interface for Biologists )

| 1

Maolecular Biological
Applications
] [
lul.El,I;ra.I:.izd KEnowledge- Bases

( Qurverre )

( Kappa-P )

Figure 10: Integrated Svstem on @uryvors and Kappa

directly in lappa. which supports the storage of much
data as is and creates indexes fram the sulwtrings ex-
tracted from the original by a user program. Sequence-
ariented conunands for information retrieval, which nse
such indexes. can be embedded into Kappa as user-
defined commands. Furthermore. since the complex
record shown in Figure 3 is treated hke a nested re-
lation. the representation is also efficient. happa shows
its effectiveness as a practical DBEMS.

Secondly. consider a chemical reaction of engyimes
and co-enzymes. whose scheme is as follows:
Enzvimes

=

Sources + Co-engvmes Products

Environments

Az an example of metabolic reaction. rousider the
Krebs eyele in Figure 11, Chemical reactions in the
hrebs cvele are written as a set of facts i Quryors as
in Figure 12, In the figure. o € oyf[ -] means o f[---]
and ¢y C os. ln order to obtain a reaction cliain (path)
from the above [acts. we can write the following rules
in Qurrere:

reaction|from=X.lo=Y|
=W C reaclion [soureea® — X,
producist — X,
reaction|from=X_te=}]
H{{X.¥. &} C reaction].
'r'ea:.l.c!ianrgrm =X, lo= .]If]
+=||{ X C reaction }.

Although there are a lot of difficulties In representing
such functions. Qurrors makes it possible to write
them down easily.

Anaother problem is how to imtegrate a happa
database with a Quryorr database. Although one of
the easiest ways is to embed the Kappa interface into
Quryore. 1t codts more and might destrov a uniform
representation in Suryore, A hetter way would he to
manage conunon oids both in Kappa and in Qervers,
and guaramties the commou object. however we have
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pyruvate——waretyl-Cod

oxyaloacetate \" citrate
/'u:s} DI
malate

cis-aconitate
]m Krebs Cycle  (2)

furnarate g} {;;!/lmtitrn.r.e
succinat \Eﬂ HV -ketoglutarate

succiny-CoA

ENZYMES

{1) citrate synthase

(2] aconitate

{3) isodtrate dehydrogenase

14)  a-ketoglutarate dehydrogenase complex
(5) succinyl-Cof synthetase

(G) succinate dehvdrogenase

(7) fumarase

i3} malate dehydrogenas

Figure 11: Krebs Cyele in Metabolic Reaction

not implemented such a facility in Kappa. The current
implementation puts the burden of the wniformity on
the user, as in Figure 10,

4.2 Legal Reasoning System (TRIAL)

Recently, legal reasoning has attracted much attention
from researchers in artificial intelligence. with high ex-
pectations for its big application. Some prototype sys-
tems have been developed. We also developed such a

system as one of the applications of our DOOD svstem
7

4.2.1 Requirements for Legal Reasoning Sys-
tems and TRIAL

First. we explain the features of legal reasoning. The
analytical legal reasoning process is considered as con-
sisting of three steps: fac! findings. stafufory inferprefa-
fion, and stetutory application.

Although fact findings 15 very important as the start-
ing point. it is teo difficult for current technologies. So.
we assume that new cases are already represented in
the appropriate form for our svstem. Statutorv inter-
pretation is one of the most interesting themes from an
artificial intelligence point of view, Our legal reasoning
system. TRIAL. focuses on statutory interpretation as
well as statutery application.

"See the details in [Yamamoto 1990]. although the new ver-
sion is revised as in this seetion.

Erebs_cyele 1 {]

krebs] EJ'Wﬂfﬂ'ﬂi
|[soureest — [acetyleoa. oraloacetate],
p'r'nd'ue;a"' — r_':'irﬂte, ooa ]-
enzymes — crirate_synthase,
energy = —1.7).

brebs? C rmr:a‘ﬁm_rif'
sources” — citrale.
products™ +— {isocitrate. h2o}.
enzymes — aconilase|.

krebss C rear‘!img‘
[sources™ w— malale,
productst «— oraloacetate.
enzymes «— malale_debydrogenase.
}I‘:}FH‘J'Q‘Q' = 1.1].

Figure 12: Facts of krebs Cyele in Quzyors

Although there are many approaches to statulory
interpretation. we take the following steps:

s analogy detection
Given a new case. similar precedents to the case
are retrieved from an existing precedent database,

o rile frmusformation

(interpretation  rules) extracted by
a.lla.]ug}' detection are abstracted wntil the new
case can be applied to them.

Precedents

& deduetioe eSO
Apply the new case in a deductive manner to
abstract interpretation rules transformed by rule
transformation. This step may include statutory
application becanse it is used in the same manner.

Among the steps. the strategy for analogy detection
is essential in legal reasoning for more efficient detec-
tion of belicr precedents. which decides the guality of
the results of legal reasoning. As the primary objec-
tive of TRIAL at the current stage is to investigate the
possibilities of uryors in the area and develop a pro-
totype system. we focus only on a small target. That
5. 1o what extent should interpretation rules be ah-
stracted for o new case. in order to get an answer with
a plausible explanation. but not for general abstraetion
mechanism.

