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Abstract

In the FGCS project, we have developed a parallel in-
ference machine, PIM/m, 25 one of the final products of
the project. PIM/m has up to 256 processor clements
(PEs) connected by a 16 % 16 mesh network, while its
predecessor, Multi-PSI/v2, has 64 PEs. A PE has three
custom VLS chips, one of which is a pipelined micro-
processor having special mechanisms for KL1 execution,
such as pipelined data typing and dereference.

As for the KL1 implementation on PIM/m, we took
much care of garbage collection and introduced various
techniques, such as incremental reclamation of local and
remote garbage. Especially, 2 hardware mechanism to
support the local garbage collection greatly coniributes
to reducing the overhead and achieving high peak per-
formance, 615 KLIPS in append on single processor.

Sustained performance of single processor is also im-
proved, and is approximately iwice as high as that of
Mulii-PSI/v2. This improvement and the enlargement
of the system scale cooperatively enhance the total sys-
tem performance, and make PIM/m 5 to 10 times as fast
as Multi-PSI{v2.

1 Introduction

Several parallel inference machines have been developed
in the Japanese Fifth Generation Computer Systems
{FGCS) project. Asa part of this activity, we have devel-
oped three parallel machines. The first machine, Multi-
PSI/vl [Masuda et al. 1988, Taki 1088}, was an experimen-
tal version and was completed in 1986. It has 6 processor
elements (PEs) each of which is our first sequential infer-
.ence machine, PSI-1[Taki et al. 1984], and has & software
interpreter for the machine language KL1 which is an ex-
tended version of flat GHC [Ueda 1985). Though the ma-
chine scale was small and the performance was not very
high, the development of Multi-PSI/v1 gave us valuable
experimental knowledge of the distributed implementa-
tion of KL1 [Ichiyoshi et al. 1987).
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The second machine is Multi-PSI/v2 [Takeda et ol
1988, Uchida ef al. 1988), which contains 64 PEs connected
by two-dimensiomal mesh network. Easch PE consists
of PSI-II's CPU kernel|Nakashima and MNakajima 1987,
a nelwork coniroller, and an 80 ME local memory. KIL1
programs are compiled to WAM-like machine instruc-
tions for KL1 [Kimura and Chiksyama 1987] executed by
a microprogrammed emulator. The large machine scale
and ]:L'lg]:'l perfomu.nnc, owing to the impm\r{:m-:nt of the
procesgor architecture and implementation technology,
make Multi-PSI/v2 the first practical parallel inference
machine. Its operating system, PIMOS [Chikayama et al.
198€8], also greatly contributes to its availability by pro-
viding highly sophisticated environment for parallel pro.
gramming. Thus, many KLl programs for various ap-
plication areas have been developed on it since ifs first
model was shipped in 1988 {ICOT 1950]. These programs
and many users of 15 systems prove the efficiency and
practicality of Multi-P5I/v2.

‘Then, we have just finished the development of our
final machine, PIM/m. It inherits many architectural
features, such as the mesh network and KL1 execution
mechanism, from Multi-PSI/v2, The pecformance, how-
ever, is greatly improved by drastically modifying PE
architecture and increasing the number of PEs to 256.

In this paper, the hardware architecture of PIM/m
and the KL1 implementation on it are described. See-
tion 2 shows the system configuration, and the architee-
ture of P and its processing unit. Section 3 describes
several topics about the KL1 implementation empha-
sizing the relation with garbage collection. Section 4
presents preliminary performance evaluation results and
u.mnlylis an them.

2' Hardware Architecture

2.1 System Configuration

Figure 1 shows the overview of PIM/m 256 processar.
system. PIM/m consists of up io 8 cabinels, each of
which contains 32 PEs connected to form an 8 x 4 mesh
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Figure 1: Overview ufPIMfm

sub-network. This sub-network is embedded in a larger
network, up to 16 » 16, by channels connecting adjacent
cabinets. Thus we can provide various size systems, [rom
32 to 256 PEs.

A cabinet also contains four 6T0ME disks, which
make a 256 PE system have huge disk gpace, lasger than
20 GB. This huge capacity should be enough for appli-
cations such as knowledge base and genetic information
analysis. Each disk is coupled with a PE by SCSI bus,
which is also used fo connect other special 1/0 devices,
other PIM systems, and/or front end processors (FEP).

