PROCEEDIMGS OF THE INTERWATIONAL CONFEREMCE
ON FIFTH GENERATION COMPLUTER SYSTEMS 1992,
edited by TCOT. £ ICOT, 1992

237

LSI-CAD Programs on Parallel Inference Machine

Hiroshi Date!
Kazuo Takif

Yukinori Matsumoto!
Hiroo Kato?

Kopichi Kimural
Masahiro Hoshit

Mnstitute for New Generation Computer Technology
1-4-28 Mita, Minato-lu, Tokvo 108, Japan

{date, yumatumo, kokimura, taki}@icot.or.jp

}Japan Information Processing Development Center
3-5-8, Shibakouen, Minato-ku, Tokyo 105, Japan
{j-kato, hoshi}@icot21.icot.or.jp

Abstract

This paper presents three kinds of parallel L51-CAD sys-
Lems develaped in ICOT and describes their experimen-
tal results on 2 parallel inference machine. These systems
are routing, plecement and logic simulation. All of them
are implemented in KL1, a concurrent logic language,
and executed on the Multi-PSI, a distributed memory
machine with 64 processors,

We regard our parallel inference machines as high per-
formance general purpose machines. We show program-
ming techniques to derive high performance on parallel
inference machines. The common objectives of these sys-
Lems are, fisstly, to provide spesdup by extracting major
parallelism, and, secondly, to show the zpplicability of
our hardware and language system to practical applica-
tione. For thizs reason, our systems are evaluated using
real LSI chip data.

The key features are, in the ronting system, concurrent
object modeling of routing problems to realize a lot of con-
currency; in the placement system, fime-homogeneons
perallel simulaied annealing to optimize placement re-
sults; and in the logic simulation system, the Time Warp
mechanism as a lime-keeping mechanism for simulations.

Experimental results of these systems show that these
technigues are effective for parallel execution on large-
scale MIMD machines with distributed memory struc-
ture, like the paraltel inference machines.

1 Introduction

A paralle]l computer gystem PIM (the Parallel Inference
Machine), one of the goals of the Japanese Fifth Gen-
eration Computer Systems project, hes been completed,
and its evaluation is starting. PIM has been developed
mainly Lo targel high performance krowledge informa-
tion processing. Since most probiems in this domain are
of an extremely large size, exploiting the whole power of

parallel machines is important. In practice, however, it
iz not easy to derive their maximum power because of
the non-uniformity of computation, that is dynamically
changing parallel computation depending on time and
space.

In order to move programs efficiently on PIM, the fol-
lowing arve important. First is to adopt good concurrent
algorithms. Second is to design programs based on pro-
gramming paradigms to realize high parallelism. And
last is to use effective load disteibution technigues in-
cluding processor mapping. We aimed at gaining experi-
eneces with these techniques through large-scale practical
application experiments on PINM.

PIM is an inference machine, however, its applicability
should not be limited to knowledge information process-
ing. From the viewpaint that PIM is a high performance
general purpose machine, we chose L3I-CAD as one of
the application fields.

Nowadays, LSI-CAD is indispensable for L3I design.
The integration af the LEI chip has inereased exponen-
tially in proportion to the progress of the semiconductor
process technology. The quality of LSIz depend on the
performance of L3I-CAD toals. Therefore, higher per-
formance is required. Besides, the flexibility of the Lools
must be kept for a variety of demands. Using hardware
accelerators is one possible way of obtaining faster tools,
however, it usually results in 2 sacrifice of flexibility. A
likely alternative is to parallelize soflware tools. This
certainly satisfies the above twe requirements: making
the toals faster and keeping their flexibility.

We focused on three stages of LSI-CAD,; logic simu-
lation, placement and routing, which are currently the
most time-consuming in L31 design. Each system has
following features.

The routing system finds paths based on the lookahead
line search algorithm [Kitazawa 1985]. This algorithm
provides high guality solutions, howewver, it was originally
proposed with the assumption of sequential execution.
We introduced a new implementation method of parallel

238

router based on the concurrent objects model, and im-
proved the basic algorithm to make it suitable for paral-
lel execution. The concurrent objects model is expected
to derive & lot of parallelism among small granular pro-
cesses. We investigated the description complexity and
overhesd of our routing programs. Also its performance
(real speed, speedup and wiring rate) was evaluated in
comparison with a sequential router on general purpose
computer using real L3I chip data.

The cell placement problem is & combinatorial opti-
mization problem. Simulated annealing (SA) is a power-
ful algorithm to solve such problems. Cooling schedules
are important for efficient execution of SA. In our place-
ment system, the time-homogeneous parallel SA algo-
rithm [Kimura et el 1991) was adopted. This algerithm
constructs appropriate cooling schedules antomatically.
We evaluated quality of solutions in our system using
MONC benchmark data.

Logic simulation is an application of discrete event
simulation. The key to its efficient execution in par
allel is keeping the time correctness without large over-
heads. We adopted the Time Warp mechanism (TW)
as the lime-keeping mechanism. TW has been consid-
ered to contain large rollback overheads, however, it has
noi been evaluated in detail yet. We not only improved
the rollback process but also added some devices so that
TW would become an efficient time-keeping mechanism,
Cascading-Oriented Partitioning strategy for partition-
ing circuits are also proposed to attain good load distri-
bution. We evaluated our system on speedup and real
speed (events/sec) ps compared with the systems that
had other time-keeping mechanisms (Conservative and
Time Wheel) using ISCAS89 benchmark data.

These systems were implemented in KL1 [Chikayama
el al. 1988, Ueda «f ol 199, a concurrent logic lan-
guage, and have been experimented with on the Multi-
P5I/V2 [Nakajima et al 1989, Taki 1988, a prototype of
FPIlM.

