PROCEEDINGS OF THE INTERMATIOMNAL CONMFERENCE
OM FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992

257

Objects, Properties, and Modules in Quzxorte

Hideki Yasukawa, Hiroshi Tsuda. and Kazumasa Yokota

Institute for New Generation Computer Technology (ICOT)
21F. Mita-Kokusai Bldg., 1-4-28 Mita. Minato-ku. Tokyo 108, JAPAN

e-mail: yasukawa@icot.orjp. tsudadicot.orjp, kyokotadicot.or.p

Abstract

This paper describes a knowledge representation lan-
guage QuixoTe. Quixore is designed and developed
at ICOT to support wide range of applications in the
Japanese FGCS project.

Qurxore is basically a deductive system equipped
with the facilities for representing various kind of knowl-
edge, and for classifying knowledge.

In Qurxore , basic notions for representing concept
and knowledge are objects and thier properiivs. Objects
are represented by extended terms called ebject terms
and thier properties are represented by subsumption con-
straints over the demain of object terms.

Another distinguished fealure of Qurrore is ils con
cept of modules. Modules play an important rele in
classifving knowledge, modularizing a program or a
database, assumption-based reasoning, and so on,

In this paper, concepts of objects, properties. and
modules are presented, We also present how modules
work with objects and their properties,

1 Introduction

Logic programming is a powerful paradigm for knowl-
edge information processing systems from the view-
point of knowledge representation, inference. advanced
databases, and so on.

Qurxore is designed and developed to support this
wide range of applications in the Japanese FGCS project.
Briefly speaking, it is & constraint logic progranuning
language, a knowledge representation language. and a
deductive object-oriented datobase language,

In QurxoTe. basic notions for representing concepls
and knowledge are objects and their properties. An ob-
ject in Qurrore is represented by an extended term
called an object term, and its properties are defined as 2
get of subsumption constraints.

Another distinguished feature of QurroTe is its con-
cept of modules. A module corresponds to a part of the
world (situation) or the local database. In Quivers.
its module concepts play an important role in classify-
ing knowledge, modularizing & program or a database.

assumption-based reasoning, and so on.

In this paper. concepts of objects. properties. and
modules are presented. We also present how modules
wark with ohjerts and their properties, for example, in
classifying or modularizing them.

Other features of Quryors and the formalism appear
in other papers[20. 12, 21).

Section 2 shows how objects and their properties are
treated in a simple version of @urrors. Section 3 shows
how complex ohjects are introduced in Quivers. and
how they are used 1o deal with erceptions in prop-
erty inheritance, Section 4 describes deductive rules
in Qurrors, and the overview of deductive aspects of
Qurvors. Section 5 describes module concepts with
some examples. Section § describes the facilities for re-
lating modules. especially to import or to exporl rules
among modules. Section T deseribes gueries in QuzvoTe,
which provides the facilities to deal with modifications
of a program. or assumption-based reasoning. Finally.
Section & describes brief comparison with related works,

2 A simple system of objects
and their properties

Object-oriented fratures are very useful for applying
logic programming to ‘real’ applications. QuriaTs is
designed as a logic programming language with features
such as: object identity. complex objects. encapsulation.
inheritance, and methods, which are also appropriate for
deductive ohject-oriented databases and situation theo-
retic approaches to natural language processing svstems,

An object is a key concept in @uIxoTs tu represent
concepts or knowledge, In knowledge representation ap-
plications. it is important to identify an chject or to dis-
tinguish two distinet objecis. as in the case of ohject-
oriented language.

Object identity is the basic notion for identifying ob-
jects,

Qurvore precisely defines object identity, where ex-
tended terms are used as objec! identifiers. lu this sense.
extended terms in Quryvors arve ealled olject Terms.

In this section. simplified treatment of objects and
their properties are presented. That is. the case of every

258

object term is atemic. In the next section, the system
of ohject terms is extended to non-atomic and complex
cases, including the non-well-founded {circular) case,

2.1 Basic Objects

AL the first approximation, we assume that each object
has a unique atomic symbol as its identifier.

The important thing, here, is that objects are related
to each other. There are some relations to be considered,
such as is.a-relations, pert.ofrelations, and so forth. In
Qurrore, subsumption relations over objects are used to
relate objects.

First, a set B0 of atomic symbols called basic objects
is assumed. BO is partially crdered by the subsump-
tion relation (written C), and {BO,C, T, L) is a lattice
with T as its maximum element and | as its minimoam
element,

A basic object is used as an object identifier (an ohject
term) in this simple setting.

An example of the lattice 15

B = ({animal, mammal, human,deg}, C, T. L]
where the followmg holds:

mammal C animal,
human C mammal,
dog C mammal,

2.2 Attribute and Dotted

Terms

Terms

In addition to the basic objects, we assume a subset L of
B0, called labels. Labels are used to define the atiributes
of objects.

An attribute of the object o is represented by the triple
{o,4,v) where { iz a label and © i3 ap object. The following
example shows that John has the attribute of his age
being 20: (john, age, 20).

A property of an object is represented by a set of
the pairs of a label and its value, that is. a set of
attributes, Thus, John's having a property of be-
ing 20 years old and being a male is represented by
{{john. age.20), (john, sex, male)}.

Formally, a label | 18 interpreted as & function:

i: BO — BO.

The symtactic construct for representing an object and
its properties is the altribute term. An attribute term is
of the form:

oflh =wv.... b=}

where ¢ is an object term, [’ are labels, and v;'s are
objects. The syntactic entity [= v1..... L = v.] is

called the attribuiion of the object term o. It specifies a
property of the object. In what follows, we say that o
has the attributes [I; = #,...,l = v.] when there is no
confusion.