4.2.2 TRIAL on Legal Precedent Databases

All data and knowledge in TRIAL is described in
Quryors, The svstem. witten in KLL is constructed
on eayere, The overall architecture is shown in Fig-
vre 13, In the figure. Quryors supports the functions
of rule transformation {Rule Transformer) and dedue-
tive reasoning ( Deductive Reasoner) as the native func-
tions besides the database component. while TRIAL
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Figure 13: Architecture of TRIAL

...............................

supports the function of analegy detection [Analogy
Detector) besides the interface component.

Consider a simplified example related to “karoshi”
(death from overwork) in order to discuss the analogy
detector. A new case, new-case, is as follows:

Mary, a driver, emploved by a company. "5,
died from a heart-aftack while taking a cefuap
between jobs. Can this case be applied to the
worker's compensation law?

This is represented as a module wor-case Wt Qurvors
as follows:

{{new-case f[who= mary.
while = catnap.
result= hearf-aftack]::
rel[state = employee. emp=mary]|
Jaffil=org[name="5"].
job—driver]}}

TREW-CE8E 5

where “;" is a delimiter between rules. The module
is stored i the new case database. Assume that there
are two abstraci precedents ® of job-causality and job-
erecufion:

“In this paper, we omit the rule transformation step and
assurne that abstract interpretation rules ase given.
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Judge[ease = X[ udge = job-couseiily]
erellstate =Y. emp= 2/ oo uze = X|
|{X C parm.case,
V' C parm.sfatus,
ZC parmemp}::
¢ judge|ense = X /[judge — job-erecalion]
& X[[while = Y resull = Z).
Y C job
|[{X Cparm.case.
Y C parmanhile.
ZC parm.resull }.

Note that variables X. V. and £ In both rules are
restricted by the properties of an object parm. That is.
they ave already abstracted by parm and their alwtract
level is coutrolled by parm's properties. Such prevedens
ave vetrieved from the precedent database by analogy
detection and abstracted by rule tmnsfonmation. We
must consider the febor-lnge (in the statute davabase)
and a theory (in the theory database] as {ollows:

COsE,

casey

wrg[none =X
Jresp— compensation|ohj= 1"
e g = sadary]]

fabor-law

=judge [case — ooz |
[lwho=Y.
reandt = disease,
Jutdge — fnsurance].
vellstate =2, emp=1 d
Haffil=orglname = X

theory v jwdge [eoxe = X[ jadge = insurance |
=jadye [vuse = X/ [judge — job-cousalily].
el [r'g’f.h: = _Tllll'[_;'ir;.l'f;r s Judi e r'uﬁarrl
X C cwse .

Furthermore, we nist cdefipe e parm olipert as Tol-
lows:
parm/[rase = cirse,

stale = il

_IIJ(H‘Jrr "

weliile = jud,
e .1u'|'l|r = gl fout el

L Jrl!. = jﬁ']'hlﬂ‘r. a

I wrder to use parm lur cese poanal cose g wee aleline the
following submuodule relation:

pretrain do oot g L omse g,

This information is dvnamically defimed during rule
transformation. Furthermore, we muatl define 1he sub-
sumption relation:

st O nelr-cose

ref I employe:
disease J  hearf-af fack
Job 2 calnap

PREN R I mary
Job-cupsality 2 inswrainee
Jolecrcention o insuraine
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Such definitions are stored in the dictionary in ad-
YROCOC.

Then. we can ask sorme questions with a hypothesis
to the above database:

1) I new-case inherits perm and theory, then what
kind of judgment can we get?

T-new-case : judge[ease = new-cuse|/|judge = Y]
if new-case Js parm U theary.

we can get three answers:

o Y= joberecution

o if new-case : judgelcase = new-case] has a
property judge C job-eouwsality, then X C
INSUTEneE

o if new-case : rel|state = employee.emp =
mary] has a property cause = new-case, then
X Cinsuranee

Two of these are answers with assumpiions.

2} If new-case inhents labor-low and pera. then
what kind of responsibility should the organization
which Mary is affiliated to have?

Tonewr-case T orgmeme = 87 f[resp= X
if pein-cwse g paror L fabor-low,

we Can get lwo answers:

o il wew-case : judge[case = new-case] has a
property judge © job-cawsality, then X C
compen sation|obj = mary, money = salary]

o if new-case:rellstale = employee. emp=mary|
has & property ewuse = new-case. then ¥ C
compensation|ebj = mary. money = salary]

For analogy detection. the parm object playve an es-
sential role in determining how to abstract rules as in
casey amd ceses, what properties to be abstracted in
pars. and what values to be set in properties of parm.
In TRIAL. we have experimented with sech ahstrac
tion. that is. analogy detection. m Qurvore,

For the wser interface of TRIAL. Quirers returns
explanations (devivation graphs) with corresponding
answers, if necessarv, The TRIAL interface shows this
graphically according to the user’s request. By judging
an answer from the validity of the assumptions and
the corresponding explanation. the user can update the
database or change the abstraction strategy.