This paper is organized as follows : The routing system
is described in Section 2. A routing algorithm based on
the concurrent objects model and its implementation is
presented in detail. Section 3 explains the placement sys-
tem. The time-homogeneous SA aigorithm is introduced
and optimization in the implementation is explained.
Section 4 overviews the logic simulator and reports on
its evaluation. Our conclusion is given in Seclion 5.

2 Routing System
2.1 Background

There have been many trials to realize high speed and
good quality router systems with parallel processing.
These trials can be classified into two areas. One is the
hardware engine which executes the specified routing al-
gorithm efficiently [Kawamure ef ol 1990, Nair ef al.
1982, SBuzuki ef al. 1986]. The other is concurrent rout-

el

+Caoncurrant Algethm Yy
{Distrizuted Algorifim)

Process Slruciiorg

{Logical conturrancy) U Grouping
] 7
[Physical parallelism) N PEQ FE1
PEn : ProcEssors " PE2 PE

Figure 1: Program design paradigm based on the con-
current abjects model

ing programs implemented on general purpose paraliel
machines [Brouwer 1990, Olukotun et ol 1987, Rose
1988, Watanabe et al 1987, Won ef al. 1987). The
former approach can realize very high speeds, while the
latter can provide large flexibility. We took the latter
approach to realize both high speed and 2 flexible router
system, targetting very largge MIMD computers.

In generzl, & lot of parallelism is needed to faed a
large MIMD computer. So, we propose a completely
new paraliel routing method, based on a small granual
concurrent objects model, The routing method was im-
plemented on the distributed memory machine, Multi-
P31, with 2 logic programming language KL1. We made
preliminary evaluations of the new router, from the view-
points of (1) data size vs. efficiency, (2} wiring rate vs.
parallelism, and (3) comparison of execution speed with
general purpose computers.

This section contains the following. A programming
paradigm based on the concurrent objects model, a
router program with an explanation of coneurrent algo-
rithms and implementation, problems in parallelization,
and preliminary measurements and evaluation results.

2.2 Programming Paradigm

Formalizing & problem based on the concurrent objects
model 1s one of the most prospective ways to embed par-
allelism in a given problem.

This section desesibes our methodology to design par-
allel programs from problem formalization to parallel ex-
ecution. We also show coding samples in the KL1 lan-
Euage.

Figure 1 shows the flow of parallel program design.
Firstly, a given problem is formalized based on the con-
current objects model. That is, many objects make a
solution cooperatively, by exchanging messages. At the
same time, & concurrent algorithm is designed upon the

Gonewrant_Otbject | | Messago_1 | Rest], Interlor state variables, Stream vasiabla) © -
e
Process comaspond 1o Massage_1,
Ranew of Interior slate variables,
Sirgam vandbis = [Massage | Mew Steeam variabial,
Goncrent_Cbjest | Rest , New Inlaror state varlabées, New Stream variabla).

Goneurent_Objeot { [Message_2 | Aesl L Inferior stats varables, Stream vardable) : -

Figure 2: Implementation of a concurrent ebject in KL1

model. Sometimes, the algorithm is a distributed algo-
rithm. Through this design phase, the activities of the
objects corresponding to messages are defined,

Then, each object is implemented as & KL1 process,
Process connection topology is decided based on input
data. Usually, a much larger number of processes is
neaded than the number of processors to get good load
balance. Logical concurrency (the possibility of parallel
processing) is designed through this flow,

Secondly, the processes, which exchange messages fre-
quently, are grouped to increase corrnunication locally.
When each process has a large computational amount
(large granularity} and a low communication rate, this
phase can be omitted.

Then, the groups are assigned {o processors and exe-
cuted. This is called mapping. Physical parallelism is re-
alized in this phase. The KL1 language system allows in-
dependent descriptions of the problem solving part {log-
ical concurrency) and the mapping part (physical par-
allelism) of a program. Performance tuning of parallel
processing can be done only by changing the mapping
part, not by changing the preblem-solving algorithm.

The KL1 language is quite suitable for deascribing
concurrent objects. Processes representing the objecis
are written in the self recursive call of the KLI lan-
guage. These processes can communicate with each other
through the message streams. Figure 2 shows a coding
sampie of an object. The functions of an ebject are de-
fined with a sef of clanses. Each clause corresponds Lo a
messape which the object receives.

2.3 HRouter Program

We used the lockahead line search method [Kitazawa
1985] as a basic algorithm. Then we reconstructed the
algorithm for highly parallel execution, taking the con-
current chjects model as a basic design framework.

2.3.1 Basic algorithm

The lockahead line search method is one of the line
search algorithms eoupled with lookahead operation. It
is, if you like, a sort of hill-climbing algorithm, looking
for a good route. The algorithm, also, has two features.
One is to escepe from the local optimum point with the

Mul Message 1o ather abjects

239

NNNNNN
-
3
NN

/

o el
E | — Fo
—
line-processes

Figure 5: Master line processes and line processes

help of the Inhibited Expected Poiot (IEP) flag. The
other is backiracking to retrace bad routes and to retry
searching. The algorithin guarantees connection between
astart point and a target point when paths exist between
them.

2.3.2 QConcurrent routing algorithm

In KL1 programming, an execution unit is a process cor-
responding Lo an object. Since the line search algorithm
decides a route, line by ling, we designed the concur-
rent algorithm so that objects=processes corresponds to
every line segment on a routing grid. Line processes ex-
change messages with each other to look for a good route.
FEach line process maintains the corresponding line's sta-
tus and, at the same time, the execution entity of the
search,

As Figure 3 shows, each process corresponds to each
grid line (master line process) and line segment. (line pro-
cess) on it, A master line process manages line processes
on the same grid line and passes messages between the
line processes and crossing line processes.