The FEP is a high performance Al workstation,
PSI/UX [Makashima ef al. 1990]. It has a special atfach-
ment processor bo execule a sequential logic program-
ming language ESP [Chikayama 1984]. Since the CPU
kernel of FEP is that of PIM/m's PE, FEP iz also ca-
pable to execute KL1 in single processor environment or
simulated multiprocessor environment. Therefore, pro-
grammers use FEP not only as an interactive I/ O sys-
tem, but also as a convenient debugging workbench.

2.2 Processor Element

Each PE has thres VLSI chips, PU (Processing Unit),
CU (Cache Unit) and NU (Netwerk Control Unit), as
shown in Figure 2. These chips and other peripheral
chips including a floating point processor are installed
on one printed circuit board. The other board carries a
16 M-word (80 MEB) local memory constructed from 4 M-
kit DRAM chips. This two board configuration of PE is
much smaller than that in Multi-PSI/+2, eighl boards,
and makes it possible to increase number of PEs from
64 to 256, owing to the advanced VLS technology. The
machine cycle ig 65ns, which has also been improved

from 200 ne of Multi-PSI/+2.

PU is & 40-bit pipelined microprocessor which exe-
cutes KL1 {and ESP in FEP) under the control of & mi-
croprogram stored in 32 K-word writable control store.
The architecture of PU is deseribed in 2.8 and 2.4. CU
containg a 1 K-word {5 EB]I instruction cache and a 4 K-
word {20 KB) data cache.

WU performs switching of message packels trans.
ferred through the mesh network, ueing so-called Worm-
Hole Routing mechanism. As shown in Figure 3, the
network of PIM/m consists of full duplex channels con-
necting adjacent PEs. That 15, a pair of adjacent PEs
may simultanecusly transmit message packets to each
other. Morcover, a message packet passing through a
PE does not disturh the KL1 execution on the PE, nor
collide with others unless they have the same direction.

The network is invested with these properties by the
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Figure 3: Network Configuration

Figure 4: Network Control Unit (NU)

architecture of NU shown in Figuie 4. NU has a 5 x 5
crossbar to switch four input/output channel pairs {or
adjacent PEs {Ch0-3) and a pair for CPU {ChC). These
channels carry a 9-bit packet byie, which consists of B-hit
data field and & mark to indicaie the header and trailer
of a packet.

Switching is performed h}'hlunlr.:i.ug up a RAM table
named path lable (PT). The address of the table is pro-
vided from the packet header which specifies the desti-
nation PE number of the packet. Each entry of the ta-
ble conteins & 2-bit code indicating the direction of the
packet, going straight, turning left/right, or arriving at
its destination. This mechanism gives us much flexibility
for Touting, system reconfiguration, and physical inter-
connection of PEs. As the path fable has independent
read ports for each input channels, collision of packets
does not oceur even in switching phase.

427

Onee the conneetion of an inpul foutput channel pair
is established, WU transmits a packet byte per four ma-
chine cyeles regardless the physieal location of the adja-
cent PE. This feafure is owing te a sophisticated asyn-
chronous communication mechanism using FIFQ oulpul
buffers (OB0=3). In this mechanism, & sender PE does
not wail for acknowledgment from the recciver for a
Pa.&l:l‘. ]:r}’l.c. Instead it cares aboul the caution from
the receiver saying that Lhe output buffer on the next
path will soon be full. Sinee the caution is raised before
the buffer is really full taking physical line delay inio ac-
count, packel bytes never overrun. The oufpui buffers
also contribute to reducing the probability of network
choking.

The channel ]Jait for OPU has two FIFO buEen, a
read buffer (RB) and a wrile buffer (WB). The read
buffer acts as an cutput buffer for the packels directed
te the PE itself. Tts size 1 KB, however, is much grealer
than that of output buffers, 64 B, in order Lo hold a whole
message packet, When the tail of a packet written into
the read buffer, an interrupt raises to tell CPU that the
packet arrives. The write buffer, whose size is also 1 KB,
starts transmission of & packet when its tail is writlen, in
order fo avoid that the packet is chopped. Both buffers
also have the capability to compose/decompose a 40-bil
waord fromfinto packet bytes.