4.3 Temporal Inference

Temporal information plays an important role in nat-
ural language processing. A time axis in natural lan-
guage s, however. vol homogeneous as in patural sci-
ence but is relative to the events in mind: shruunken
in parts and stretched in others. Furthermore. the rel-
ativity is different depending on the observer’s per
spective. This work ainis to show the paradigm of au
inference svstem that merges temporal information ex-
tracted from each lexical item and resolves any tempo-
ral ambiguity that a word may have ¥

4.3.1 Temporal Information in Natural Lan-

guage
We can. frequently. make different expressions for the
same real situation. For example,

rom Quixote attacks a windmill.
Pon Quixote attacked a windmill.
Don Quixote is attacking a windmill,

Such different expressions are related Lo tense and as-
pects. How should we describe the relation between
them?

According 1o situalion theorv, we write a suppert re-
lation between a silualion = and an J'ufar:r o as Tollows:

s o
For example. if one of the above examples is supported
it A situation s 01 s written as follows:
s i aftack. Dou Quixote, wandmill 3.

where affeck is a relation. and ~Don Quixote” and
windmill are parameters, However. strictly speaking,
as such a relation is cut out from a prespective P. we
should write it as follows:

sEo = Pis'Ed).

Although we might nest perspectives on such a rela-
tion. we assume some reflective properiy:

Pls'l=d'} = P Pll=)Plo").

In order to consider how to represent Pls') and
Pie’) from a temporal point of view. we introduce a
partial order relation among sets of Lime points, As-
sume that a set of time points are partially ordeved by
=. then we can define =, and € among sets 1) and T,
as follows:

Ti = T': g "?rﬁ S I'I-W'] € T:r-f:l f -r't-
net, Y ow el el

We omit the sulscript ¢ if there is no confusion.
In order to make tense and aspects clearer. we intro-
duce the following concepls:

"See the details in [Tojo and Yasukawa 1992,




1) discrimination of an wlferanee sitwalion u and a
described situation 2, and

2} duration (a set of linear time points, decided by a
start point and an end point) of situations and an
infon. The duration of T' is written as || T'|);.

We can see the relation ameng three durations of an
utterance situation, a described situation. and an infon
in Figure 14, If there is no confusion, we use a simple

he utterance
situation

the described
situation

o2 mental time axis

: mental time of &
T : menlal location of 5
#®  mental location of u

Figure 14: Relation of Three Durations

notation: $; = sp mnstead of || & ;%] s2{|; and 5 € s
instead of || [« a s N

By the above definitions. we can define tense and
aspects when s |= o as follows [Pi|=) is written as =)

slg=u | € paslo.

sls 2w < present,o > .
slsCul E < progressive, s,
sle 2u] B = perfect.o .

where s 8 a described situation, w is an utterance
situation, and o is an infon. " in s[("] is a constraint.
which iz intended to he a pcrapl.‘cti'.'r:. The above rules
are built-in rules (or axioms) for temporal inference o

Qurxore.

4.3.2 Temporal Inference in QUIXOTE
We define a rule for situated inference as follows:

sEoEsn|E. 8, Eo,.

where s.sp.-0-,8%, are sitvations with perspectives.
This rule means that s E o if 5 | oy - and
sy = og. Such rules can be easily translated nte a
subeclass of Qurrors by relating a situation with per-
spectives to a module. an infon to an o-term. and
partial order among duration to subsumption relation.
However, there s one restriction: a constraint mm a rule
head may not include subsumption relations between
o-terms, because such a relation might destrov a sub-
sumption lattice.

A verbalized infon is represented as an o-term as
follows %

Wan oterm T[h = oy, -0y = o] can be abbreviated as
[fh=o1- - 0a = 0a).
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infleael=[rel=R.
cla=(CLY.
per=FJ.
args = Args],

where rorel takes a verl relation and ergs takes the ar-
gumments. f is a verb, CLS is the classification. and P
is a temporal situation. For example, “John is running”
12 written as follows:

inflvrel = [rel = run,

cls = acty,
pers = [fov = ip.
pov = pres]|.

args = fagt = john].

That is. the agent is jr}hri. and the verb is run, which
is classified in ecty (in-progress stote or reswliant
state). and the perspective is in-progress sfafe as 1he
field of view (an oval in Figure 14) and present as the
point of view [« in Figure 14).

The discourse situation which supports such a ver
halized infon is represented as follows:

dsit[for = ip, por = pres.sre =),

where the first two arguments are the same as the
above infon’s pers and the third argument is the utier
ance situation.

According to the translation. we show a small exam-
ple. which makes 1t possible to reduee tenmporal amla-
Euity in expressicn.