The routing procedure of one net is almost the same
as that of the basic algorithm, except that the procedure
is broken down into a sequence of messages and their
aperations are executed among processes. Computing
the best expected point is done as follows. The expected
point is the closest location to a goal on a line segment.
The distance to the goal is used for a cost function in the
hill climbing method.

When & line process receives a routing request message
with information of a goal point, it changes its status to
“under searching”. Then, it sends request messages for
caleulation of expected points to line processes that cross
it (Figurs 4).

Thus computation of the expected point i3 executed
concurrently on each line process that receives the re-
quest message.

After the computation results are returned to the
seerching line process, it aggregates those results and
determines the best expected point.

When the best expected point is determined, the
searching line is connected to the crossing line that in-
clades the best expected point. The searching line pro-
cess splits into an occupied part and a free parf, and

240

=== 0.0 e process emcuding axpected poits &+ on expecied paint

= 4 ini process searching rouding pets ==: a connectad path

o

-mh\ﬁh wspoced pein
SEATA A LT A LT
9497 IMI5%%%
S| Lbpes M7 77
o |71 A N
| # ¢
(=) Parolel exnoution of sapassed pants b} Garrmction o rouing path
[berminafion condifon)
nxpscind podnd = Gang et painl
|
Il i AA7AA b tl
4 Lo o T
1 I ?xﬁ:{*:} _,ﬁf//x/ !
RBlZZ7% alll’Zz7%
7 ey %7 Y,
B1%% |

€] Tar=inaton condion of paalel
wngeyion of expecied points

Figure 4: Parallel execution of expected points

|EiCompleten ol cating

the status is maintained, Then, the next routing request
message is sent to the connected crossing line.

Messages are sequenced at the entrance of each pro-
cess. Only one message can be handled at any time in &
process. No preblems of exclusive access to an object or
locking /unlocking objects erise with this scherme.

In our algorithm, two types of parallelism are embed-
ded. One is concurrent computation in the lookahead
operation and the other is concurrent routing of differ-
ent nets.

2.4 Problems in Parallel Execution

When we parallelize the lockehead line search method,
three problems arise. The first 1s deadlock, the second
is conflict ameng routing nets and the last iz memosy
overflow for communicating between processors.

2.4.1 Avoidanece of deadlock

When two or more nets are searched concurrently, dead-
lock may occur. Figure 5 shows an example, When lire
processes thal intersect orthogonally send request mes-
sages to compute the expected point te each other at
the same time, computation will not ocour. This is be-
ceuse they cannol carry out the next messages until the
execution of present messages terminates.

If it is guaranteed that execution of & message termi-
nates within a fixed period, deadlock can be avoided. To

requastng execulion of an expecied paint io sach othar

=
" I
R W 7
A A
t T
)
r}.:?] e pr;-c:maa saarching rauling paths
“HHEEEEN

Figure §: Example of deadlock

satisfy this condition, we made the following modifica-
tiorn.

Firstly, messages are grouped into group A and group
B. B-type messages are guaranteed to terminate execu-
tion within a fixed period. A-type messages are not guar-
anteed to terminate, that is, some synchronization with
other processes is needed before terminating message ex-
ecution.

We modify the operations of A-lype messages as fol-
lows, Each process executing an A-type message ob-
serves all messages arriving successively,. When an A-
type message is found, it is left in a message queue, that
is no operations are performed. When a B-fype message
15 found, it is processed immediately before termination
of the currently executing A-type message. For this pro-
cessing of B-lype messages, a temporary process status
that differs from the sequential algorithm is needed, By
applying this modification, deadlock can be avoided.

In our router, the routing request messages are A-type,
and the request messages of computing expected points
are B-type.

2.4.2 Conflict among nets

When concurrent routing of multiple nets is done, differ-
ent nets may conflict on the same line segment. In this
situation, message sequencing works well and the firat
message to arrive [corresponding to net A) occupies the
segment. The second message to arrive (net B) fails to
complete a route, and backtracks.

Howsver, net A may backtrack afterwards and may
release the line segment. In this case, net B does not visit
the line segment anymore and the line segment may be
left unused. This fact cavses lower quality routes {longer
paths) or a lower wiring rate (more unconnected nets).

To avoid those degradations in routing quality, the
scheduling of the order in which nets start routing is im-
portant and may limit concurrency by eliminating the
number of nets routed concurrently. Howewer, paral-
lelism can be affected by these controls. Relations be-
tween wiring rates and paralleliam are studied in the ex-
pesiments.

——PEI——PE1——

O sdigtributer procass

O mastar line process

PE2 PES

Figure §: Improved process structure

2.4.3 Overflow of memory for communication
AMONE pProcessors

When we implement the concurrent program using KLI,
two kinds of memory are necessary. One is the memory
for representing processes. The other is the memory for
communication paths among processors,

In our routing program, the process structure shown in
Figure 3 was implemented. Each master line processes,
which mediates between line processes, must commumni-
cate all orthogonal master line processes. Therefore the
number of communication paths iz increasing for large-
scale data. Experimental results show that the maxi-
mum grid size of chip data to be treated by this routing
program is about 500 x 500. This size is too small for
applying practical data.

In order to solve this problem, we improved the pro-
cess siructure, as in Figure 6. Each distributer process
controls communication among processors.

2.5 Measurements and Evaluation

We evaluate our router from the following three points
of view. (1) Data size vs. Speedup, (2) Parallelism
vs, Wiring Rate, and (3) Comparison with a general
purpose computer, The program was executed on a
MIMD machine with distributed memoery and 64 pro-
cessors, the Multi-PSL Two types of real LSI data were
used. The features of these data are shown in Table 1.
Terminals to be connected are distributed uniformly in
DATAL. Meanwhile, terminals are concentrated locally
in DATA2. DATAZ is large-scale data.

