PROCEEDINGS OF THE INTERMNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. @ ICOT, 1992

278

The Design of the PIMOS File System

Fumihide ITOH

Takashi CHIKAYAMA

Takeshi MORI Masali SATO

Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan
Tatsuo KATO Tadashi SATO

Mitsubishi Electric Computer Systems (Tolkyo) Corporation
87-1, Kawakami-cho, Totsuka-ku, Yokohama 244, Japan

Abstract

This paper describes the design and implementation of
the PIMOS file system. The file system was designed for
loosely-coupled multiprocessor systems, whers caching is
ezsential for reducing not only disk accesses but also for
communication between processors. To provide applica-
tions with fiexible load distribution, the caching scheme
has to support consistency semantics under which mod-
ifications of a shared file immediately become visible on
other processors. T'wo different caching schemes, one for
data files aned the other for directories, have been de-
signed. This is necessary because they have different
access patterns. Logging the modifications of directories
and other essential information secures the consistency
of the file system in case of system failure. Multiple log
areas reduce the time required to write logs. Buddy di-
vision of blocks enables released blocks to be collected
efficiently. Hierarchieally erganized free block maps con-
trol buddy division.
The file system has been implemented on PIM.

1 Introduction

PIMOS [Chikayama et al. 1988] has been developed by
the Fifth Generation Computer Systems project of Japan
as the operating system for PIM [Goto 1989] as a part
of the parallel inference system for knowledge informa-
tion processing. PIMOS has a file systern which was
designed to realize a robust file system optimized for
loosely-coupled multiprocessor systems like PIM. This
paper describes the design and implementation of this
file system.

The file system for the parallel inference system should
provide a bandwidth broad enough to support knowl-
edge information processing application software running
on high perlormance parallel computers., To allow fiex-
ible load distribution, the semantics it provides should
be locaiion-independent. That is, the contents of files
should look the same to the program regardless of the
processor it is running on.

File systems on external 1/0 systems poorly meet re-
quests from multiprocessors, due to limited communi-
cation bandwidths. We, thus, constructed an internal
file systern on disks incorporated into multiprocessor sys-
tems. Distributed file systems are similar to our file sys-
Lem in thaf shared files are accessed from processors con-
nected via a network, with some communication delay.
Hewever, the communication bandwidth of the network
is much broader in our case. Also, processes using files
are normally cooperate rather than compete. These con-
siderations affect the desipgn.

We have clarified functions essential to file systems for
loosely-coupled multiprocessor systems, and then con-
sidered how to implement them. Although the system is
an experimental one, we included the essential features
of practical file systems in our design, such as disk ac-
cesa optimization. The system has been implemented
as a part of PIMOS, in concurrent logic language KL1
[Ueda and Chikayama 1990].

2 Design Principles

In order to draw parallelism from loosely-coupled multi-
processor systerns, centralizing loads to a small number
of server processors with disks should be avoided.

The cost of communications between processors is
more expensive in loosely-coupled multiprocessor sys-
fems than in tightly-coupled ones, and the cost of disk
accessing is still more expensive than that of commu-
nication. Thus, both disk accessing and interprocessor
communication should be reduced. This necessitates dis-
tributed caching.

Data cached in memory may be lost upon system fail-
ure. For data files, the loss is limited to files being mod-
ified at the time of the failure. Loss in a modified direc-
tory, however, may cause inconsistency in the file system,
such as a deleted, nonexistent file still being registered
in a directory. The loss may spread to files under the di-
rectory, even though they were not accessed at the time
of the failure. Consequently, the file system needs pro-

tection against failure to preserve its consiatency,

Disk aceess optimization is one of the primary features
of practical file systems. Most of the overheads in disk
accesses are seeks, g0 a reduction in seek cost, i.e., the
number of seeks and per-seels cost, is required.