1) Given an expression ecp = E. each morphens is
processed in order te check the temporal nforma-
tion:

mifle=cap=[] =0 fon= T o]
wilo=0cop=[EaplRl e =D, in fon=1ufon)
s=d_cwnitle rp= Exrp. sit = IV i fou = L fon,
milu={" cap=HF.e= D infor=fufon)

Temporal jnformation for each morpheme s -
tersected In L that is. ambiguity is gradually
reduced. ‘

2) Temporal information m a pair of a discourse sit-
uation and a verbalized infon s defined by the
following rules:
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d_coni[esp= Exp,
sit=dsit|fov= Fouv, pov= Pov, sre={"
infon=in flvoel=V rel, arga= Arga]]]
=diet : v]els =CLS rel= R, form=Exzp|
[HV rel=[rel=R, cls=CL5, pers=P|)
d_cont[exp= Exp,
sit=dsit| fov= Fov, pov= Fov.sre=1'
infon=inflvrel=V_rel args= Args)
<«dict : auzv[asp=ASP, form= Exp).
maplels=CLS. asp=ASP. for=Fov|
[HV rel=[rel= _.cla=CL5, pera=F]|.
P=[fov=Fov.pov = _}i:
d_cont[exp= Exp.
sit=dsit[ fov= Fov. pov= Pov, src:l"ﬂ
infen=inflovrel=V_rel args=Args
«dict ; affiz[pov=Pov. form=ru]
[HV rel=[rel= _.els= _ pers=F],
F = [fov= _pov=Pov|}

3) There is a module dict, whers lexical information
15 defined as follows:

dit: {{
v|els = acty, rel = pui_on. form =kil;:
vfels = acty, rel = run, form =hashi};;
v[éls = acty, rel = undersiand, form =wakal;;
aum:l{u.ap = state, form =tu:|.}‘, .
affiz[pov = pres, form =ru];;
affizlpov = past, form =ru}}

where form has a value of Japanese expression.
Further. mapping of field of view iz also defined as
a sel of (global) facts as follows:

map(cls = actl, asp = state. for = {ip. tar.res}].
map|cls = act?, asp = state, for = {ip.res}].
maplels = actd, asp = state. for = {far.res]].

If same Japanese expression is given in a gquery. the
corresponding temporal information is returtied by the
ahave program,

5 Towards More Flexible Sys-
tems

In order to extend a DOOD svstem. we take other
approaches for more Hexible execution control. mainly
focusing on natural language applications as its exam-
ples.

5.1 Constraint Transformation

There are many natural language grammar theories:
transformational and constraint-base granumar such as
GB, unification-based and rule-based grammmar such as
GPSG and LFPG, and wnification-hased and constraint-
based grammar such as HPSG and JPSG. Considering a

more general framework of grammar in logic program-
ming, HPSG and JPS5G are considered to be better.
berause morphology. syntax. semantics, and pragmatics
are uniformly treated as constraints. From such a point
of view. we developed a new constraint legic program-
ming (CLP) language. cu-Prolog. and implemented a

JPSG (Japanese Phrase Structure Grammar) pamser in
it 1,

5.1.1 Constraints in Unification-Based Gram-
mar

First. consider various types of constraints in

consktramni- I'.lﬂEPfl. E]’E.l]'l.l]'l.a {

o A dispunctive featwre structure is used a5 a basic
information structure. defined like nested tuples or
complex objects as follows:

1) A feafure structure is a tuple consisting of
pairs of & labe] and & value:
{I1= sy En - !-‘u].

2) A velue 15 an atom, a feature structure. or a
set {fi.---, fu} of feature structures.

# In JP5G. grammar rules are described in the form

of a hinary tree as in Figure 15. each node of
which is a feature structure: in which a specific

Glrprml-w:l_dnughtﬂ' LD (hra.d_daughtﬂ' H)

Figure 15: Phrase Structuzre in JPSG

featute |attribute) decides whether I3 works as a
complement or as a modifier. Note that each gram-
mar. called & sfructural principle. is expressed as
the constraints among theee features, M. D. and
H. in the local phrase structure tree.

As shown i the above definition. feature siructures
are very similar to the data stracture in DOOD 12, We
will see somwe requirements of natoral language process-
ing for our DOGD system and develop applications on
the DOOD svsten.

HGep e details i [Tsuda 1902].
I This i wpne of the resson why we decided vo design
LT T TS, See 1he appendix.



5.1.2 eu-Prolog

In order to process feature structures efficientiy, we
have developed a pew CLP called co-Prolog. A rule 3s
defined as follows '

He= By BollCre . O

where H, 8y, ---, B, are atomic formulas. whose argu-
ments can be in the form of feature structures and
e, O are constraints in the form of an eguation
among feature structures. variables. and atoms. or an
atomic formula defined by another set of rules. There
iz a reatriction for an atomic formuola in constraints in
order to guarantee the congruence of coustraint solving,
This can be statically checked. The semantic domain
is a set of relations of partially tagged trees. as in
CIL[Mukai 1988] and the constraint domain is also the
sarne.

The derivation in ce-Prolog is a sequence of & pair
[ ) of & set of subgoals and a set of constraints. jusi
as in conventional CLP. Their differences are as follows:

#» All arguments in predicates can be feature struc-
tures, that is. unification betwsen feature strue-

tures 15 necessary.

=« A computation rule does not select a rule which
does not contribute to constraint solving: in the
case of ({A} UG, C), A" &= B||(7, and 48 = A'0.
the rule is not selected if a new constraint C9UCE
cannot be reduced.

s The constraint solver iz based on unfoeld/fold
transformation, which produces new predicates dy-
narnically in a constraint part.