Table 1: Testing data

[Data | DATAI | DATAZ | DATAS
[Grid size | 262x106 | 322x389 [2746x3643
Fofnets | 136 1 556
Presented by | Hitachi Ltd. | NTT Co. | NTT Co.

241

of PEs
Figure T: Data size va. speedup

2.5.1 Data size va. speedup

Generally, when data size increases, the aumber of pro
cesses increase too and more parallelism can be expected.
Higher parallelism can lead to greater efficiency or larger
speedup with a fived number of processors. We measured
the relationship between the size of data and speedup.

In this experiment, we used data copying DATAL
Here we measured [our cases (1x1, 1x2, 2x2, and 2x4}.
Figure 7 shows the result of measurement. This graph
shows that the larger the size of data, the higher the
speedup. It also shows 24-fold speedup with 64 proces-
sors for 2x4 data it does not leol saturated yet, We
have to investigate the limit of speedup with increasing
data size.

2.5.2

Parallel routing of multiple nets may canse a degradation
in wiring rate. We measured the relation between wiring
tate and parallelism for DATAL and DATAZ, &s shown
in Figure 8, The two vertical axes show execution time
and wiring rate. The horizontal axis shows the num-
ber of nets routed concurrently. Parallelism is propor-
tional to this. When equal to one, parallelism only arises
from parallel lookahead operations. It was observed that
terminal-distributed data shows good wirability, even i
parallelism i high, when the terminal-concentrated data
is poor. Concentrated terminals tend to canse a lot more
net confliction.

Wiring rate vs. parallelism

2.5.3 Comparison with a general purpoese com-
puter

The execution time of DATAZ with a single processor
was measured as 111 seconds. From Figure 3, speedup
cansed only by lookehead operation 1= caloulated as 4.9.

The execution time of our syslem was compared with
a general purpose computer, the IBM 30%0/400, which
is & 13 MIPS machine. The sequential lookahead line
search router on the IBM machine was developed by Dr.
Kitazawa (NTT Co.) before our work was conducted.
Table 2 shows the performance of the routers.

242

Wiring rate(%)
i _— ol — s - o ol -@‘"m
1 Wiiring rate JOATA1] G504
1
5,

Execution time(see.)

La0
154 .
'h-. -‘Ei‘%
ol neukion tims [DATAY [F70
Exacution Gme [DATAT) T spa, B ses
0+ G0
0 a5 0 105 140
of nets

Figure 8 Wiring rate ve. parallelism

Two cases of the Multi-PSI measurements {with
G4PEs) are included in the table. One routed all nets
concurrently and the other routed each net one after an-
other. The former case shows the belter execution time
but worse wiring rate. The latter case accomplished the
perfect wiring rate but worse execution time for DATAZ
We expect Lo realize hoth good execution time and good
wiring rate by controlling the number of nets wired con-
currently and changing the wiring order. {In fact, en
DATAZ, W:100 % ard E:16 sec. under the number of
nets wired concurrently is egual to 2.

The eveluation for large data [DATA3) has just
started. The wiring rate in the table is still insufficient
but it will be improved as mentioned just above,

Table 2: Comparizon of performance

Daka) Machines IBM Multi-PS1 | Mulé-P5I | Multi-PSI
3090,/400 | (64PEs) § | (84PEs) § | (LPE)

DATAZ | E 745 7.0 0.0 111.0
W 100 T2 100 100

OATAS | E 4050 | 4604 M.A. WA
W 100 a0 M.A W.h.

Eaxecution time (Sec.),Wowiring ra.te{'ﬁ?]-u' ;
 concurrent wiring of all nets
} sequential wiring of each net

The execution time of the router on the Multi-P5SI can
e considered almost comparable with that on an IBM
machine. When our router 1s ported to PIM machines,
the next mode! to the Multi-PSI, the execution time will
be reduced to 1/10 to 1/20 in execution with 256 to 512
[IrOCEsSOrs,

The performance of the bare hardware of a Multi-PSI
processor is 2 to 3 MIPS. And the efficiency of parallel
processing (speedup/number of processors) iz 25% for
the case of Multi-PSI[64PFs) with concurrent wiring of
all nets on DATAZ. So, bare hardware performance with
fid processors is expected to be 32 to 48 MIPS (2 to 3

% 64 = 0.253). While, the actual performance is com-
parable with the 15MIPS machine. The degradation of
actuzal performance must be caused by the implementa-
tion overhead of the ohject-oriented program and KL

language.

2.6 Discussions

We presented a new routing methed based on the concur-
rent objects model, which can include very large concur-
rency and is suitable for very large parallel computers,
The program was implemented on a distributed memory
machine with 64 processors. Preliminary evaluation was
then done with actual L5I data,

The experimenta]l results showed that the larger the
data size, the higher the efficiency attained by & maxi-
mum of 24-fold speedup with 64 processors against sin-
gle processor execution. The speedup curve did not look
gignificantly saturated, that is, mere speedup can be ex-
pected with more data.

In experiments on parallelism and the wiring rale, a
good wiring rate with large parallelism was attained for
data in which terminals are distributed uniformly. How-
ever, for data with concentrated terminals, the wiring
rate became significantly worse, due to the incresse in
parallelism. We must improve the wiring rate in the lat-
ter case.

The actual performanee of our router system was com-
pared with an almost identical router on a high-end gen-
eral purpose computer (IBM3090/400, 15 MIPS). Re.
sults showed that the speed of both systems was com-
parable. Based on a rough compearison of bare hard-
ware speeds, the implementation everheads of the par-
allel ebject-oriented program and our language are es-
timated as 100 to 200% in total, against the sequential
FORTRAMN program on the IBM machine.