3 Design Overview

We allowed multiple servers to distribute the loads of
file accesses. A caching mechanism was incorperated to
reduce disk accesses and communication among proces-
sors. A logging mechanism secures the consistency of the
file systermn against system failure. A disk area manage-
ment scheme similar fo that of conventional file systems
reduces the seek time for disk accessing. An overview of
these features is described in this section,

3.1 Multiple Servers

In order to draw parallelism from multiprocesser sys-
fems, load centralization should be avoided. File sys-
tems have inherent centralizaiion in that a disk can be
accessed only by a processor connected to it, Multiple
disks connected to multiple processors with a server run-
ning on each relaxes centralization and make the system
scalable,

A processor with disks can run a server, but the pro-
cessor is not dedicated fo it. The server processors aleo
operate as clients when their disks are not accessed, pro-
viding better utilization of computational resources on
mmultiprocessor systems.

3.2 Caching Mechanism

In order to reduce disk accessing and interprocessor com-
munication, data files and directories are cached onto all
processors that access them.

3.2.1 Caching of Data Files

Consistency semantics for caches of the same data on
different processors has been realized. The execution of
an application program on & multiprocessor system is
distributed among processors. The strategies of distzi-
bution are diverse and depend upen the application. In
order to distribute computation flexibly, file access result
must be identical no matter which processor accesses the
file. In other werds, modification by another processor
has to be visible immediately,

This kind of consistency semantics is called Unix se-
mantics [Levy and Silberschatz 1989] in distributed file
systems. It was originally introduced to maintain soft-
ware compatibility between distributed and conventional
uniprocessor Unix systems. For the same reason, Unix
semantics are indispensable to a file system for multipro-
cessor systems.

279

There is no problem in sharing a file when all the shar-
ers merely read the file. When a file is shared in write
mode, the simplest way to support Unix semantics is to
ornit caching and centralize all accesses to the file on the
gerver. This method is reasonable in the environments
where shared files are rarely modified. On multiprocessor
systems, where processors solve problems cooperatively,
modifying shared files is quite commeon, since distribut-
ing the computational load between processors, including
file accessing, is essential for efficient execution.

Consequently, a caching mechanism is designed in
which & shared file can be cached even if it can be mod-
ified and Unix semantics are preserved,

3.2.2 Caching of Directories

In order to identify a file, the file path name is analyzed
using direclory information. The caching of directories
along with the caching of data files can be used to aveid
the centralizztion of loads to server processors and reduce
communication with those processora,

Accessing directories is quite different from accessing
to data files. Data files are read and written by users,
and the contents of files are no concern of the file system.
On the other hand, the contents of directories form a
vital part of the file system. Thus, a different caching
mechanism for directory information was designed.

3.3 Logging Mechanism

Modifications of directories and other information vital
for the file system are immediately logged on disk. Mad-
ifications are made to data files much more often, and
writing all modifications immediately to a disk decreases
performance severely. Instead, we provide a mechanism
which explicitly specifies the synchronization of a partic-
ular file.

Simply writing to a disk immediately does not assure
the consistency of the file system. For example, if the
system fails while moving a file from one directory to
another, the file may be registered in either both or none
of the directories, depending on the internal movement
algorithm. This inconsistency can be awvoided by two-
phase modification. First, any modification is written
a5 & log to an area other than the original. Second, the
original is modified when logging is complete.

If the system fails before the completion of the log-
ging, the corresponding modification is canceled. If the
system fails after completion of the logging but before
the modification of the original, the original is modified
using the log in a recovery procedure, validating the cor-
responding modification. In either case, the consisteney
of the file system is preserved. The system may fail while
a log is being written, leaving an incomplete log. In or-
der to detect this, we introduced a flag to indicate the
end of a log that corresponds to an atomic modification

280

transaction.

The completion of logging can be regarded as comple-
tion of the modification. The original may be modified
at any time before the log is overwritten. This means
that logging does not slow down response time. Hather,
it improves response time. For example, when a file is
moved, two directories have to be modified, The modifi-
cation of the two originals may need two seeks. Writing
the log needs only one seek. Moreover, we use multi-
ple log areas and write the log to the area closest to the
current disk head position to reduce the seal time.

A log containg the disk block image after modifica-
tion. Because the block corresponding to a more recent
modification overrides the older modifications, only the
newest constituent must be copied to the original. The
more tirmes the same infermation s medified, the less
times the original is modified. Frequent modification of
the same information, which is known to be the case in
empirical studies [Ousterhout et ¢f. 1985), minimizes the
throughput decline caused by extra writing for logging.