‘Disjunction’ in feature structures of cu-Prolog is
treated basically as "conjunction’. just as in an o-term
in Quirete and a nested term in Kappa (CRL). How-
ever, due to the existence of 2 predicate. disjunction is
resolved [or unnested) by introducing new constraints
and facts:

H = plll={a.b})) = H < p([l=X])|[{newpl X))}
new _ple).
new_p{ k).

That is. in cu-Prolog, disjunctive fealure struetures s
processed in OR-parallel. in order to avold set wniliva-
tion as in CRL. Only by focusing on the point does
the efficiency seem to depend on whether we wanr 1o
obtain all solutions or not. _

One of the distinguished features in cu-Prolog is dyv-
narnic unfold /fold transformation during query process-
ing, which contributes much to improving the efficiency
of query processing. Some examples of a JPSG parser

Bag we are following with the syntax of Qemyore, the
following notation is differeat from eu-Prolog.
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in cu-Prolog appear in [Tsuda 1992]. As predicate
hased notation s wel essential. language features in
cu-Prolog can be encoded oo the specification ol
QrrveTs and the constrainl solver can also e e
bedeed into the implementation of Qurvers withom
changing semantics,

5.2 Dynamical Programming

This work. aims to extend a {ramework of constrainl
throughout computer and cognitive sciences ', In some
sense. the idea originates in the treatmewt of con-
straints in cu-Prolog. Here. we describe an outline
of dynamical programming as a general framework of
treating constrainis and an example in pawral lan-

EUAET PrOCeESIng.

5.2.1 Dynamics of Symbol Systems

Az already mentioned in Seetion 2.
tion plays an essential role in knowledge inlorimation
processing svstems. So. knowing how 1o deal with the
partiality will be essential for future syvinbol sesteins.
We employ a constraint system. which is independen
of information flow. In-oeder. to make the systen con-
putationally meore tractable than conventional logic. it
postulates a dysamics of constraints. where the staie of
the svatem is captured in terms of potesfiol e rygy.

Consider the following program i the l[onn of
clanses:

pnrlﬁal inlorimna-

P} = XYL plY )
AX.Y) & g X).

Given a gquery -pl Al gl B). the rule-goal graph as used
in deductive databases emulates top-down evaluarion
as in Figure 16. However. the graph presupposes a cer-

plA)-ql B)
'
TROECNTRO -} |

I-_*_I

X V&gl

Figure 10 Hule-(ioal CGraph

tain mfennation How sach as op-down or botiom-ugp
evaluation. Mo grurrn”_k‘. we comsider it in e form
in Figure 170 where the lines copresent {patial) equa-
tions among variables. aned differences between vari-
ables are not wrilten for simplicity, We call soch a
graph a constraint wetwork,

lu this framework. computation procesds by propa-
gating coustrainls in a node |a varable or an aromic

19%ee the details in {Hasida ]
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Figure 17: Constraint network

constraint} to others on the constraint network. In or-
der to make such computation possible. we note the
d}'ll&t‘fﬂf& of constramnts. as cutlined below: :

1) An activation value is assigned to each atomic con-
straint (an atomic formula or an eguation). The
value is a real number between 0 and 1 and s
considered as the truth value of the constraint.

2) Based on activation values. mormalization energy
iz defined for esach atomic constraint. deduwefion
energy and abduction energy are defined for each
clause, and assimilalion energy and complelion en-
“ergy are defined for possible unifications. The po-
tential energy €7 ix the sem of -the sbove vnergies.

3) If the current state of a constraint is represented
in termsz of a point x of Euclidean space, {7 de-
fines a field of force F of the point r. F causes
spreading aclivalion when F # 0. A change of v is
propagated to neighboring parts of the constraim
network, in order to reduce 7, In the long run, the
assignment of the activation values settles upon a
stable equilibrium satislving F = 0.

Symbolic computation is also controlled on the basis of
the same dynamics. This computational framework is
not restricted in the form of Homn clauses,

5.2.2 Integrated Architecture of Natural Lan-
guage Processing

In traditional natural language processing, the system
is typically a sequence of syntactic analysis, semantic
analysis, pragmatic analysis. extralinguistic inference,
generation planning, surface generation. and so on.
However, syntactic analysis does nol necessarily pre-
cede semantic and pragmatic comprehension, and gen-
eration planning is entwined with surface generation.
Integrated architecture is expected to remedy such a
fixed information flow. Our dynamics of constraint is
appropriate for such an architecture.
Consider the following example:

Tom took a telescope. He saw a girl with if.

We assume that he and i are anaphoric with Tom
and the telescope. respectively. Howewer. wifh if has
attachment ambiguity:

Tom has o felescope when he sees the girl. or
the girl has the telescope when Tom sees her.

Consider a set of facts:

(1] take| o, lelescope ).
(2] have{tom. telescope).
(3 have(girl. telescope).

and an inference rule;
(4] Thave( X.Y) = take( X. Y.