3 Placement System

3.1 Background

Cell placement. is the initial stage of the 151 layout design
process, After the functioral and logical designs of the
circuit are completed, the physical positions of the cirenit
componente are determined so as to route all electrical
connections between cells in a minimum area without
violating any physical constraints. Heuristica for evalu-
ating the quality of a placement usually promote one or
more of the following: minimum estimated wire length,
an even distribution of wires around the chip, minimum
layout ares, and regular layout shape.

The cell placement problem is well-known as a difficnit
combinatorial optimization problem. In other words, it
i# not feasible for obtaining the optimum placement of
a circwit with practical size hecanse it takes excessively
arnounts of CPU time. So efficdent techniques to get
nearly optimum placement must be emploved in practice.

3.2 Simulated Annealing

Approximate methods are used to solve the combinato-
rial optimization problem. One such methed is called
iterative improvement. In this algorithm, the initial so-
lution is generated, and, then, modified repeatedly to try
to improve it. In each iteration, if the modified solution
is better than the previous one, the modified solution
becomes the new solufion.

The process of altering the sclution continues until we
can make no more improvemnent, thus yielding the final
solution. The problem with this algorithm is that it can
be trapped at a local optimum in a solubion space.

The Sirmulated Annealing(SA) algorithm [Kirkpatrick
et al. 1983] iz proposed to solve this problem. It proba-
bilistically accepts a new solution even if the new solution
may be worse temporarily. Its acceptance probability is
calculated according to the change in the estimated cost
value of the solution and the parameter “temperature”.
The cost function is often refarred to as “energy”. In
thiz way, it iz possible to search for the plobal optimum
without being trapped by local optima.

The details of this algorithm are as follows,

It is constructed from two criteria, the inner loop cri-
terion and the stopping criterion. At first, the initial
solution and initial temperature are given. In the in-
ner loop criterion, new solutions are generated iteratively
and each solution is evaluated to decide whether it is ac-
ceptable. The units of iteration which are constructed
by generating and estimating the new solution are called
“stop”. In each stage of the inmer loop criterion, the
temperature parameter is fived. In the stopping crite
rion, after a sufficient number of iterations are performed
in the inner loop, the temperature is decreased gradually
according to a given set of temperatures called the “cosl-
ing schedule”. The stopping criteria are satisfied when
the energy no longer changes.

One of the most difficult things in SA is finding an ap-
propriste cooling schedule, which largely depends on the
given problem. If the cooling schedules are not adequate,
satisfiable aolutions will never be obtained.

3.3 Parallel Simulated Annealing

A new parallel simulated algorithm(PSA) is proposed
to solve the cooling schedule problem [Kimura ef al
1991). The most important characteristic of this alge-
rithm is that it eonstructs the cooling schedule antomat-
ically from the given set of the temperatures. The basic
idea is to use parallelism in temperature, to pecform SA
processes concurrently at various temperatures instead of
sequentially reducing the temperature. So it is schedule-
less or fme-homogeneous in the sense that there are no
time-dependent control parameters.

After executing & fixed number of annealing sieps, the
solutions between the adjacent temperatures are proba-
bilistically exchanged as follows. When the fixed number
of annealing steps is denoted by &, 1/k is called the “fre-

243

quency”. When the energy of the solution at a higher
temperature is lower than that at a lower temperature
the solutions between these temperatures are exchanged
unconditionally. Otherwise they are exchanged accord-
ing to a probability that is determined by differences in
their energies and temperatures [Kimura et al 1991].
In PSA, even if a solution is trapped at a local sptimum
at a certain temperature, it is still possible to search for
global optima because another new solution can be sup-
plied from a higher temperature. So a nearly optimum
solution will finally be found at the lowest temperature.

3.4 Outline of the System

Our experimental placement system employs the PEA
algorithm. It is constructed en Multi-PSI, an MIMD
machine, and the KL1 language is used to implement
the system [Chikayama et al. 1988]. The intention is to
provide a satisfiable solution in a feasible time. It is also
applied to placement problems to examine the efficiency
of the PSA algorithm.

The object of this system is the standard cell LSl
without any macro blocks. The standard eells have uni-
form height and variant widths, These cells are arranged
in multiple cell-blocks 2o as to minimize the chip area.
Mamely, it decides the location of each cell s0 as to mini-
mize the total estimated wire length, which approximates
the total routing length.

3.5 Implementation

3.5.1 Initial placement and new solution gener-
ation

The initial cell positions are determined randemly, In
our placement system, SA processes are split into two
temperature regions. The number of temperatures in the
two regions should be specified by the user. Usually one
or more temperatures are necessary for the lower region.

In the higher ternperature region, there are two ways Lo
generate a new solution. One way is to move a randomly
selected cell to a random destination. The other way is
to exchange the position between two randomly selected
cells.

In the lower temperature region, generating a new so-
lution is dene by exchanging two arbitrary adjacent cells
within a cell-block.

Moreover the range-limiter windew is intreduced
[Sechen ef al. 1985]. The range-limiter window restricts
the ranges for moving and exchanging cells. The lower
the temperature becomes, the smaller the size of the win-
dow becomes. It suppresses the generation of new solu-
tions that are pnlikely to be accepted.

2.5.2 Estimation of a new zolution

The energy of a solution is the sum of the three values
listed below [Sechen et al. 1985].

244

¢ estimated wire length
s the cell overlan penalty

* the block length penalty

The estimated wire length appresimates the routing
lengths between the cells. The estimated wire length of
a single net is the half-perimeter length of the minimum
bounding box which encloses all of the pins comprising
the net.