For example, the following is an attribute term repre-
senting that John has the property of being 20 years old
and being a male:

john/|age = 20, sex = male),

Notice that an object identifier and its property {attri-
bution} are separated by */".

It is useful to regard an attribute of an object as a
concept. For example, John's age can be seen as a con-
cept. In QurroTe, this kind of concept is represented by
dotled termas. A dotted term is defined as a pair of an
ohject term and a label, and has the following form:

od

where o is an object term and [is a label.
For example, John's age is represented by the following
dotted term:

john.age = 20,

A dotted term is treated as a global variable ranging over
the domain of ohject terms, and interpreted as an object
term. The following holds for dotted terms:

o =0 = oy = 090
odl=m,ol=0=0,=0g
ol = oy = od.dy = 0q.05.

2.3 Properties as Subsumption Con-
straints

It is often the case that an object has certain attribute
while its value 15 not fully specified.

john|age — positive.infeger]

The above attribute term represents that John has the
property of his age being subsumed by positive integer.
In this case. John's age Is not specified but constrained
as heing subsumed by positive integer.

The eonstraint in simple Qurrore is & subsumption
constraint over basic objects. As mentioned before, the
domain of basic chjects is a lattice under the subsump-
tion relation. Thus. the rules of subsumption constraints
are simply defined as follows:

e r=ur,
s ifr=ytheny=x,
eifr=pand y=z then z = =,

s L1

e if x C gy and y C =z then z C =,

e ifr=yandzC zthen y C =

s Hr=yand zCxthen : Cy,

s ifzCyand yCxthenz=y,

s ifzCyand 2z C 2 then x C (y | 2), and
o fyCrand :Cxthen (yT2)Cx

where (z | y) is the infiomm (meet) and {z T y) is the
supremum (join). Note that z = y is equivalent to the
conjunction of x C y and y C =, that is, the following
holds:

de
a::grEI::Ey.ﬁ.z;y.

A set of subsumption constraints is solvable if and only
if it does not contain a = b for two distinct basic objects
a and b with respect to the above rules[20].

Based on the subsumption constraint, the attribute
term above is defined as a pair of the basic ob-
ject john and a subsumption constraint jehn.age C
positive_integer. Sometimes, this kind of pair is writ-
ten as:

john/|{john.age C positiveinteger}.

This is just the opposite of the description of the at-
tribute term shown above.
The general form of an attribute term is as follows:

of [y ops vy, ...\l 0Pa Ua]

where op; € {=,~, <}.

For sach label that is not explicitly specified, we as-
sume that its value is constrained, that is, subsumed by
T. This assumption states that the property of an object
can be partially specified.

In addition to the subsumption constraint over basic
objects, the subsumption cohstraint over sets of basic
objects is used in Qurrore. For example, the following
attribute term represents that cooking and walking are
John's hobbies:

john[hobby — {cooking, walking}],

that is, the dotted term john.hobby is a set subsuming
the set {cooking, walking}.

The subsumption relation Cy over the domain of sets
of basic objects is defined as Hoare-ordering over C-
ordering as follows:

HCum=>Veenye€snzly

It should be nated that the dnmﬂnnf&&sufhnm’tahj&ct&
is claseified by the eguivalenice relation defined by the
Hoare-ordering. In Qurxore, any set is interpreted as

259

the representative element of the equivalence class that
is defined by the following rule:

[(zres|~Fyesz#ynaz Tyl
Under this definition, Cyr-ordering becomes a partial or-

dering, and can be used as an equivalence relation.
For example, the following holds:

[{1, integer, “abe”, string}]
= {integer, string},
provided that 1 C integer and “abe” C string.

2.4 Property Inheritance

1t is natural to assume that properties are inherited from
object terms with respect to C-ordering. For example,
consider the following example:

swallow C bird.

bird/|can fly — yes].
Since swallow is a kind of (subsumes) brd and bird has
the attribute [can fly — yes], swallow comes to have the
same attribute by default.

The rule for inheritance of properties between objects

180 .
Definition 1 {Rule for inheritance)

o Coog = ol C og.d.

I & C oo holds, then the following holds according to
this rule:

if o has the attribute I — o], then o, also has the
same attribate,

e if 0, has the attribute [I +~ o], then oy also has the
same attribote,

Notice that the attribute ! = o] is the conjunction of
[l = o] and [l «~ o].

As mentioned before, an attribute term is defined as
the pair of an object term and & set of subsumption con-
straints, thus, property inheritance can be considered as
constraint inheritance,

3 Complex Objects

The simplified approach shown in the previous section
lacks the capability to represent the complex objects re-
quired in actual applications, such as trees, graphs, pro-
teins, chemical reactions, and so forth.

A complex object has certain “structures” intrinsic to
its pature. It is important for knmowledge representa-
tion languages to represent such complex object struc-
tures in itz description, that is, as the object identifier in
QurroTe.

Thus, it is important to give a facility to introduce
complex object terms to Quzxore,

260

3.1 Intrinsic vs. Extrinsic Properties

The approach adopted in QurroTes is a natural extension
of the simplified language given in the previous section.

An object has the property, that iz, a set of attributes,
which are inérinsic to identifying that object. Thus, the
properties of an object are separated into two, the intrin-
sic property and the other extrinsic properties. Similarly,
the attributes of an object are divided into twe, intrin-
sic atiributes and extrinsic atirbutes. In Quzrore, the
intrinsic atlributes are included in the object term repre-
sentation but not in the attribution of an attribute term
representation.

For example, the concepl of red apple is represented
by the following complex object term:

apple[color = red).

Note that the difference between this object term and
the attribute term apple/jcolor = red] that represents
the concept of apple with the attribute [color = red] as
its extrinsic property.