By constructing the constraint networks of (1).(2).04)
amd (L).03)(4} as in Figure 13, we can see that there

{haue[L I

{berrre{w,

Constraint Netwark of (2) Constraint Network of (3)

Figure 18: (“onstraint Netwoarks of Alternatives

are two cycles [invelving torn and felescope) in the left
network ((1). (2). and {4)). while there is only one cy-
che (girl) in the right network ({1), (3}, and (4)). From
the viewpoint of potential energy, the former teads to
excite more strongly than the latter, in other words.
[2) is more plansible than (3).

Although. in natural language processing, resolution
of ambiguity is a kev point. the traditional architecture
has not been promising. while our integrated architec-
ture hased on a dynamics of constraint network seems
to give more possibilities not only for such applications
but also for knowledge-hase management systems.

6 Related Works

Our database and knowledge-base management svstem
in the framework of DOOD has many distinguished
features in concept, size, and varieties, in comparison
with other systems. The system aims not only to pro-
pose a new paradigm but also to provide database and
knowledge-base facilities in practice for many knowl-
edge information processing systems.

There are many works. related to DOOD con-
cepts. for embedding object-oriented concepts into logic
programming. Although F-legic|Kifer and Lausen 1989]
has the vichest concepts. the id-term for object identity
iz based on predicate-based notation and properties are
insufficient from & constramt pomt of view, Further-
more. it lacks npdate functions and a module concept.



Qurxore has many more functions than F-logic. Al
though, in some sense, Quryore might be an over
apeaciﬁc.a.,t.iuu |s.;|:|g'u.a.ge? users cap select any subclass of
Qurrore. For example, if they use only a subelass of
object terms, they can only be conscious of the sub-
language as a simple extension of Prolog.

As  for nested relational models.  there are
many works since the propesal in 1977.  and
several models have been implemented:  Verso

[Verso 1986], DASDES [Schek and Weikum 1986], and
AIM-P |Dadam ef al. 1986]. However. the semantics
of our model is different from theirs. As the [ex-
tended] NF? model of DASDBS and AIM-P has set-
based (higher order) semantics, it is very difficult to
extend the query capability efficiently, although the
semantics is intuitively familiar to the user. On the
other hand, as Verso is based on the universal relation
schema assumption, it guarantees efficient procedural
sermnantics. However, the semantics is intoitively unfa-
miliar to the uvser: even if ¢t  oyT and ¢ & T for
a relation T, it might happen that { € o U aeT
Compared with them, Kappa takes simple semantica,
as mentioned in Section 3. This semantics is retained in
o-terms in Quivere and disjunctive feature structures
in cu-Prolog for efficient computation.

Az for genetic information processing, researchers in
logic programming and deductive databases have be-
gun to focus on this area as a promising application.
However, most of these works are devoted to query
capabilities such as transitive closure and prototyping
capabilities, while there are few works which focus on
data and knowledge representation. On the other hard,
Qurrore aims at both the abeve tarpets. As for legal
reasoning, there are many works based on logic pro-
gramming and its extensions. Our work has not taken
their functions info consideration, but has reconsidered
them from a database point of view, especially by in-
troducing & module concept.

7 Future Plans and Concluding
Remarks

We have left off some functions due to a shortage in
man power and implementation period. We are consid-
ering further extensions through the experiences of our
activities, as mentioned in this paper.

First, as for Qurxore, we are considering the follow-
ing improvements and extensions:

# Cluery transformation mﬁhﬁiqm such as sideways
information passing and partial evaluation are not
fully applied in the current implementation. Such
optimization techniques should be embedded in
Qurxore, although constraint logic programming
needs different devices from conventional deductive
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databases. Furthermore, for more efficient gquery
processing. flexible control mechanisms. such as in
cu-Prolog and dyvnamical programming, would be
embedded.

# For more convenience for description  in
uirxreTs. we consider meta-functions as Hilog
[Chen ef of. 1989]:

tel RIX.Y) - R(X.¥)
fel RNX.Y) - ted RUX. Z).tel RN Z. V)

In order to provide such a function. we must intro-
duce new variables ranging over basic objects.

This idea is further extended to a platform lan-
guage of Qrrrore. For example. although we must
decide the order velation {such as Hoare. Smvth.
or Egli-Milner) among sets in order to introduce a
set concept. the decision seems to depend on the
applications. For more applications. such a relation
would best be defined by a platform language. The
current Quryors would be a member of a family
defined in such a platform language.

s Communication among Quirors databases plays
an  important role not  onlv  for  distributed
knowledge-bases but also to support persisfenf
view. persistent hypothesis, and fecal or privafe
databuws. Furtl:c‘rnw‘rm l:,wpcratlvr uery  pro-
cessing among agents defined Qurvors is also con-
sidered. although it closely depends on the ontol-
ogv of object identity. '

¢ In the current implementation. Qurxorrs objects
can also be defined in KL1 As it is difficult to
describe every phenomena in a single langunage.
as you know. all languages should suppert inter-
faces to other languages. Thus, in Quryore too, a
multi-langnage system would be expected.

o Although, in the framework of DOOD, we have
focnsed mainly on data modeling extensions, the
direction is not necessarily orthogonal from logical
extensions and computational modeling extensions:
sel grouping can emulate negation as failure and
the procedural semantics of Qurrore can be de-
fined under the framework of object-orientation.