Each log area is used circularly, overwriting the oldest
log with a new log. In order to reduce disk accessing,
the modifications of the original should be postponed as
long 2s possible, that is, until immediately before the
corresponding log is overwritten. To detect the logical
fail of a log area, namely the last complete log, each
log block has a nember, named a log generation, which
counts the incidences of overwriting the log area.

The multiplicity of log areas has caused a new prob-
lem to arise: how can the newest block be determnined
after a system failure. If there is only one log area, the
newest log block iz the closest cne to the logical tail of
the log area, and the log blocks are always newer than or
a5 new a5 the corresponding original block. However log
Blocks in different areas do not show the order in which
they were written. If the newest log block is overwrit-
ten after it is copied to the original block, the original
block is newer than the remaining log blocks. We have
solved this problem by attaching a number, named a
block generation, to the log blocks and to the original
blocks. The block generation counts incidences of modi-
fying the block.

3.4 Disk Area Management

To reduce the number of seeks, the unit of area alloca-
tien to files should be made larger. Larger blocks cause
lower storage utilization, as a whole large block must be
allocated even for small files. Our solution is to provide
two or more sizes of blocks and to allocate smaller blocks
to small files.

To reduce the time per seek, a whale disk is divided
into eylinder groups, and blocks of one file are allocated
in the same cylinder group as much as is possible. The
log areas mentioned in the previous subsection are placed
in each eylinder group.

These methods are commonly used in conventional file
systems. A unigue feature of the PIMOS file sysiem is
buddy division of a large block into small blocks, which
reduces disk block fragmentation.

4 Imi::lement ation

4.1 Multiple Servers

The whole file system consists of logical volumes, each of
which corresponds to one file system of Unix, A logical
volume can occupy the whole or a part of a physical disk
volume, The processor connected to the disk becomes
the server of files and directories in the logical volume.
Logging and disk area management in the volume is also
the responsibility of the server.

4.2 Data File Caching Mechanism

4.2 Overview

To realize Unix semantics with reasonable efficiency on
loosely-coupled multiprocessor systems, we decided to
stress the performance of exclusive or read-only cases,
and iried io minimize disk accesses and interprocessor
comrmunication in such cases.

The unit of caching is a block, which is also the unit of
disk 1/0. This simplifies management and makes caches
OIL SECVEr Processors unnecessary. A processor where
caches are made is called & client, as in distributed file
systems. Each client makes caches from all the servers to-
gether and swaps cached blocks by the least recently used
{LRU) principle. Unix semantics is safeguarded by mod-
Hying the cache after excluding caching on other clients.

The caching mechanism is similar to that for coher-
ent cache memory [Archibald and Baer 1988]. While
a coherent memory caching scheme depends on a syn-
chronous bus, our platform, a lossely-coupled multipro-
cessor system, provides only asynchronous message com-
munication. This means that we must consider message
overlaps.

A client classifies each cached block into five perma-
nent states, according to the number of sharers and
the necessity of writing back to the disk. In addition,
there are three more temporary states. In the tempo-
rary staies, the client is awaiting & response from the
server to its request.

A server does not know the exact state of cached
blocks, but only knows which clients are caching the
blocks., Requests for data, replies fo the requests, and
other notifications needed for coherence are always trans-
ferred between the server and clients, rather than directly
between clients. Cached data itself may be transferred
directly between clients.

4.2,.2 Cache States

The principle for keeping cache coherence is simple: al-
lowing medification by a client only when the bloek is
cached by no other client, To realize this, “shared” and
“exclusive” cache states are defined. Permanent cached
black states can be as follows:

Invalid (I} means that the client does not have the
cache.

Exclusive-clean (EC) means that the client and no
other clients have the unmodified cache.

Exclusive-modified (EM) means that the client and
no other clients have the modified cache.

Shared-modified (SM) means that the client has {he
modified cache, and some other clients may or may
not have cache for the same block,

Shared-unconcerned (SU) means that the client has
the cache but does not know whether it was mad-
ified, and some other clients may or may not have
cache for the same block.