2.3 Processing Unit (PU)

Figure § shows the configuration of the processing unit,
FU [Makashima et al. 1990, Machida ef al. 1991]. PU ex-
ceutes WAM-like instructions for KL1, named KL1-B
[EKirmara and Chikayama 1987, Warren 1983), with the fal-
lowing regisiers.

AL/X,. .. Argument and temporary registers.

FC ...... Program counter,

AP ... Alternate clause pointer.
CGP .... Current goal record pointer.
GSP .... Goal stack pointer.

85T ..... Suspension stack top.

HF ...... Heap pointer.

5P ...... Structure pointer.

FVP ... Free variable cell pointer.
FLP .... Free list cell pointer,

FGP .... Free goal record pointer.

A, X, are implemented as a register file. The other reg-
ister file, WH, conlains the conteol registers shown above,
excepl for PC and 5P which are hardware counters. Each
register is 40 bit width, ineluding 8 bat tag for data type



438

S Inst.
']Cachu
] Inst, Tmit.
Decode
* Table
i)
A st Addr,
+  Cale, [
T T
R e [ Adar oy b,
s k J 3 L 3 11
g | Inst. | Addr. I Data I ¥ ¥ ¥
| [ WR] Sp.
.............................. (32w]|{32w)]| Reg.
E Inst.
9 r L} ¥
¥
[ XR/YR [MAR1/2 {MDR1/2 |«
pProgram
Contral
1
_ LIwcCs

Figure 5: Processing Unit (PU)

representation and incremental fordinary garbage collee-
tion. The tag hit for incremental garbage collection is
called Multiple Reference Bif (MHAB) deseribed in 3.1

PU has five pipeline stages, D, A, B, 5 and E.

The I} (Decode) stage has a HAM table for instrue-
tion decode. Bach entry of the table contains the start
address of the microprogram routine for an instruction,
and the nane-code to control the following stages. This
BAM decoder makes it easy to develop the micropro-
gram.

The A (Address Calculation) stage calculates the op.
erand address by adding two of following rescurces, ac-
cording te the nans-code,

+ An operand field of the instruction.
# FProgram counter, P,
v An/Xy specified by an operand field,

¢ Current goal pointer, CGP, to get a location of a
goal argument.

The A stage also controls instruction [etch, including
conditional and wneonditional branch operations.

The R (Head Data) stage fetches an operand from
data cache using the calculated address, if necessary. The
5 (Setup) stage selects three operands from the following
resources and transfers them to the E (Execution) stege,
according te the nane-code.

+ An operand field of the instruction.

# The operand fetched by the R stage and its ad-
dress.

* A, /X, specified by an operand field.
+ Control registers in WR

# Structure pointer, SP.

In conventional pipelined processors, the operand setup
operation is performed by the stage like R. PU, however,
has an additional special stage, 8, for the operation. The
reason for introducing the S stage is that it is required for
the pipelined data typing and dereference, as discussed
later.

The E stage has two pipelined phases contralled by
microinstructions. The first phase contains A, /X, WE,.
and special registers including PC and 5P. This phase is
shared by the 5 and E stages for the operand setup, The
second phase has two temporary registers {(XE/YR), two
memory address registers (MARLS2), and two memory
data registers (MDR1/2). Two of those registers are in-
put te ALU, and the result is written into registers in the
first and/or second phase. ALU operation and tag ma-
nipulation including turning on/off MRB are performed
in parallel.

2.4 Data Typing and Dereference

Data typing and dereference are very important for ffi-
cient implementation of logic pregramming languages.
Both data lyping and dereference are performed by
checking the tag of data and changing the contrel flow
according to the resuli. PU has powerful mechanisms,
including the pipelined data typing and dereference, for
these operations,

The E stage has the following microprogram opera-
tioms for tag checking.

{1} Two-way conditional jump. The jump condition is
obtained by comparing the tag of a register with
an immediate value or the tag of another regisler.

(2) Three-way jump. The tag of MDR1 or MDR2 is
compared with an immediate value and reference

tag.

(3) Multi-way juimp. A RAM table, which contains
jump offsets, is looked up by the tag of MDRI or
MDR2Z.

These operations requires two machine cycles. The first
cycle makes the jump condition or offset, and the second
generaies the jump address and fetehes the microinstrue-
ticn.