Let o be a basic object, [l ..
oy, 0, . .. be object terms,

be labels. and

Every basic object is an objeect term.

o A term o[l = 0y.0y = 04,...] is an object term if it
mntﬂ.i]’ﬂi U[il“(CH1E \"a-l‘l.l.l.‘ E-I.J‘:Liﬁl:alllun [LH.- l.'al.l'.'lll I.H.}"'."l..

& A term is an object term only if it can be shown to
b an Dhjcct Lerm '|:r1'_|r the above definilion.

For an object term ofl; = 6.l = 05...], 0 is called
the principal object and 1!1 = o;.ls = ag] 15 called
the intrinste properfy specification. The intrinsic prop-
erty specification of an object term is the set of intrinsic
attributes of the object term, and interpreted as the in-
dexed set of object terms indexed by the labels, Thus,
an object term is interpreted as the pair of its principal
object o and the indexed set s, and 18 wntten as:

[o,8).

Let BO = {human, 20,30, int, male, female}, 20 C
int. 30 C inf, L = {age,sex}. The following terms are
object terms in Quixore:

human,

humenfage = 20, sex = male|,

These two object terms are interpreted as (human, {})
and {human, {{age, 20), {sex. male) }). :
The object term T[l} = wy,...] is described as [i =
.. ..] for convenience,
Bw the definition of complex object terms, the follow-
ing holds:

For example. human(age = 20].age = 20 holds.
It is possible to have object terms containing variables
ranging over ground object terms as follows:

human
humanfage = X, sex = Y.

3.2 Extended Subsumption Relation

Given subsumption relations C among basic abjects, the
relations can be extended into subsumplion relations
among complex object terms. The extended subsump-
tion relations preserve the ordering on basic objects, and
also constitute a lattice.

Though the precise definition of a extended subsump-
tion relation is givr:n in [20]., intuitive undarﬂl.anding will
suffice at this point. Intuitively, o; C o4 [we say oy sub-
sumes o) holds between twe complex object terms o,
and o4 if and only if:

(1) the principal object of &; subsumes the principal
abject of oy,

(2] oy has more labels than g, and

(3) the value of each label of o; subsumes the value of
each label of o,.

For example, the [ollowing holds:

human|age = 20, sex = male]
C animal|age = infeger),

because the principal object of animallage = integer|
[anirnal) subsumes the principal object of human[age =
20, sex = male] | human), the object term humanfage =
M, sex = male] bas more labels than enimallage =
integer], and 20 C integer holds.

Similarly,

human[age = 20] C animal]age = int]

holds, but humanfage = 20] and Auman{ser = male]
can not be compared with respect to C-ordering over
complex object terms.

In this extended subsumption relation over object
terms, the object term T is the largest among all the
object terms. In Qurxore, the object term L is the
smallest of all, that is, | is used as the representative el-
ement of the class of object terms that are smaller than
17, 5

The semantic domain of object terms is a set of labeled
graphe as a subclase of hypersets with urelement(2, 13].

'From the definition of object terms and subsumption relation
owver them, it is possible to have an object term of the form:

J—Fi =Ui,-. .].

The reason such a domain is adopted is to allow object
terms with infinite structure, Stibsumption relations cor-
responds to hereditary subset relations(2] on that domain.

The rules for extended subsumplion consiraints are
those listed in 2.3 plus the following:

o if (0y,5) C (02,8) then 0y C o0, and for each
(l,14) € sy there exdsts {1, ;) such that vy C v,

o if {07,51) = (03,52), then o; = oy and for each
{l,v,) € 5, there exists {I,1v;) € 55 such that v; = v
{the symmetric condition follows).

These two rules correspond to the simulation and bisim-
ulation relation in [2, 13], where the bisimulation relation
ig an equivalence relation.

3.3 Exception on Property Inheritance

By introducing complex object terms in terms of
intringic-extrinsic distinction, it becomes possible to de-
fine the notion of exceptions on inheritance of properties
in a clear way.

Intuitively, the intrinsic property of an object iz the
property that distinguishes that object from others, and
such properties should net be inherited.

In addition to the rule for property inheritance given
in 2.4, the rule for exception is defined as follows:

Definition 2 (Rule for exception)

The intrinsic attributes of an object term override the
attribution inherifed from the other object ferms, and any
of the intrinsic attributes is not inherited to the olher
object terms.

In sum, the intrinsic atiributes are out of the scope of
property inheritance.

For example, consider the attribute of the object term
bird[can fly — no] with respect to the following database
definition:

bird/[can fly = yes],
birdcan fly = no|.

The object term bird[can fly = no] inherits the atiribute
[ean fly — yes], by the rule for inheritance. However,
bird[can fly = no| contains the intrinsic specification on
the label canfly. Thus, bird[canfly = no| has the at-
tribute [canfly — ne] as its property by the rule for
exception.

Thus, given in Section 3.1, the following holds even if
property inheritance oeceurs:)

o{ii 'z'l'l"“'!'ill e rn].l'rl_'ll ==11---:Lt = zn.|~

261

4 Deductive Rules

It is important for knowledge representation languages to
provide facilities for certain types of inferences, namely
deductive inference.

The deductive svstem of QuryeTs is defined by dedue-
tive rules (rules, for short).

4.1 Rules in Quixore

First, a literal (atomic formula) of Qurrers is defined
to be an object term or an attribute term,
The rules of Qurvors are defined as follows:

(1) a literal H.
(2) H< B..... B, where H, B,,.... B, are literals.

H is called the head and the By, ..., B," is called the
body of the rule.

The rules of the form (1) are sometimes called an wnit
rule or a fact*.

Rules of the form (2) are called non-unit rules.

A fact H is shorthand for the non-unit rule whose body
is empty, that is. the rule i <. When there is no con-
fusion. non-unit clauses are simply called rules.