Temporary cached block states can be as [ollows:
Waiting-data (WD) means that the client dees not
have and is waiting for the data to cache, and that
the data can be shared with other clients.

Waiting-exclusive-data (WED) means that the
client does not have and is waiting for the data
to cache, and that the data cannot be shared with
other clients, as the client is going to medify it.

Waiting-exclusion (WE) means that the client al-
ready has the cache and is waiting for the invali-
dation of caches on all ather clients. In other words,
the client is waiting to become exclusive.

4.2.3 State Transition by Client Request

A request from a user 1o a client is either to read or to
write some blocks. Ancther operation nesded for a cache
block is swap-out, i.e., to write the data back to the disk
forcibly by LEU. This request or operation is accepted
only in permanent states, and is suspended in temporacy
states as the client is still processing the previous request,

The state transition for a request to read is shown in
Figure 1{a). If the state is I, the client requests the data
to the server, changes its state to WD, and waits, After
& while, the server reports the pointer to the data and the
state to change to. The pointer peints to another client
when it already has the data, or to the server when the
server read the date from the disk because ne elients
have the data. The client reads the data, lets the user
read it, and changes to EC, 5M, or SU according to

28]

the report. 1f the state was originally BEC, EM, SM,
or 81, the client simply lets the user read the available
data and stayz in the same states,

The state transition for a request to write iz shawn in
Figure 1{b). If the state is I, the client requests exclusive
data to the server, changes to WED, and waits. After a
while, the server reports the pointer. The client reads the
data, lets the user modify it, and changes to EM, If the
state was originally EC or EM, the client lets the user
modify the data immediately, and changes to or stays
in EM. If the state was SM or SU, the client requests
the server to invalidate caches in other clients, changes to
‘WE, and waits. Then, if the server reports completion of
the invalidation, the client lets the user modify the data
and changes to EM. Another client may also request the
invalidation simultaneously, and its request may reach
the server earlier. In this case, the server requests the
invalidation of the cache, and the client abandons the
cache and changes to WED. Eventually, after the server
receives the reguest to invalidate from the client, the
pointer to the data is reported.

The state transition for swap-out is shown in Fig-
ure 1{e). The client reports the swap-out to the server,
and changes to I. If the state is EM or SM, the pointer
o the data is also reported at the same time. The server
reads the data and writez it back to the disk when it
cannot make any other client EM or SM, If the state
is EC or 8U, writing the data back to the disk is not
required, as the data is cither the same as that on the
diek or is cached by some other client,

4.2.4 State Transition by Server Request

A request from the server to a client is either to share,
to yield, to invalidate or to synchronize the cache. Tt is
accepted not only in permanent states but also in tem-
parary states. .

A request to share is caused by a request to read
another client, The state transition for this is shewn in
Figure 2(a). If the state is EC or SU, the client reports
the pointer to the data and indicates that the requesting
client should change to SU. In each case, the state of the
requested client after replying is SU. If the state is EM
or SM, there is a question of which client should take
responsibility for writing back the data. In the current
design, the requesting client takes it. Consequently, the
requested client reports the pointer to the data and in-
dicates that the requesting client should change to SM.
The requested client becomes S§U,

A client may receive a request to share in state I, if
swap-out overlaps with the request. In this case, the
server knows of the absence of the data when it receives
the swap-out. The client consequently ignores the re-
quest. Mareover, the client will possibly receive the re-
quest while awaiting data after swapping it out in WD
or WED. The client can also ignore the request. Fur-

{c) Swap out

Figure 1: State transition diagrams by a request to the client

{b) Yield or invalidate

{c) Synchronize

Figure 2: State transition diagrams by a request from the server

thermore, the client can receive the request in WE if
the request to invalidate other caches overlaps with the
request. [n this case, the client, while waiting in WE,
reports the pointer to the data and indicates that the
requesting client should change to state SU. Completion
of the invalidation will be reporied, after the request of
invalidation is received by the server.