The pipelined data typing and dereference, which are
mest unique features, mainly depend on the 5 stage. The
5 stage has the following three functions for data typing.

(1) Modify the microprogram entry address comparing
the tag of the operand fetched by the R stage with
an immediate value.



(2} Set up the offset of & multi-way jump, which can be
performed by the first microinstruction, looking up
the LAM table by the tag of the operand fetched
by the R stage.

(3} Set up the two-way jump condition, which can be
examined by the ficst microinstruction, comparing
the tag of an operand transferred to the I stage
with an immediate value,

The first two functions require the special stage between
the R and E stages.

The § stape also performs dereference. When the
dereference from A /X, is ordered, the R stage felches
the operand if the A, /X, contains reference pointer,
while it always fetches the operand in the case of the
dereference from memory. In both cases, the S stage
examines the tag of fetched data, and repeatedly reads
memeory unfil 2 non-reference data is sbtained. The state
of the reference path indicated by MEB of each reference
peinter is also examined, as described in 3.1.

3 Implementation

Since logic programming languages don't have destruc-
tive assignment, manipulating & deta structure ofien
makes a copy of the data leaving its old version as a
garbage. In Prolog, garbage date cells may be reclaimed
by intentional backirack with side effect operaiions. In
KL1, however, this technigue cannot be used because
deep backtrack causes the failure of the entire program.
Thus, garbage reclamation has to be performed only by
the run-time system.

In the KLI implementation on PIM /m, therefore, we
took much care of garbage collection and its efficiency.
For the reclamation of local garbages, an incremental
garbage collection using Mulfiple Reference Bit (MRE)
is introduced. Remole garbages, which was once pointed
from PIs other than its home, are also reclaimed in-
crementally by a sophisticated reference counting mech-
anism for reducing the number of inter-PE messages,
called Weighted Ezpori Counting (WEC).

This section describes the implementation of KLI,
emphasizing these garbage collection mechanisms and re-
lated techniques to reduce memory space and aumber of
MESSAFEs.

3.1 Local Incremental Garbage Collec-
tion

Concurrent processes in KLL communicate cach other

through shared logical variables. Typically, a pair of

concurrent processes, a producer and & consumer, has

its own logical variable in which the producer puis some
data by an active (or body) unifieation. The consumer
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Figure 6: Multiple Reference Bit (MRB)

will be sctivated by binding the variable and read its
contents by a passive (or guand) unification, Because
the variable cell is shared only by the producer/consumer
pair, it will become garbage after the consumer gets its
contents, Moreover, a siructured data uwnified wilh the
'?'B.'[iﬂ.h]f.‘ IT.IE.J" EJEIJ bcmm{: Eﬂ.]’haﬁ'ﬁ H.n.ﬂr 1.'“'.' consumer
decomposes it.

The Muliiple Keference Bit is introduced in order
to reclaim these garbages [Chikayama and Kimura 1987}
MEE is a one-bit reference counter attached to both
pointers and objects. As the counter for & pointer, MRB
is turned on (overflowed) if the pointer is duplicated, as
shown in Figure 6(a) and (b), Thet is, a pointer with
MRE on might refers o an object together with other
pointers. In other words, an object directed by a pointer
with MEB off can be reclaimed as a garbage after the
{passive) unification is performed through the pointer.

This rule, however, has an exception for unbound
variables cach of which can have lwo relerence point-
crs with MRB off, for a producer and a consumer {Fig-
ure 6(c)). After the producer unifies the vanable with
some data and loses its reference path to Lthe variable,
the path from Lhe consumer Lo the dala is lefl alone as
the rule requires.

This exception leads to the olher aspect of MRE,
counter for an object. As shown in Figure 6(d), an un-
bound variable might have & pointer with MRB off and
two or more pointers with MRE on. If the variable is
unified with a data through the pointer with MEB on,
the data has a poinfer with MRE off, although it can-
not be reclaimed by the unification threugh the pointer.
Thus the data, which is an atomie ot a pointer, should
have MREB indicating whether il is pointed by multiple
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pointers as shown in Figure 6(z) and (f).