A dafebuse or a program is defined as a finite set of
rules.

A fact specifies the existence of an object and its prop-
erty. The following is an example of facts:

john;

Johnf[age = 20];;

The former fact specifies that the literal john holds (or
is true), that is, the database has the ohject john as
ite member. In addition to that. the latter additionally
specifies that john has the property of [age = 20].

The informal meaning of the rule H <= By,..., B, 1s
as usual. that s, if B, ..., H, holds then & holds,

As mentioned in Section 2.3, properties are interpreted
as subsumption constraints. Thus, & rule is defined as a
triple { H, B. ('} of the object term H in its head, the set
of object terms B in its body, and the set of constraints
. The elements of B are called subgoals. Thus. any rule
can be represented by the following form:

H«<B|C.

Thie form of rule is called constraint-based form.
Tt is possible to associate constraints other than those
corresponding to attributes with a rule as follows:

john/(daughter — {X}] &=
X/[father = john] || {X C female}.
*Sometimes, a fact is defined to be a unit-rule having & non-

parameiric object term as ils head. In that case, the set of facts cor-
responds to & extensional database in wsoal deductive databases.

262

Precisely speaking, the set of constraint O of a rule is
classified into two, the constraints in the head of the rule
(head consiraints) and the constraints in the body {body
constraints). For example, the rule

ﬂlnll[li-]_ = 91,1‘} = ﬁlg] =
pllls = o3, q/[ls = o]

has {e.dy = oy,0.0; = 03} as its head constraints, and
{pds = 03, 4.0y = 04} as its body constraints.

In the context of object-oriented language, the at-
tributes in the head of a rule correspond to the methods
and the body of the rule can be seen as the corresponding
implementation, as in F-logic[8).

4.2 Derivations and Answers

Compared to the usual notion of the derivation of goals
and answers in logic programming language like Prolog,
two points must be explained in the case of QurroTe,

The first point is concerning the role of object terms
ag object identifiers. The value of an attribnte of an
object is unique, because the label corresponding to the
attribute is interpreted as a function.

‘The second point is concerning the fact that the at-
tributes of an object can be partially specified and they
are interpreted as subsumption constraints.

Consider the following database:

Example 1

ofl = X[y »a, b =8 = X || {X Ee}i;
ol = X|/lh ~ dla =l &= X | {X C f);;
P

where both p C ¢ and p £ f hold.

In this case, ofl = p|/[li = a,l; = & holds by the first
rule and off = p|/[lh — d, s = ¢] holds by the second rule.
Thus, by combining these two, the ohject term ofl = p|
gains [Iy — (a | d),lz = b Iy = ¢] as its attribute.

“This process is done by merging the attributes of the
derived subgoals equivalent to each other.

The merging process becomes complicated if we take
into account the partiality of the attributes of an object.

Consider the following example:

Example 2

af[ly — a] = pf[lz — ;;
of[ly = o] <= p/(l — d];;
B

The subgoal p of the first rule holds with attribute [l; —
b], which is not defined in the database, This is because
the fact p;; in the example does not specify the value
of its l-atiribute. Similarly, the subgoal p of the second
rule holds with [l — d]. H these two attributes are

inconsistent, the two rules cannot be applied together,
that iz, the derivations given by the two rules must not
be merged.

Definition 3 |{Derivation of a goal)

A derivation of a goal Gy by ¢ program is defined as the 5-
tuple (G, R, 8. HC, BC) of a sequence & (= Go, &h,...)
of goals, a sequence R (= Ry,...) of the renaming vari-
anis of the rules, a sequence @ (= 8y, ...) of most general
unifiers®, the two sets of constraints HC and BC of all
the head constraints and all the body constraints of the
rules in P, such that each Gy is devived from G; and
Ry using .y, and (HC U BCO is solvable.

Definition 4 (Assumed constraint set)

The assumed constraint sel of e derivalion D (=
(G, P,0, HC, BC)) is defined as the set of all constraints
in BC that are not satisfied by HC with respeet to the
substitution 9.

The assumed constraint set of a derivation is the set of
attributes of ohjects which are assumed to derive the
goal. This is because some attributes of objects in a
database are partially defined.

Each derivation has its own derivation contert defined
as the consequence relation (Fep) between ils assumed
constraint set and its head constraints. A derivation con-
text A Fo B of a goal represents that the goal is derived
by assuming A, and as a consequence, B halds.

The notion of an refufaiion is defined similary as usual:
a finite length derivation that has the empty goal as the
last goal in its goal sequence,

In Example 2, the two refutations of the goal o have
the following derivation contexts, :

plaChlre 0y Coa,
PJ-: = d Fo ﬂ'.f] C e

Ta deal with merging of attributes discussed above, of
a goal must be merged into the other refutation of the
same goal if the derivation contexts of the two refuta-
tions have some relation to each other, that is, if the
assumed constraint set of one refutation holds in the as-
sumed constraint set of another refutation. This means
that the condition holds in a weaker mu:rrpt.iun alan
holds in a stronger assumption.

For example, in Example 2, if & C d holds, then the
second refutation is merged into the first one. As a con-
sequence, A new refutation s given instead of the first
refutation, whose derivation context is follows:

phChlcoh Clalc).

Moreover, if b C o and ¢ C a, then the context of both
refutation becomes as follows:

plaCdbrze; Ce

3The most general unifier of two object termas is defided simi-
larly to the usual cne, except for the definition of terms.

This means that the first derivation is absorbed to the
second with respect to the merge, because (n | ¢) = ¢
helds.

Alter merging all possible pairs of refulations, the no-
tion of an answer to a gquery is defined as follows:

Definition 5 {Answer}
An answer o the query is defined as a pair of the answer
substitulion and the derivation context of @ refutation.