The cell overlap penalty estimates the overlap between
cells. In the higher temperature region, we permil over-
lap between cells because the cost of recalculating the
estimated wire length for & new selution can be reduced.
If overlap were not permitted, the overlap incurred by
moving or exchanging cells would have to be removed
by shifting many cells. As a result, the estimated wire
length would have to be recaleulated with respect to all
aof the nels connected to these shifted cells. In the lower
temperature region, cells are never overlap, & new soju-
tion can be re-estimated only by calculating the change
in total estimated wire length, because the two penalties
don't change in this case.

The block length penalty estimates the difference be-
tween ideal and real block length. It iz desirable Lo have
cell blocks of a uniform length.

When the solutions are exchanged between the two
temperature regions, the overlap between cells in the
higher temperature region is removed as the solution is
passed to the lower one.

3.5.3 Load distribution and solution exchange
between adjacent temperatures

In PSA, each SA process iz assigned to a separate proces-
sor, because executions af each temperature are highly
independent and the amount of execution is nearly equal.

When we try to implemeni the exchange mechanism
of the solutions, the natural way may be to exchange the
solutions between the processors. But, when an MIMD
machine like Multi-F5I is used, the exchange of large
placement data between processors incurs a large com-
munication overhead. So, solutions exchange between
adjacent temperatures should be dene by exchanging
temperature values between processors.

Processors with adjacent temperatures hold a commen
variable and use this for communication. This is called
a “stream” in KL [Chikayama et ol 1988] and is real-
ized by an endless 'list’. These streams are also swapped
between processors when the solutions between adjacent
temperatures are exchanged.

3.5.4 Performance monitoring subsystem

The monitor displays the energy value of each SA process
in real-time. It 13 nseful to overview the entire state of
the system performance. This energy graph is updated

Table 3: Number of temperatures .vs. quality of solution
mnner-loop count = 20,000 times, frequency of m;hm:F.: = 17100
[

nurnber of temp [168 1 32 3
eslimabed arcalmme] || 0.602 | 0.564 | 0.608 | 0.616
energy value 4T112] | 136638 | dauarl | 424478

when adjacent temperatures are exchanged. As it dis-
plays the exchange in energy value in real time, it helps
us to decide when fo stop the execution. After several
short time executions, we can decide the pumber of tem-
peratures-in the two regions and the highest temperature
from the dispersion of the energy graph.

The monitoring subsystem is constructed on 2 Front
End Process so that it does not incur an overhead in
SA process execution. It is also possible to roll back the
energy graph while SA processes are being executed,

3.6 Experimental Results and Discus-
sions
The MCNC benchmark data [MCNC 1990], consisting

of 125 cells and 147 nets, was chosen for our measure-
ments. In the initial placement, the value of energy was
911520 and a lower bound of the chip ares was estimated
as 1.372[mm?].

The PSA was executed in 20,000 inner loops, with ex-
changes every hundred inner loops. 64 processors can
be used on Multi-PSI. The number of temperatures is
fid, the highest temperature is 10,000, the lowest is 20
and other temperatures are determined proportionally.
4 lemperatures are assigned to the lower temperature
region. The lower bound of the area of the final sclu-
tion iz estimated as 0.615 [mm?], reduced by 56.0 % in
comparison to the initial sclution. The execution time
was about 30 minutes and the final energy was 424478,
Table 3 shows the system performance of the relation
between the number of temperatures and quality of so-
tations. When the number of temperatures is 32, 16 ar
8, with the other conditions the same, the lower bounds
of the final chip are estimated as shown in Table 3.

When the number of temperalures is 63, the cooling
schedules adopted by the final solution were as follows,
The initial temperature was 3823, the highest temper-
ature in the process was 4487, and the number of tem-
peratures the solution passed was 53. We cbserved that
10 solutions out of the initial 63 had been disposed of at

' the lowest temperature. This indicates that the mecha-

nism of the automatic cooling schedules actually worked
as intended.

When the number of temperatures is 8, the results
are even worse. If the dispersions in energy for each
temperature are too far from each other, the chance of
exchange gets small. So the automatic cooling schedules
will not work as intended. As a result, the algorithm can
not get out of the local oplimum.

To get an effective cooling schedule, it is necessary to

find the appropriate valie of the highest temperature so
that it can reach the disorder state. It is also necessary
to adjust the number of temperatures according to the
size of the problem.

As a future work, we are planning to study the mech-
anism for deciding the initial temperatures assigned to
sach processor from the energy dispersion of the solu-
tions.

From the viewpoint of system performance, more
speed-up and improvement in the ability to freat larger
amounts of benchmark data are needed as the next step.

4 Logic Simulator

4.1 Background

The logic simulator is used in order to verify not only the
functions of designed circuits but also the timing of signal
propagation. Parallel logic simulation is treated as a
typical application of Parallel Discrete Event Simmlation
(PDES). PDES can be modeled so that several objects
(state automata) change their states by communicating
with each other. A message has information on the event
whose oocurrence time is stamped on the message (Hme-
stamp). In logic simulation, an object corresponds to a
gate and an event means the change of the signal value,

In PDES, the time-keeping mechanism is essential for
efficient execution. The mechanisms broadly fall into
three categories: synchronous mechanisins, conservative
mechanisms and optimistic mechanisms. Their peculiar
shortcomings are widely known; the synchronous mech-
anisms require global synchronization, the conservative
mechanisms often deadlock and the optimistic mecha-
nisms need rollback.

We are targeting an efficient logic simulater on PIM,
which s a distributed memory MIMD machine, We
adopted an optimistic mechanism, the Time Warp mech-
anism | TW), whose rollback process has been considered
te be heavy. In practice, however, TW has neither been
evaluated in detail nor compared with other mechanisms
on MIMD machines.