The incremenial Eutha.gt collection is rmlin]y per-
formed when the unifier makes dersierence. A member
of the chain of reference pointers can be reclaimed if bath
its MREB and that of its predecessor are off. The terminal
of the chain is also reclaimable if the same condition is
satisfied. Especially, all of the members on the chain is
collectable if their MRBs are off,

In order to support the reclamation, the pipelined
dereference mechanism of PU maintains the following in-
formation {F‘igure ?:l.

SRP (Single Reference Path):
MREEs of all the peinters on the chain are off.

COL (Collectable):
MREs of the first two pointers are off.

These are not only passed to the E stege, bui also com-
bined with the data typing result to make microprogram
entry address, in order that the E stage easily decide
whether the reclamation can be done.

On passive unification, if the derelerence result s 2
structure, the slruclore will be collected after the com-
mit operation. For example, the instroetion * collect_
List" is located af the beginning of the body code for
a clause having head unification with a list cell, and re-
claims the list cell if the path o it is single. For the
processes filtering streams represented by lists, “reuse_
List® is used for passing the list cell direetly rather than
puiting and getting it to/from the free eell pool. To these
instructions, SR is passed through the MRBs of their
operands, A, /X,

SRP is also examined by built-in predicates for op-
limization [[namura ef al. 1089]). For example, “set_
vector_element” updates an element of & veclor to
make its new version, providing the path te the vector
is singlc. The stream merger alsa examines the state of
the paths to the variable cell representing a stream and
the list cell to be put, in order to reuse these cells.

P!‘I':l Pﬂ.
Impart Table Export Table
. exported data
[ g (m,c)® - S
Figure 8: Export Table and Import Table
3.2 Hemote Incremental Garbage Col-

lection

As MRE overflows when an object has two or more point-
ers, there are garbages which cannot be reclaimed by the
incremental garbage collection mechanism described in
3.1, Therefore, a PE may exhaust its local memory space
and invoke a batch-mode garbage collector, In order to
allow the garbage collector to move data around in the lo-
cal memory space, remote references are indirected with
export table as shown in Figure 8 Ichivoshi ef al. 1087). A
remole reference consists of the pair of identifiers for PE
and the export table entry from which the exporied data
is pointed. Thus, a PE 15 free to perform batch-mode
garbage collection independently, because other PEs are
ignorant of local data addresses but aware of positions
of the table entries which never move.

The other indirection table for remote references, im-
port table in Figure B, is introduced to reclaim export
table entries incrementally, Entries for single-referenced
objects are easily reclaimed using MRE scheme. When a
PE, £, exports the pointer to a single-referenced object
to ancther PE, F;, it registers the pointer into MRB-off
export table. P also registers the remote reference into
MHRB-off import table in order to identify that the re-
mote path is single. Unless F; duplicates the path to the
import table entry, the export table entry is reclaimed
when F; makes a remote access to the object. For exam-
ple, when F; wants lo read the object, it sends a mes-
sage to get the object. The message also says thatl the
remote path is single, and causes reclamation of the ex-
port table entry by F,. On the other hand, if P; makes
multiple paths and then loses them all, the reclamation
is triggered by batch-mode garbage collector on P AL
ter the marking of the garbage collection, the import
table is scanned to find out unmarked entries and send
a message for each of these entries for the reclamation of
corresponding export table enfry.

In order to reclaim export table entries for multiple-
referenced objects, we introduced Weighted Ezport
Counting (WEC) method [Tchiyoshi et al. 1988, which
is also independently proposed in [Watson and Watson
1887). A PE pair, F, and B, exporting and importing
the pointer to a multiple.referenced object has entries
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on MEB-on exportfimport table for the object. Each
entry has a slot for WEC value, which is a kind of refer-
ence countes but is initiated with some large number, say
1000, rather then one, as shown in Figure B(a). When
F; duplicates the pointer and exports one of the results
to another PE, Py, it divides the WEC value into two
portions, say 800 and 400, Then F; sends a message con-
taining the remote reference and the WEC value 400 to
Pa (Figure 9(b)). P receives the message and makes
an import table entry with the WEC value 400 (Fig-
ure 9(c)). Note that the total of WEC values associated
with the remote references 1s equal to the WEC value of
export table entry through all phases shown in Figure 9.
If £ (or Py) finds that there are no paths to an impaort
table entry on incremental or batch-mede garbage collec-
tion, it sends a message for reclamation to F, with the
WEC value. The WEC value of the export table eniry
is decremented by that in the message, and Lhe entry is
reclaimed if the WEC value becomes zero.