Thus, the following two answers are given to the query
?—of[l = X] to ihe database shown in Example 2:

i{lphh Cole aly Cal,
H{LphCdle ol Ce)

if no condition is given among «. 5 ¢, and d.

The Qurrore i.:]t{::pn:lt:r returns all answers at once.
that is, it employs the top-down breadth-first search
strategy.

5 Modules in QUrxoTe

In this section, a module concept is introduced into
CuT¥oTE.

5.1 Need for Modules in Deductive
System

The goal of knowledge representation is to provide a facil-
ity for reasoning about a problem by using given knowl-
edge in the way that ordinary people do: we call this
everyday-reasoning, or human-reasoning.

Such reasoning systems can be defined as the pair
{f, A) of a set of deductive rules and an algorithm for
r:xtra.cﬁng all ConSeguences from the rules.

For simplicity, fix A, and think of B as the knowledge
in a reasoning system.

¢ [is neither consiatent nor complete, even though
its fragments may be consistent in themselves,

» reasoming is situation-dependent, Le., some frag-
ment of f is relevant or meaningful in a certain
sitnation,

reasoning usually requires some assumption.

One way to deal with such an aspect of reasoning is to
associate an index to each literal and each rule in £,
Indexes can be used:

(1) to define a fragment of rules {a chunk of knowledge)
which can be used in a certain situation, and

{2] to clarify which assumpiion {set of rules) is used.

263

{1} defines our conception of a medule as a set of rules
with same index. Thus. if we regard an index as the
identifier for & context or & situation, the set of rules
can be seen as the chunk of knowledge relevant for that
context or situation.

As the result of introducing indexes, each literal has
come to have the form:

nr: A

where m is an index called module identifier. and A is an
obhject term or an attribute term.

As a consequence, the usual consequence relation be-
tween formulas should be replaced by

my Ao Ay Emoc A

Intuitively, this means that A holds in m with reference
to parts my..... my; of the database. In obtaining the
answer. lhe choice of paris of the database can he seen
as the assumptions.

In Qurzrvors, an object term is used as & module iden-
tifier. The use of object terms as module identifiers en-
ables the user to treat modules as objects, and provides
meta-like programming facilities. : :

5.2 Rules with Module Identifiers

Corresponding to the constraint-based form of a rule
given in Section 4. & modularized rule has the following
form:

T 52 0g = T I 0Tyt 0y || O

where og, 0. ... 0, are object terms. g, my... .. i, are
module identifiers, and ' is a set of constraints®,
This rule specifies the following two things:

(1} this rule is in {or is accessible from) the module with
]II'L'IdUl.’l'." :idl'."l'.lt.llﬁl.'l' Tt -il.[l'd.

{2} if each subgoal m; : o; holds with respect Lo a vari-
able assignment and constraints ' then m : o holds.

Generally, the modules and their rules are defined as
followa:

{my, oo om} o {rgoonirg

where vy, -, ry are rules. Note that it is possible for
modules to be nested in multiple.

Thus, it is easy Lo have a set of rules in 2 module as the
set of all rules with the medule identifier of that module,
The set of rules in the module with m as its identifier

3 Precisely, this form represents the rule
og = 1My 03... .00 tog |

with index wmg.

264

is written as £.% In general, a module identifier may
be parametric, that is, an object term with variables in
its description. The variables appearing in a rule are
interpreted as universally quantified, thus the parametric
madule identifiers that are equivalent with respect to
variable renaming are regarded as the same,

In QurxoTe, it is assumed that each module s consis-
tent. It is an important feature of modules to represent
inconsistent knowledge where inconsistency arises from
differences in situations or context. For example, con-
sider the situation of John's believing that Mary is 20
vears old, when she is actually 21 years old. The follow-
ing database shows the treatment of such a problem:

ja&ﬂa_ﬁcﬁef - rmuryf[dge = Eﬂl;;
real world :: mary/[age = 21]:;

In this case, the database is consistenl as & whole unless
the two modules are related to each other.

The following example shows the use of parametric
module identifiers to describe so-called generic modules.
A parametric module identifier can be used to pass pe-
ramefers to the rules in the module.

Example 3 {Genere Moduls)

sorterjemp =] = {
sort[l = [], sorted = [|.omp = C];;
sort|l = [A|X],sorted = Y. omp = (] &=

aplit[l = [A|X), base = A.emp = C. Ly = Ly,] = L4,

sorill = Ly, sorted = Yy, emp = 7,
sori[l = Ly, sorted = ¥5, emp = 7,
list :appcnd[fi =Y.Lhk=Y.l=]"-];‘.
kit

less_than : {
comparearg]l = A, arg? = B res = yes] ||
{A < B}, '
compare[argl = A,arg2 = B, res = nol ||
{B < A}k:

Module sorter[emp = C] has the definition of a quick-
sorting procedure using argument ¢ for the comparator,
and module less_{han has the definition of a comparator,
where the relation < is used as constraint relation for
comparing two objects.

In processing the query:

T—sorter[cmp = less than| :
sort[l = L, sorted = R, emp = C,

iPrecisely, B, should be defined as the set of rules that are
properly i m. Taking rule inheritance into account, the set of
rules in a module is the uwnion of the proper set and sets of rules
imported from the other modules.

the module identifier less_than is passed to the rules in
the sorting module, and used to compare two elements of
list L. It is possible to give module identifiers other than
1 for using different comparator in the sorting procedure.