The actions of a client for requests to yield and to
mmvalidate are the same, except when the pointer to the
data iz reported. State transition is shown in Figure 2(b).
If the state is EC, EM, SM or SU, the client reports the
pointer to the data or simply abandons the cache, and
changes to I. The client can receive the requests in I,
WD, or WED and ignore them, for the same reason as
when a request to share is received. If the state is WE,
the client reports the pointer or abandons the cache, and
changes to WED, as described in the case of a request
te werite to the client,

On a request to synchrenize, the server requests a

client to send the data and write it back to the disk.
State transition is shown in Figure 2(c). If the state is
EM or SM, the client reports the pointer to the data
and changes to EC from EM, or SU from SM. If the
state is EC or SU, the client reports that writing back
is unnecessary. If the state is I, WD, or WED, the
swap-out has overlapped with the request. The client
may ignore the request because the server will receive
the swap-out message with or without the pointer to the
data. If the state is WE, the clienl reports the pointer,
while awaiting completion of the invalidation in WE.

The temporary states enable message overlaps to be
dealt with efficiently.

4.3 Directory Caching Mechanism

Maost accesses to directories are to analyze file path
names. In order to analyze a file path name on a client,
directory information is cached. The unit of caching is

one member of a directory. Each client swaps caches
by LR The server maintains information on the direc-
tories &nd members that clients cache. The server also
caches the disk block images of cached directories, and
when a member is added or remeoved, it modifies the im-
ages and writes them to the disk as a log.

When a file path name is analyzed on a client, the
members on the path are cached to the client one after
another. If the same members appear on subsequent
path name analyses, the cached information is used.
When a member 15 added to a directory, the member is
added to caches after the addition is logged by the server,
These operations require communication only between
the client and the server,

When a member is removed, the removal is notified to
the server. The server requests the invalidation of the
cache to all the clients caching the member., After the
server has received acknowledgement of invalidation from
all the clients, the server writes a log, thus completing
the removal. Although this removal may take time, it is
not expected to affect the total throughput of directory
caching because frequently updated members of directo-
ries are not likely to be cached by clients other than the
one that modifies them.

Information abeut access permission is also necessary
for analyzing path names. Therefore, it is cached in the
same way as directory information.

4.4 Logging Mechanism
4.4.1 Log Header

[n order to manage logging, each block in the logs and the
originals has a header consisting of the following items.
Ezxcept for block generation, the information has no rel-
evance in the original.

Block identifier shows the corresponding original
Ilock. It censists of a file identifier and a block
affset in the file.

Log generation counts the number of times a log ares
is used.

Atomic medification end iz & flag which shows the
last block of a log corresponding to an atomic mod-
ification,

Block generation counts the number of times a block
has been modified in order to identify the newest
block among logs and the original.

Because the size of a header is limited, the maximum
size of numbers allowed in the log generation and block
generation itemns are limited. However, as we will discuss,
three log generations, at most, can exist in a log area at
any one Ltime. This means that the eyelic use of three or
slightly more generations is sulficient. Limited numbers

283

Lw = Lo

; R .o e B
frd

Lo > Ly

Li Ly Lo Li
n

Figure 3: Distribution of block generations

for block generations can also be used cyclically. This
assures that the newest block is always spotted in the
following way.

Suppose that 2n numbers, from 0 te 2 — 1, are used
for block generation. Block generation starts from 0, in-
creases by 1 until 2n — 1 i= reached, and returns to 0.
We have introduced the following control: if the abso-
lute value of the difference between the block generation
of the log block to be written next, Ly, and that of the
oldest existemt black, Ly, iz equal to n, the oldest block,
whether it is in a log or 5 the original, is invalidated
before the next log is written. Distribution of block gen-
eration under this control is shown in Figure 3. As is
shown, the invariant condition is that Ly — Lo < n i
Ly > Lo, and Lp — Ly > nif Lg > Ly

Consequently, after a failure, the newest block is spot-
ted as follows. The disteibution of block generations die-
tates that either all of the generations are in a range
narrower than n or that the distribution has a gap wider
than n. In the former case, the newest block is the one
which has the largesl generation. In the latter case, it is
the one which has the largest number in the group below
the gap.