This scheme has the advantage of ordinary reference
counting, because it omits request and acknowledgment
messages which the ordinary scheme requires when F; ex-
ports the pointer to Fy. That is, in the ordinary scheme,
P sheuld send 2 message for incrementing the reference
counter te P, and suspend exporting until il receives ac-
knowledgment from F,. Unless F; wait for Lthe acknowl-
edgment, the counter on P, might be cleared transitively
by the decrement request from Py which possibly reaches
P, carlier than the increment request from F.

A similar weighted counting method, Weighted Throw
Counting (WTC), is adopted to detect the termination

of & group of goals [Rokusawa et al. 1988], KL1 has the
capability to supervise goal groups, called Shden, as if
they are mela-interpreted |Chikayama ef ol 1988). For
example, the operating system PIMOS can detecl the
termination of 2 user program represented as a Shoen.
Since goals in & Shden may be disiributed to many PEs,
some remote reference counting is necessary to detect
the termination of them all. As WEQC for remote refer-
ences, WT'C values are given to PEs executing goals in a
Shoen. Thus, PEs can exchange goals with some WTC
values omitting requests facknowledgments as deseribed
before. This featurs is very importani for efficient execu-
tion because an active unification with & remote variables
is a goal.

3.3 Multiple Export and Import

Once = mulliple-relerenced object is exported, it is often
exported again. If such a object is repeatedly exported
overlooking that it has been already exported, each time
an expoct table entry is consumed. A PE importing such
& object repeatedly, worse still, gets multiple copies of
the object. In order to solve these problems, both ex-
port table and import table are content addressable by
hashing. The hash table-for export associates [local)
addresses of exported objects with export table enkries,
while that for import associates remote references with
import lable entries.

This scheme, however, cannol deal with more compli-
cated situations. For example, if F; imports two pointers
from F. and P, and each peointer refers to & copy of a
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Table 1: Single Processor Performance

benchmark | condition PIM/m | Multi-PSI/v2 M"ll,'l’;f?i ve
append 1,000 elements || 1.63 msec T.80 meec 4.8
best-path | 90,000 nodes 142 sec 213 sec L5
pentomino | 8 x 5 box 107 sec 240 gee 2.2
15-puszle | 5,885 K nodes | 0,283 sec 21,660 sec 2.3

data structure on each PE, F; will get multiple copies
frem F, and P,. This troublesome situation may oec-
eitf in distribution of program codes which have intricate
cross references.

Therefore, we introduced global identification of code
modules to promise that a PE should not have multiple
copies of a code module [Nakajima el ol 1980). When P,
is requested by F; to send a data object and find out
that the object is & code module, it transmils the module
identifier rather than the module itself as the reply. Then
F; looks up a hashed table for modules resident in it
with the identifier. If the module is resident, F; simply
executes it. Otherwise, P; sends a specal message for
getting the module itself to F,.

4 Performance Evaluation

4.1

Table 1 shows the single processor performance of PIM/m
for four benchmarks. The table also includes the per-
formance of Multi-PSI/v2 and the ratie of PIM/m and
Multi-PSI/v2 {MfP-spee«dupJ to show the effect of archi-
tectural improvemant.

The performance for append represents the peak
performance which is 4.8 times as high as that of
Multi-P5I /2. This improvement should greatly owe
to pipelined data typing and dercference, because the
speedup factor for major E stage operations is only 1.5
{iwo 65 ns cycle versus one 20 ns eyele). The effective-
ness of pipelined dereference supporting the incremental
garbage collection is proved by the fact that the speedup
factor is significantly larger than 4.2° for Prolog append
on P5I-11 and P51/UX whose CPU kernels are those [or
Multi-P51/v2 and PIM/m respectively [Nakashima e ai.
1980,

On the oiher hand, the absolute performance, 615
KLIPS, is still lower than 1.4 MLIPS for Prolog on
PSI/UX. A part of this dereference is caused by the
fact that the incremental garbage eollection mechamism
inherently requires additional memeory accesses to free

Single Processor Performance

*This value is nocmalized to compensate the machine cycle dif-
ference between Mulii-PSI/v2 and PSI-IL

cell pool and variables excluded from list cells. In fact,
KL1 append performs 10 memory accesses per one reduc-
lion in our system, while Prolog append does 6 accesses
required essentially. The other part, however, should be
due to the hardware support for the incremental gar-
bage collection which is not yet sufficient to remove the
overhead. For example, we estimated that some modifi-
cations of the hardware with few gates for;

+ making information indicating whether the deref.
erenced path is totally collectable,

o fetching an element from free vadiable pool in
pipeline, and

e storing the result of an ALU operation inta both
the structure pointer and an argument register

will make the petformance §10 KLIPS.