The next example shows the treatment of state tran-
sifions by using modules for representing states,

Example 4 (State Transition)

m
affom = nil); ; bf[on = al;;
¢flon = nil]; :df[on = ci};:
sc|sit = M. op = movefoby = A, fr= Bilo=C)] = {
Cflan = A] =
M : Afon = nil],
M : Bflen = A},
M Cfion = il
Bflon = nil]
M : Aflon = ail],
M: Bjlon = A,
M Cfion = nil];;
Afen = mil] &=
M : Aflon = nal],
M : Bflon = A},
M : Cflon = nill};;

In the initial state m, block o i3 on top of block b, and
block ¢ is on top of block d. movelobj = A, fr = B.to =
] represents the operation of moving A from the top of
B to the top of .

Module s¢[sit = M, op = OF)| defines how the state of
M is changed by operation OFP. At the same time, the
module identifier shows the history of state transitions,

For example, the following answers are obtained:

T—sclsit = m,op = movelobj = a, fr = b to =¢f] :
X{lon = a].
Answer X =c

In this case, the module that represents the statle afler
an operation is not included in the given program, it
is possible to create new modules by adding a program
to a guery [Section T) and by issuing a cresie_module
comumand.

Concerning modifications made by the sequence of
queries
and ¢reate_module commands, Qurvore employs trans-
action logic with special commands, begin transaction,
end_fransaction, and abort_transaction. If some mod-
ules are created in one transaction, they are incremen-
tally added to the program unless the transaclion ends
with abor{ trensaction.

6 Relating Modules

It is important to relate some modules in defining the
database and when reasoning.

Two ways of relating modules should be consid
ered, that is, referring to other modules and import-
ing/exporting reles from other modules.

As shown above, a rule of QurroTrs has a subgoal of
the form m : A in its body. This subgoal specifies the
external reference to the module with m as its identifier,
In such a case, module m can he seen as encapsulated,
because no rule is imported to it

6.1 Simple Submodule Relationship

Sometimes, it is useful to define databases by providing
a facility to import/export among modules as in typical
object-oriented languages.

In Qurrore, importing/exporting rules are done by
ride inherifance defined in terms of the binary relation
¢ over modules called the submodule relation. The sub-
module relation is similar to the subsituation relation in
PRDS]T[IE]“’ Basically, rule inheritance is defined as
fallows:

Definition 6 {R‘ulc]'l;lhr:'ritan{:::}
Ifmy s g then modele my inherits all the rules af my,
that iz, all the rules in mg are exported to m,.

Under this definition, the set of rules of m, is £, UX,.,.

The right hand side of Jg in a submodule defini-
tion may be a formula of module identifiers with set-
theoretical union, intersection, or difference. For exam-
ple, if we have

my i {rgc T

Thy {"'zl:"'-r"'zj}s

{ma, ma} = {rar,- -+, v},
my dg mg — my

then m; has the set of rules
Lt TEEEIE TR PYIEEI P R

Taking rule inheritance into account, a special mod-
ule identifier self is also introduced as in most object-
oriented programming languages. For example, consider
the following example:

myne=o | C

The subgoal oy is interpreted as self : 0. In this context,
self is evaluated as m;. If s Js my, then m has the
rule mo e = oy || O, and self is evaluated as m in this
case, '

SComaidering a module as & class, my; Jg e means that my is
a super-class of my.

265

6.2 Controlling Rule Inheritance

To treat various rule inheritance phenomena, twe srthog-
onal concepts, lecal and overriding, are introduced into
Qurxore. Each rule may have these modes, which con-
trol how each rule is inherited according to submodule
relations,

If & raie is local, then it is not mherited to other mod-
ules. If a rule is overriding, then it overrvides the other
riles inherited from other moduales, that is, the inheri-
tance of some rules 15 cancelad.

There are several possibilities on what rules are to be
canceled by an overriding rule. Currently, the inheri-
tance of & rule is canceled if its head has object terms
with the same principal object and its labels are same as
the one of the head of overriding rule. This is similar to
the retract’ predicate of Prolog.

Each rule has an inkeritance mode. The value of the
inheritance mode is (o), {{), or {of), i explicitly speci-
fied. (o) means ‘overriding, (/] means ‘local’, and (o)
means ‘local and overriding”. If a rule has no inheritance
maode, the rule is regarded as having ‘non-local and no-
averriding” as its default mode setting.

Consider the following example.

Example 5 (Exception by Inheritance Maoda)

bird 12 can fly/[pol = yes|;;

penguin = (o) can fly/[pol = nol:;

.!u-pt.r‘ .j.ll:'rl-_g'ui:ﬂ- Y {- . -]'; =

lird Cg penguin Cg super_penguing:
The inheritance of the rule of the module bird is canceled
in the module penguin by its “overriding’ rule, whereas
the module super_penguin gaing can fly/ipol = yes|, be-
cause the rule in bird is inheriled to it.

By introducing local and overriding modes for rule in-

heritance, it is possible to relate subsumption and suh-
module relations closely as follows:

penguin C krd O penguin Jg bird,

where rules in m, should be overridden.

6.3 Links between two Modules

Sornetimes, a facility for representing changes of state is
required as shown in the example in Section 5.2.

The relation between the two states before and after
an operation is represented by a special form of object
terms. However, simpler and more sophisticated treat-
ment may be required for general treatment of state tran-
sitions or changes of states, The problem is how to relate
modules and objects.

Another kind of relations called links are provided as
follows:

L
My — My,

L
oy =+,

2066

where ry and my are module identifiers, and o; and op
are object identifiers. L is called the name of a link rela
ticn. Notice that a link relation is defined over module
identifiers and object terms. The former link is called
module-link and the latter link is called object-link.

The link definition above obeys the following rule:

ml—i'-rmg N ﬂl—Lfﬂg Mommg itey D Mmg il 0.