However. from the viewpoint of artificial intelli-
gence, non-monotonic reasoning and -fuzay’ logic
should be further embedded, and. from the view-
point of design engineering, other semantics such
as object-orientation. should also be given.

As for Kappa. we ave considering the following im-
provements and extensions:

e In comparison with other DBMSs by Wisconsin
Benchmark, the performance of Kappa can be fur-
ther improved. especially in extended relaticnal
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algebra. by reducing inter-kernel communication
costs. This should be pursued separately from the
objective.

e It is planned for Kappa to be accessed not only
from sequential and parallel inference machines
but also from general purpose machines or work-
stations. Furthermore, we should consider the
portability of the system and the adaptability for
an open system environment. One of the candi-
dates is heterogenous distributed DBMSs based on
a client-server model. although Kappa-P 15 already
& kind of distributed DBMS.

¢ In order to provide Kappa with more applications.
customiging facilities and service atilities should
be strengthened as well as increasing compatibility
with other DBEMSs.

In order to make Kappa and Quryors inte an in-
t.eg;r&t.ed knnwledge—bm management syvsbem. further
extensions are necessary:

. w Qurrore  takes nested  transaction logic.  while
Kappa takes flat transaction logic. As a vesult.
QurroTe guarantees persistence only at the top
level transaction. In order to couple them more
tightly, Kappa should suppert nested transaction

logie.

& From the viewpoint of efficient processing, users
cannot use Kappa directly through Qurwvors,
This, however, causes difficulty with object iden-
tity, because Kappa does not have a concepl of
object identity. A mechanism to allow Kappa and
QurroTe to share the same object space should be
considered.

¢ Although Kappa-P is a naturally parallel DEMS.
current Qurrors is not necessarily familiar with
parallel processing, even though it is implemented
in KL1 and works in parallel. For more efficient
processing, we must investigate parallel processing
in Kappa and QurxoTs.

We must develop bigger applications than those we
mentioned in this paper. Furthermore, we must in-
crease the comtatibility with the conventional systems:
for example, from Prolog to Qurrore and from the
relational model to our nested relational model.

We proposed a framework for DOOD, and are en-
gaged in various R&D activities for databases and
knowledge-bases in the framework, as mentioned in this
paper. Though each theme does not necessarily origi-
nate from the framework, our experiences indicate that
this direction & promising for many applications.
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Appendix

Notes on Projects for Database and
Knowledge-Base Management Systems

In this appendix, we describe an outline of projects on
database and knowledge-base management systems in
the FGCS project. A brief history is shown in Figure 19
15, Among these projects. Mitsubishi Electric Corp. has
cooperated in Kappa-1. Kappa-Il, Kappa-P. DO-/, CEL,
and Qurxore projects, Oki Electric Industry Co.. Ltd,
has cooperated in PHI (DO-¢) and Qurxore projects.
and Hitachi, Lid. has cooperated in ETA (DO-g) and
CurroTe projects.

a. Kappa Projeets

In order to provide database facilities for knowledge
information processing systems, a Kappe ' project be-
gun in September, 1985 [near the beginning of the
intermediate stage of the PGCS project). The first tar-
get was Lo build a database with electronic dictionar-
ies including concept taxonomy for natural language
processing systems and a_database for mathematical
knowledge for a proof checking system called CAP-LA.
The former database was particularly important: each
dictionary has a few hundred thousands entries. each
of which has & complex data structure. We consid-
ered that the normal relational model could oot cope
with such data and decided to adopt a nested rela.
tional model. Purthermore, we decided to add a new
type term for handling mathematical knowledge. The
DEMS had to be written in ESP and work on PSI ma-
chines and under the SIMPOS operating system. As
we were afraid of whether the system in ESP would
work efficiently or not, we decided on the semanties of
a nested relation and started to develop a prototype
system called Kappa-I. The sysiem, coosisting of 60
thousands lines in ESP, was completed in the spring
of 1987 and was shown to work efficiently for a large
amount of dictionary data. The project was completed
in August, 1987 after necessarv measurement of the
processing performance.

After we obtained the prospect of efficient DBMS
on PSI machines, we started the next project, RKappa-
I[Yokota et al. 1988] in April. 1987. which aims at a
practical DBMS based on the nested relational model,
Besides the objective of more efficient performance
than Rappa-I,.several improvements were planned; a
main memory database facility, extended relational

15AL the initial stage of the PGOCS project. there were other
projects for databases and knowledge-based: Delfa and Radser.
however these were used for targets other than datobases and
knowledge-hases,

4 term Kopps stands for fnowledge application oriented
advanced dafabase monagement system.

algebra. user-definable command facility, and user-
friendly window interface. The svstemn, consisting of
180 thousand lines in ESP. works 10 times more effi-
ciently in PSLI] machines than Kappa-1 does in PSI-L
The project was over in Mareh, 1989 and the system
was widely released. not only for domestic organiza-
tions but also for foreign ones. and mainly for genetic
information processing.

To handle larger amounts of data. a parallel
DBMS project called Kappa-P|Kawamura ef al. 1992)
was started in February, 1989, The system is written
in KL1 and works under an enviromment of PIM ma-
chines and the PIMOS operating system. As each local
DBMS of happa-P works on a single processor with
almost the same efficiency as Kappa-Il. the system is
expected to work on PIM more efficiently than Kappa-
II, although their environments are different.

b. Deductive Database Projects

There were three projects for deductive databases.