We expected that TW would be suitable for logic sim-
ulater on large-scale MIMD machines with some davices
that reduced the rollback overhead. Thus a local mes-
sage scheduler, an antimessage reduction mechanism and
aload distribution scheme were added to our system and
evaluated. Furthermore, we made two other simulators
using different time-keeping mechanisms and compared
the mechanisms with T'W.

4,2 Time Warp Mechanism

The Time Warp mechanism|Jefferson 1985] was proposed
by D. R. Jefferson. In PDES using TW, each object usu-
ally acts according to received messages and aleo records
the history of messages and states, assuming that mes-
sages arrive chronologically, But when & message arrives

245

at an object out of time-stamp order, the object rewinds
its history (this process iz called rollback), and males
adjustments as if the message had arrived in the correct
Lime-stamp order. After rollback, ordinary computation
is resumed. If there are messages which should not have
been zent, the object also sends antimessages in order to
cance]l those messages.

4.3 System Specification

The system simulates combinatarial circuits and sequen-
tial circuits that have feedback loops. It handles three
values: Hi, Lo, and X (unknown). A different delay time
cen be assigned to each gate {non-unit delay model].
Since this simulator only treats gates, flip-flops and other
functional blocks should be completely decomposed into
gates.

4.4 Implementation

Since TW contains its peculiar everheads cansed by the
rollback processes, some devices for reducing overheads
are needed for quick simulation. Furthermore, inter-PE
communication overheads must be reduced because the
gimmlator works on a distributed memory machine such
as PIM.

For these purposes, a load distribution schemne, a local
message scheduler and an antimessage reduction mecha-
nism are included in cur simulator. These are expected
to reduce the overheads described above and might pro-
mote efficient execution of the simulator.

Each device is cutlined below. Details are presented
in [Matsumoto = al. 1992).

s Cascading-Oriented Partitioning

We propose the “Cascading-Oriented Partitioning”
strategy for partitioning circuits to attain high-quality
load distribution.

This scheme provides adequate partitioning solutions
that satisfy these three requirements: load balancing,
keeping inter-PE communication frequency low and de-
riving a lot of parallelism.

* Local Message Scheduler

During simulation, there are usually several messages
to be evatuated in a PE. When the Time Warp mecha-
nism is used, the bigger the time-stamp a message has,
the more likely the message is to be rolled back. For
this reason, eppropriate message scheduling in each PE
is needed for reducing rollback frequency.

+ Antimessage Reduction

As long as messages are sent through the KL1 stream,
messages arcive ab their receiver in the same order as
they are transmitted. In this environment, subsequent
antimessages can be reduced. We adopted this optimiza-
tion, expecting that it would reduce the rollback cost,

Speadup
s = ~ Tdedl r
o
sl ——
. .
]
-
204
104
! vr
% W =0 30 a0 50 B0
) Mo, of PEs
Figure 9: Speedup
4.5 DMeasurements

We executed several experimental simulalions on the
Multi-PSI. Four sequential circuits, presented in IS-
CAS'ED, were simulated in our experiments.

Figure 9 shows the system performance when the cir-
cuits were simulated using various numbers of PEs. The
best performance is also shown there. In the best case,
very good speedup of 48-fold was attained using 64 PEs,
Approximately 39K events/sec performance, fairly good
for a full-software logic simulator, was also attained.

4.6 Comparison between Time-keep-
ing Mechanisms

For the purpose of comparing the Time Warp mechanism
with others on the same machine, we made a further two
simulators; one uses the synchronous mechanism and the
other uses the conservative mechanism.

In the synchroncus mechanism, only messages with
the same time-stamp can be evaluated simultaneously.
Therefore, 2 time wheel residing in each PE must syn-
chronize globally at every tick. On the other hand,
the problem of deadlock should be resolved |[Misra
1936, Soulé ef ol. 1989] in conservative mechanisms, Our
sirmulator basically uses null messages to aveid deadlock.
A mechanism for reducing unnecessary null messages is
alzo added in order to improve performance,

Figure 10 compares system performance when circuit
513207 was simulated under the same conditions (load
distribution, input vectors, etc.).

The synchronous mechanism showed good perfor-
mance using comparatively few PEs, however, the per-
formance peaked at 16 PEs. Global synchronization at
every tick apparently limits performance.

The conservative mechanism indicated good speedup
but poor performance: using 64 PEs, only about 1.7 k
events/sec performance was obtained. We measured the
number of null messages generated during the simulation
and found that the number of null messages was 40 times
s many as that of actual events! That definitely was the
cause of the poor performance.

G00007

40000

20000

—a‘_-_-\\—u

o i@ =@ B30 40 50 &G
No. of PEs

Figure 10: Performance Comparison (events/sec)

o

This comparison substantiates that the Time Warp
mechanism provides the most efficient simulation of the
thres mechanisms on distributed memory machines such
as the Multi-PSI.

5 Concluding Remarks

This paper presented ICOT-developed parallel systems
for routing, placernent and logic simulation, and reported
on their evaluation.

In the routing system, the router program was de-
signed based on the concurrent objects model and con-
gruent with the KL1 description was introduced. As a
result, appreciably good speedup was attained and the
quality of the solutions was high especially for large-scale
data.

The perallel placement system is based on time
homogeneous SA, which realizes an automatic cool-
ing schedule. The remarkable point of this system is
that parallelization was applied not for the purpese of
speedup, bot to obtain high quality solutions.

The parallel logic simulator simply targeted quick exe-
cution. Absolutely good speedup was attained, The ex-
perimental results for three kinds of time-keeping mech-
anisms revealed that the Time Warp mechanism was
the most efficient time-keeping mechanism en distributed
memory machines.