This rule shows how module-links and object-links co-
laborate. According to this rule, a pair of a module-
link definition and an object-link definition can be trans-
formed as follows:

g X =my 1 ¥, iy L g, ¥ Lx

The following is an example of link usage:

LUREREE

ny[agt = al miz(ag! = o]

tothe rightoflobj = b "Z25" fo_the de ft_ofloby = b).

This example means Lhat b is to the right of an agent a
in a module m,, while b is to the left of o m my after a’
turns back.

By traversing the used links. one can keep track of
the stages of reasoning. This feature is especially impor-
tant in assumption based reasoning and plan-goal based
reasoning.

Most aof the links appearing in the semantic network
can he represented by labels in an attribute term. while
some of the links accompanying inference are represented
by the pairs of a module-link and an object-link.

7 Programs and Queries

As mentioned before, a dolabase or a program is defined
as a finite set of rules, Move precisely, some additional in-
formation is associated with the definition of a database
Or & PrOgram.

A definition of & QuiroTe program concept is defined
as a 4-tuple (E, My, Og. R) of the environment part £
of the definition of macros and information on program
likraries. the module part My of the definition of the
submodule relation, the object part Oy of the definition
of the lattice of basic objects, and a set of rules 7. The
following is an example of a program definition.

Leb_pgmy;;
Eboenw ;. ..
Kb _obj;;

&subsum: ; bird 2 penguin, ... 13
deeobi;;
&ebomod,

TPrecisely. My containa the definition of module-links. and Oy
contains the definition of object-links.

e enus;

Lsubmeod: : penguin Jg bird, ... :
fee oo
februle::
bird ;- can fly/[pol = yes];;
penguin = color[arg = black_white]s:. ..
dee_rule:;
de_pgm.

A query iz defined as a pair (A, F) of a set of atiribute
terms A and a program definition P (=(E, My, Oy, B)).

The purpose of this guery is to find the answer to A
in the context of adding P. Thus, a query {4, F) to a
program P* {={E'. M. 0. R')) is the same as a query
{ A) to & program (EUE", MyUMp, Og U0, RUR.

To deal with the modification of the program, a new
transaction begins just before a query is processed and
ends just after the process is terminated. QurayoTe trans
actions can be nested, and the user can specify whether
the modifications or updates done in each transaction
are valid for successive processes or not.

This feature of adding a program fragment in & query
extends the ability of the assumption-based reasoning in
Quryore. as shown in the fbllowing query, to the pro-
gram above.

P—superpenguin : can fly/[pol = X);:
Lebopgrns
Srbomod: Laubmmod;
penguin > —super penguing |
femod.:
debrule::
penguin =2 (of Jean fly [[pel = nal;:
fe_ruler:

&ee_pgrr,

8 Related Works

8.1 Objects and Properties

Beginning with Ajt-Kaci's work on w-terms, there are a
number of significant works on the formalization com-
plex terms and feature structures [16, 13, 1. 3, 4]. For-
malization of the object terms and attribute terms of
Qurvere is closely related to and influenced by those
works, especially the work dome by Mukai on CIL [14]
and CLP{AFA) [13).

Compared to those works, the unique point of
QurxoTe is its treatment of object identity that plays
an important role in introducing object-orientedness into
definite clause constraint languages.

As for object-orientation, Kifer's F-logic is closely re-
lated to Quryote, although the treatment of object iden-
tity and property inheritance is quite different. In F-
logic, object identity is not defined over complex terms

but over normal first-order terms. The approach taken
in Quixore is more fine-grained than that of F-logic,

8.2 Modules

As module concepts are verv important in knowledge
representation as well as programming, several related
works have been done [9, 10, 11, 15] First. a briel com-
parison of the language features of these works is pre-
sented.

From the viewpoint of knowledge representation. mod-
ularization corresponds to the classification of knowl-
edge. In such this sense, the ability to relate modules
flexibly is imporiant, QurroTs provides a number of
ways Lo do this, for example. by specilying the nesting
of modules. QuiveTs supports multiple module nesting
by allowing set-theoretical aperators to relate modules.
which are also used for exception handling. while other
languages do not mention to it

Quryors also provides a facility for dealing with
exceplions on exporting/importing rules by using the
combination of modes associated with each rule {lo-
caf and everriding). This covers Lhe features described
ia [9, 10, 11].

Furthermore, as in most object-oriented languages.
Qurrore mtroduces the special module idemifier self
which can be seen as a meta-level variable and plays an
important role in rule inheritance, while other languages
do not,

Om the contrary, other languages have introduced the
notion of side-effects mainly to make computation el
ficient. This is because the others are essentially de-
signed as programming languages. This feature. includ-
ing database updates, will be enhanced in the next ver-
sion of QurrerTe,

Concerning the semantics of modules and reasoning
with modularized formulas. Gabbay [6] propoeses a prool-
theoretic framework for extending normal deductive svs-
tems called the Labeled Deductive Sysiem (LDS) o
LIS, each formula is fabeled. in the form of @ A, where
i is & svmhbal called label and 4 s a logical formula. The
consegquence relation is replaced by

!1:.4.],....':":,4,._.&:3.

In his concatenation lagic, the following inference rule is
the kev to relating labeled formulas:

grat:a3bF(F+a):h

This means that b is obtained by using s first and then
by using 1. The label (f + s} indicales the order of label
use. Thiz corvresponds to the notion of links in Guryore,
explained in Section £.3.

I is worthwhile investigating the velationship between
LDS and Qurrore, namely to give a prool theary for
Survore. This is work to be done in the future.

267

9 Concluding Remarks

Version 1.0 of Quzyors written in KL1L [designed by
QT as a parallel language for parallel inlerence ma-
chines PIM). has been completed. It is used for several
application systems. such as legal reasoning systems|[19].
natural language processing systems|13], and molecular
hiological databases[17]. Through those experiences, ihe
usefulness of the features of Quryore are being exam-
ined.