First. in parallel with the development of Kappa.
we started a deductive database project called CRE
(complex record language) {Yokota 1988]. which is_a
logic programming language newly designed for treat-
ing nested relations.

CRL is based on a subclass of complex objects con-
structed by set and tuple constructors and with a mod-
ulé concept. The project started in the summer of 1988
and the system. called DO-l was completed in Novem-
ber, 1989, The system works on Keppa-If. The guery
processing strategy is based on methods of generalized
ma.gil: sets and semi-naive evalyation. In it, rule inheri-
tance among modules based on submodule relations are
dvnamicallv evaluated. ’

Secondly. we started a  project called PHI
(Haniuda ef al. 1991] in the beginning of the interme-
diate stage {April. 1985). This aimed at more efficient
query processing in traditional deductive databases
than other systems. The strategy is based on three
kinds of query transformation called Hern clause trans-
formation (HCT)[Miyazaki ef ol. 1989): HCT/P exe-
eutes partial evaluation or unfolding, HCT/S propa-
gates binding information without rule transformation.
and HCT/R transforms a set of rules in order to re-
strict the search space and adds related new rules. The
HCT/R corresponds to the generalized magic set strat-
egyv. By combining these strategies. PHI aims at more
efficient query processing. The consequent project is
called DO-@. in which we aim at a deductive mecha-
nism for complex objects.

Thirdly. we started a project called ETd in April.
1988, which aimed at knowledge-base systems based on
knowledge representation such as semantic networks.
One year later, the project turned towards extensions
of deductive databases and was called DO-x.
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DO in the sbove projects stands for deductive and
object-oriented databases and is shown to adopt a con-
cept of DOODs [Yokota and Nishio 1989] as its com-
mon framework.

c. CIL Project

A language called CIL {complex indeterminates lan-
guage) was proposed in April, 1985 [Mukai 1988). The
language aimed at semantic representation in natural
language processing and was used not only in the dis-
course understanding system called DI7ALS. but also
for representing various linguistic information. The im-
plementation of CIL was improved several times and
CIL was released to many rescarchers in natural lan-
guage processing. The language 1= a kind of constraint
logic programming and closely relates to situation the
ory and semantics. The language s based on partisily
specified terms, each of which is built by a tuple con-
structor. A set comstructor was introduced into par-
tially specified terms in another language cu-Prolog. as
mentioned in Section 5.1.

d. Quzrore Project

We tried to extend CRL not only for nested rela-
tions but also for DOODs. and to extend CIL for
more efficient representation, such as the disjunclive
feature structure. After these efforts. we proposed
two new languages: Juan, as an extension of CRL.
and QMINT, as an extension of CIL. While designing
their specifications. we found many similarities between
Juan and QUINT, and between concepts in databases
and natural language processing. and decided to in-
tegrate these languages. The integrated languape is
Qurxore[Yasukawa ef ol 1992) (with Spanish pronun-

ciation) 7. As the result of integration. Quryvers
has various features. as mentioned in this paper. The
LQuTvoTe project was started in August, 1990, The first
version of Quryors was released to restricted users in
December. 1991. and the second version was released
for more applications at the end of March. 1992, Both
versions are written in KL1 and werk on parallel infer-
ence machines,

e. Working Groups on DOOD and
STASS

At the end of L1987, we started to consider integra-
tion of logic and object-orientation concepls in the
database area. After discussions with many researchers,
we formed a working group for DOOD and started to
prepare a new international conference on deductive
and object-oriented databases B The working group
had four sul:-wm-kiug-gmups in 1980: for database pro-
gramming languages (DBPL). deductive databases and
artificial intelligence (DDBL ALY extended term rcepre-
sentation (ETR ). and biclogical databases [BioDBE}. In
1991, the working group was divided into intelligent
databases (IDB) and next generation databases (NDB),
In their periodic meetings '°. we discussed not only
problems of DOOD but alse directions and problems

F0ur naming convention follows the DON secies. auch as
Dan Juan and Don Quixete. where DON stands for ~Deductive
Ohbject-Oriented Nuclews”.

¥Most of the preparation wup wuntil the first international
conference [DOODAY) was continued by Professor 5. Nishio of
Osaka University.

¥ Their chairpersons are Yuzure Tanaks of Hokkaido U, for
DOOD. Katsumi Tanaka of kobe U, for DBPL. Chiaki Sakama
of ASTEM for DB AL and 1DB, Shojire Nishio of Usaka (.
for ETR. Akihiko Konagava of NEC' for BioDB. and Massicshi
Yoshikawa of Kyoto Sangye U, for NDBE.
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of next generation databases. These discussions con-
tributed greatly to our DOOD system.

From another point of view. we formed a working
group (ST3) ¥ for situation theory and situation se-
mantics in 1990. This also contributed to strengthening
other aspects of Qurrers and its applications.

#The chairperson is Hotumi Tanaka of Tokyo Institute of
Technology.