These three systems are positive examples which sup-
port that PIM possesses high applicability to various
practical problem domains as a general purpose paral-
lel machine. Besides them, we are currently developing
& hybrid layout system in which routing and placement
are performed concurrently, improving interim solutions
incrementally. These experiments, including the hybrid
layout system, are just the preliminary experiments in
the coming epoch of parallel machines, but they must be
one of the most important and fundamental experiences
for the future.

Acknowledgement

Valuable advice and suggestions were given by the mem-
bers of PIC-WG, 2 working group in ICOT, during
dizcussion of parallel LSI-CAD, The authors gratefully
thank them. Data for the evaluation of our systems were
recommended and given by NTT Co., Hitachi Ltd. and
Fujitsu Ltd. We also thank these companies.

References

[Brouwer 1990] R. J. Brouwer and P. Banesjee. PHIG-
URE : A Parallel Hierarchical Global Router. In Proe.
2%th Design Automation Confl, 1990, pp. 650-653.

[Chikayama et of. 1988] T. Chikeyama, H. Sato and T.
Mivasaki, Overview of the parallel inference machine
operating system (PIMOS). In Proceedings of nfer
national Conference on Fifth Generation Computer
Systems, ICOT, Tokyo, 1985, pp. 230-251.

[Fukui 1989] 5. Fukui. Improvement of the Virtual Time
Algorithm., Transeetions of Information Processing
Society of Japan, Vol.30, No.12 (1988), pp. 1547-
1554. (in Japanese)

|Jefferson 1985] D. R. Jefferson. Virtual Time. ACM
Transactions on Programming Languages and Sys-
tems, Vol.7, No.3 (1985), pp. 404-425.

[Kawamura ef al 1990] K. Kawamura, T. Shindo, H.
Miwatari and Y. Ohki. Touch and Cross Router. In
Proc. IEERE ICCADS0, 1990, pp. 56-59.

[Kirmra ef ol 1991} K. Kimura and K. Taki. Time-
homogenecus Parallel Annealing Algorithm. In Proe.
IMACS’21, 1991, pp. B27-828.

[Kickpatrick et of. 1983] 5. Kirkpatrick, C. D. Gellat
and M. P. Vecei. Optimization by Simulated Anneal-
ing, Science, Vol.220, No.4598, 1983, pp. 6T1-681.

[Kitazawa 1985] H. Kitazawa. A Line Search Algorithm
with High Wireability For Custom VLSI Design, In
Proc. ISCAS'85, 1985. pp. 1035-1038,

[Matsumoto et al 1992] ¥, Matsumoto and K. Taki.
Parallel logie Simulator based on Time Warp and its
Ewvaluation. In Proc. Int. Conf. on Fifth Generation
Computer Systems, ICOT, Tokyo, 1992,

[MCNC 1990] Proc. Fniernaotional Workshop Layout
Synthesis ‘90 Research Triangle Parl, North Car-
olina, USA, May 8-11, 1990,

[Misra 1986] J. Misra. Distributed Discrete Event Sim-
ulation. ACM Computing Surveys, Vol18, Nol
{l 985}1 pp. 39-64.

247

[Mair et al. 1982) R. Mair, 5. J. Hong, 5. Liles and R.
Villani. Global Wiring on a Wire Routing Machine.
In Proc. 18th Design Automation Conf, 1952. pp.
224-231.

[Nakajima ef al1389] K. MNakajima, ¥. Inamura, N.
Ichiyoshi, K. Heokusawa and T. Chikayama. Dis-
tributed Implementation of KL1 on the Multi-
P31/V2, In Proc. 6th Int. Conf on Logic Program-
ming, 1989, pp. 436-431.

[Dlukotun ei al 1887] O. A. Olukotun and T. M. Mudge.
A Preliminary Investigation into Parallel Routing on
a Hypercube Computer, In Prec. 2{th Design Au-
tomation Confl, 1987, pp. 214-820.

[Rose 1988] J. Rose. Locusroute : A Parallel Global
Reuter for Standard Cells, In Proc. 25tk Design Au-
tomation Conf., 1988, pp. 189-195.

[Sechen et al 1985] C. Sechen and A. Sangiovanni-
Vincentelli, The TimberWolf Placement and Rout-
ing Package, TEEE Jourmal of Solid-Stale Circuils,
Wol.5C-20, No.2, (1985), pp. 510-522,

[Soulé ef al. 1989] L. Soulé and A. Gupta. Analysiz of
Parzllelism and Deadlock in Distributed-Time Logic
Simulation. Stunfn-nl Uninurﬁiiy Technical Report,
C5L-TR-89-378 (1989).

[Suizuki ef al. 1986] K. Suzuki, Y. Matsunaga, M.
Tachibana and T. Ohtsuki. A Hardware Maze Router
with Application to Interactive Rip-up and Reroute.
IBEE Trans. on CAD, Vol.CAD-5, No.4, (1986), pp.
466-476.

[Tald 1988] K. Taki. The parallel software research and
development tool: Multi-PSI system, Progromming of
Future Generation Computers, pp. 411-426, North-
Holland, 1988,

[Ueda et af 1990]) K. Ueda, T. Chikayama. Design of the
Kernel Language for the Parallel Inference Machine,
The Computer Journal, Vol.33, No.6, (1980), pp. 494-
500.

[Watanabe et al. 1987] T. Watanabe, H. Kitazawa, Y.
Sugivama. A Parallel Adaptable Routing Algorithm
and its Implementation on & Two-Dimensional Array
Processor. TEEE Trans. on CAD, Vol.CAD-§, No.2,
(1987), pp. 241-250.

[Won et ol 1987] Y. Won, S. Sahni and Y. El-Zig. A
Hardware Accelerator for Mage Routing. In Froe.
2jth Design Automation Conf., 1987. pp. B00-806.