We are now working with the new version of Qurvors
for more efficient representation and processing., In the
new version. the following features are introduced:

1} Relation between Subsumption and Submodule
This feature is discussed briefly at the end of Sec-
tion 6.2

2] Updates

In Sections 3.2 and 6.3, we show a simple exam
ple of state transition. However. such problems are
closelv related to updates ol databases or programs.
Currently, only facts can be added or deleted. In
the nexi version, the facility for adding or deleting
non-unil clauses will be provided. The poaim is bhow
to deal with those updates in & parallel processing
envirowment without causing semantic problenns.

3 Meta-Rule

Meta-rules are useful both i programming lan-
guages and knowledge represeniation languages.
They provide a facility to describe schenata G e
fine generic procedures or knowledge.
For example, in HiLog[5]. the lollowing general tran-
sitive closure rule can be writien:

T RPN Y) —HX. Y

Pl RPN Y) el B)X. Z) el BILE Y)
In Qurrers, new variables corresponcling o the
principal objects of object terms must be introduced
1 support such o fuetion.

Acknowledgement

We would like 1o express our gratitade to the wembers
of the third laborators of [COT . and the imemleers of the
Qarvoars project for their discussions and cooperation,

We are grateful to the members of the working groups
of ICOT. 515 (Snuation Theory and Semantics) and
NDB [(New-geveration DataBases) aod TDE {Intelligen
DataBases). for their sticmulative discussions and useful
CONUNEnts.

We also would like 1o thank Dr. Nazohire Fuchio D
Ioichi Furukawa, and Dr. Shunichi Uchida of 1007 for
their continuous encouragement.

268

References

[1] 8. Abiteboul and 5. Grumbach, “COL: A Logic-
Based language for Complex Objects”, Proe
EDET, in LNCS, 303, Springer, 1988

[2] P. Aczel, Non- Well-Founded Sef Theory, CSLI Lec-
ture Notes No. 14, 1988,

[3] F. Bancilhon and 8. Khoshahian, A Calculus for
Complex Objects”, Proc. ACM PODS, 1985

4] W. Chen and D. 5 Warren, “Abductive Reason-
ing with Structured Data”, Proc. the North Amer:-
can Conference on Logic Programming. pp.851-867.
Cleveland {Oct., 1989},

i5] W. Chen, M. Kiler, and D). 5. Warren, “HiLog as a
Platform for Database Language™, Proc. the Second
Fnternational Workshop on Dotabase Programming
Language, Gleneden Beach, Oregon, 1989.

[6] D. Gabbay, “Labeled Deductive Systems, Part 17,
CIS-Bericht-90-22, CIS, Universitat Munchen. Feb..
19491,

M. Hohfeld and G. Smolka. “Definite Relations
Ower Constraint Languages”. LILOG report 53,
IBM Deutschland, Stuttgart, Germany, Oct.. 1988,

[7

[8] M. Kifer. G. Lavsen. and J. Wu. “Logical Foun-
dations for Object-Oriented and Frame-Based Lan-
guages”, Technical Report 90014 [revised). June.
1940.

[9] D. Miller, -A Theory of Modules for Logic Pro-
gramming”, The International Symposium on Logic
Frogramming, 1986,

(10] L. Monterio and A. Porto, “Contextual Logic Pro-
gramming”, The Mmicrnalionel Conference on Logic

FProgramming, 1989,

{11] L. Monterio and A. Porto. A Transformational
View of Inheritance in Programming™, The Infer-
national Conference on Logic Programming, 1990

[12] Y. Morita, H. Haniuda, and. K. Yokota. “Object
Identity in Qurrore”. Proc. SIGDBS and SIGATS
af 1PSJ, Oct., 1990,

13] K. Mukai, *CLP{AFA): Coinductive semantics of
horn clauses with compacl constraints”, In J. Bar-
wise, 3. Plotkin, and JM. Gawron. editors, Sifua-
tion Theory and fs Applications, velwme I CSLI
Publications, Stanford University, 1991,

i14] K. Mukai, “Constraint Logic Programming and the
Unification of Information™, PO thesis, Depart-
ment of Computer Science, Faculty of Engineering.
Tokyvo nstitute of Technelogy, 1991.

[15] H. Nakashima, H. Suzulki, P-K. Halversen. 5. Pe-
ters, *Towards a Computational Interpretation of
Situation Theorv”, The Internetional Conference
en Fifth Generation Computer Systems, 1988,

[16] G. Smalka, “Feature logic with subsorts”, Technical
BReport LILOG Report 33, IWBS, [BM Deutschland
GMBH, W, Germany, 1989,

[17] H. Tanaka, “Protein Function Datebase as a Deduc-
tive and Object-Oriented Database™, The Second
Internafional Conference on Database and Erpevi
Bystem Applications, Berlin, Apr., 19491,

[18] S. Tojo and H. Yasukawa. “Temporal Situations and
the Verbalization of Information”, The Third Inter-
national Workshop on Sitwation Theory and Appli-
cations (STA3), Oiso, Nowv., 1991,

[18] N. Yamamoto, “TRIAL: a Legal Rersoning System
[Extended Abstract)”, France-Japen Joint Work-
shop, Renne. France, July, 1991,

[20] H. Yasukawa and K. Yokota, “Labeled Graphs as
Semantics of Objects”, Proc. SIGDAS and SIGAT
of IPSJ. Qct., 1990,

[21] K. Yokota and H. Yasukawa, “Quryore: an Adven-
ture on the Way to DOOD (Draft)”, Workshop on
Ohject-Chienfed Computing 91, Hakone. Mar., 1991,