In practice, the invalidation of the oldest block occurs
rarely. Our current implementation allocates 24 bits for
block generation, Invalidation occurs only if there are
2% — §, 388, 608 modifications to the same block and, in
addition, if the oldest block happens not Lo have heen
overwritten by madifications. However, even one modifi-
calion every ten milliseconds during one whole day barely
amounts to 100 x G0 x 60 = 24 = 8, G40, 000,

4.4.2 Loegging Procedure

While the file system is in operation, logs are written as
follows:

1. Create after-modification images of a set of blocks.
Set block identifiees and block generations. Line up
the blocks and set an atemic modification end flag
lor the log header in the last block,

284

2. Choose the log area in the cylinder group where the
digk heads eurrently reside. Set log generations to
the log headers. Write the lag, the sequence of the
blocks, to the log area.

3. Report the completion of logging.

4. Malke room in the log area for the subseguent writ-
ing. In other waords, if the newest blocks are in the
part where the next log to the area will be written,
copy them to the corresponding criginal blocks.

5. Invalidate the cldest blocks if necessary, i.e., if there
are blocks whaose next modifications will require
them to be invalidated. Invalidation is pm’fm'ln.cd
by setting & null block identifier to the log headee.

Making room and invalidating can be done at any time
hefore the next log s written. It should be done imme-
diately after logging to get the best response at the next
logging. The size of the room is made to be the maximum
size: of a log corresponding to an atomic modification, or
slightly more.

When a logical volume is dismounted, all the newest
blecks are written to the corresponding originals.

The following tables in memory are used to control

legging:

Log area table maintains the next log position and the
log generation in each log area.

Log record table maintains the block identifier corre-
sponding to each position in the log areas.

Log block table maintains, for every block that has at
least one log, the position and the block generation
ol each log, and the block generation of the original.

4.4.83 Recovery Procedure

After a system [ailure, the tables for log management are
recovered as follows:

1. Find out decreasing points in log generation in each
log areq.

2. Choose the first of the decreasing points as the ten-
tative logical tail of each log area.

3. Find out the veal logical tail of each log area by re-
Jecting the incomplete log from the tentative logical
tail.

4. Decide the logical head of each log area and recover
the tables from valid log blocks.

Decreasing points in log generation show that the log
blocks were logged last before system failure or were be-
ing logged at the time of the system failure. There may
be more than one decreasing point if an intelligent disk

O Y Y Ry Y YN N EY EY R N N Y

@[1a]a] - [i]z]e[1]0]o] -+ JoJo]o]

@ [[1] - [RLRT - e

(1) One generation
(3) Tree generations

(2) Two generations

~le : Tentative tail J, ¢ Dther decrease

Figure 4: Distribution of log generations

drive changes the order of writing of physical blocks ta
promote efficency. In this case, there is also one less in-
creasing point than the number of decreasing points, and
the decreasing and increasing peints are distributed in
the range of one afomic log. Taking into account the cir-
cular use of a log ares, the log generation of the physical
first block is usually one larger than that of the physical
last bleek. If the two generations are equal, the physical
tail of a log area is one of the decreasing points in log
generation. Examples of the distribution of log genera-
tions are shown in Figure 4. There can be one, two, or
three log generations in a log area.

If there is only one decressing point in log generation,
it becomes the tentative logical tail. TIf there are two or
more decreasing points, the first one 15 selected as the
tentative logical tail. The real logical tail is immediately
after the last block with an atomic modification end flag
before the tentative logical tail. Two tails are identical
if the block immediately before the tentative logical tail
has the Aag.

The logical head is a certain number of blocks away
from the real logical tail. The number of blocks corre-
sponds to the room made for the next log writing. Valid
log blocks consist of the blocks between the logical head
and the real logical tail. After the tables are recovered,
the file svstem can start operation.

4.5 Disk Area Management

To manage the buddy division of large blocks, we use
& hierarchy of free block maps in memory as shown in
Figure 5. Each free block is registered as free in only
one map. We also maintain the number of free blocks
registered in each map.

When a free block of a certain size is required and
the map of that size hes enough free blocks, the map is
searched. If it does not have enough free blocks to make

Hierarchy of maps in memory
{1} Blocks (2) Half blocks
(3) Quarter blocks (minimum size)

m_ o | 1] o [0o]

@{oflofoJoJoJo o]1]

(3){0fo|ojo]a]o]o]ofo[1[o]o]o]e]0]0]

On mounting ﬂ' J.J- On dismounting
[oJoJeJo[1[x1 o 1o o o o 1]1]

An original map on a disk
0: Used

1: Tres

Figure 5: Hierarchy of free block maps

the search efficiently, the map for blocks of twice the size
is searched. This continues until the map of the largest
block size ig reached,

When a block is released and the buddy of the hlock
is free, the two blocks are united and become one free
block of twice the size. Otherwise, the released block
alone becomes free.

The hierarchy of maps is unfolded from the free block
map on a disk whose unit is the smallest block when the
logical volume is meunted. It is folded into the origi-
nal map and saved on the disk when the volume is dis-
mounted.

We use the two-step allocation method common to
conventional file systems, In the free block map of the
largest block size in memory, only some of the free blocks
are registered as free. Another map of the largest block
size is made and written to the disk where, in additien to
the original used blocks, the free blocks registered as free
in memory are registered as used. In this way, the map
ensures that the blocks registered as free on it are free,
though those registered as used are not necessarily used.
Consequently, the file system can start up after a system
failure, using the map of the largest block size on the
disk, without a time-consuming scavenging operation.

When free blocks in memory become scarce, some are
added Lo the map in memory, and the map entries on
ihe disk corresponding to these blocks are changed to
“used”. Conversely, when free blocks in memory be-
come surplus, some are removed from the map in mem-
ory, and the map entries on the disk correspending to
those blocks are changed to “free”. The scarcity and the
surplus are judged based on threshold numbers of free
blocks in memory.

5 Conclusion

The design and implementation of the PIMOS file system
has been described. A multiplicity of servers distributes
the file system loads to them and draws out scalability
from mulliprocessor systems. The caching mechanism,
which guarantees Unix semantics, enables applications,
including file accessing, to be executed in parallel easily.
The logging mechanism secures the consistency of the file
system against system failure. The buddy division of free
blocks suppresses fragmentation without much overhead,

We are already implementing the file system on PIM.
The tuning of parameters and the eveluations of the file
system are to be done in the fture.

Acknowledgement

We would like to thank Mr. Masakazu Furuichi at Mitsubishi
Electric Corporation and Mr. Hiroshi Yashire at 1COT for
their intensive discussions. We would aleo like to express
cur thanks to Dr. Shunichi Uchida, the manager of the re-
szarch department, and Dr. Kazohiro Fuchi, the director of
the research center, both at ICOT, for their suggestions and
cncouragement.

References

[Archibald and Baer 1986] J. Archibald and J. L. Baer.
Cache Coherence Protocols: Evaluation Using a Multipro-
cessor Simulation Model, ACM Transactions on Computer
Systems, Vol. 4, No. 4 (1986), pp. 273-208.

[Chikayama et al. 1988] T. Chikayams, H. Sato and T.
Miyazaki. Overview of the Parallel Inference Machine Qp-
erating System (PIMOS). In Proc, Int. Conf. or Fifth Gen-
eration Computer Systems, ICOT, Tokyo, 1988, pp. 230-
251.

[Goto 1088] A. Goto, Research and Development of the Par-
allel Inference Maching in FGCS Project. In M. Reeve and
5. E. Zenith (Eds.}, Parallel Processing and Artificial In-
telligence, Wiley, Chichester, 1089, pp. 65-86.

[Levy and Silberschatz 1988] E. Levy and A. Silberschatz,
Distributed File Systems: Concepts and Examples. TR-
89-04, Department of Computer Sciences, The University
of Texas st Austin, Austin, 1980,

[Ousterhout et al 1985] J. K. Ousterhout, H. D. Costa, D,
Harrison, J. A. Kunze, M. Kupfer and J. 3. Thompson,
A Trace Driven Analysis for the UNIX 4.2 BSD File Sys-
tem. In Proc. 10th ACM Symposium on Operating Sys-
tems Principles, ACM, New York, 1985, pp. 15-24.

[Ueda and Chikayama 1990] K. Ueda and T, Chikayama.
Design of the Kernel Language for the Parzllel Inference
Machine. The Computer Journal, Vol, 33, No. 6 (1990),
pp. A04-500.