The other three benchmarks are search programs
with various parallel algorithms and load distribution
strategies. Hesi-path finds out the shortest path be-
iween two vertices of a directed weighted graph with
a parallelized Dijkstra’s algorithm and static load dis-
tribution [Wada-K and Ichiyoshi 1989). Penfomino makes
OR-parallel exhaustive search to solve a packing piece
puzzle problem with a multiple level dynamic load dis-
tribution method [Furvichi ef al. 1990 15-puzzle solves
a well-known puzzle problem in parallel by employing
iterative-deepening A" algorithm [Wada-M and Ichiyoshi
1981]. Although these programs are not practical, the al-
gorithms and load distribution sirategies should be gen.
erally adopted to various application programs of paral-
lel processing. Thus, it is expected that the performance
for them reflects the performance sustainedly gotten on
PIM/m.

The M/P-speedup for these program, 1.5 to 2.3, are
not excellent in contrast with the case of append. This
is probably caused by two major reasons, context switch
and cache miss. In these programe, context switches fre-
quently occur, every two io three reductions, by the ter-
mination or suspension of goals, while never in append.
Sinee instructions for the context switch take dozens of
cycles for execution in the E stage and make pipeline
stagnant, the pipelined architecture doesn’t gain much
performance improvement for these programs.
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Figure 10: Speedups for best-path and pentomine

Cache miss penalty should be the major degradation
factor in besi-path which has a large working sel. Even
in Multi-PSI/v2, cache miss degrades the performance
10 to 20 % as reported in [Nakajima and Ichiyoshi 1990].
Thus, the penalty relative to the machine cycle becomes
more critical, because the cache size and physical mem-
ory access Lime of PIM/m are not greally evolved from

Multi-PST/v2.

4.2 System Performance

System petformance is strongly related with load distri-
bution strategy and communication cost. Since PIM/m
has four times as many PEs as Mulli-PSI/v2 has, it
might become difficult to balance loads distributed to
PBs. As for communication cost, we evaluated that
the network capacity of Multi-PSIfv2 is much larger
then required [Nakajima and Ichiyoshi 1990]. Therefore,
we designed PIM[m's network making its throughput
and bandwidth almost equal to those of Multi-P5SI/v2's,
expecting that the network siill has enough capacity.
The frequency of message passing, however, might be
contrary to our expectation, because of underestimation
of hot spot effect and so on.

The speedup, which is gotten by dividing execution
time for single processor by that for o processors, may
give preliminary answers about those questions. Fig-
ure 10 shows the specdups of PIM/m and Multi-PSI/v2
for best-path and pentoming. Up to the B4 PE system,

the speedup of PIM/m are quite similar to or slightly
better than that of Multi-PS1/v2. Especially, the result
of best-path shows surprising super-linear specdup, prob-
ably becruse partitioming the problem makes required
memory space for & PE small and redoces cache miss rate
and for the frequency of batch-mode garbage collection.
These results show that the nelwork of PIM/m stands
increase of message passing frequency caused by the im-
provement of PE performanes. Thus, the perfomance of
single cabinel minimum system is greatly improved from
Multi-PSI/v2. That is, M/P-speedup is 5.0 for best-paih
and is 8.3 for penlomino.

On the other hand, the speedup of the 128 PE sys-
tem are considerably low, especially for besl-path. Thus,
the M/P-speedups lor 4-cabinet a hall of maximum sys-
tem are 3.7 [or besi-path and 6.4 for penlomino. This
implies thal the problem size is too small lo disiribule
loads to 128 PEs and/or the message passing frequency
exceeds the network capacity. As for best-path, the rea-
son of low speedup seems Lo be small size of the problem
which takes only 1.Bsec on the 128 PE system, becanse
a PE transmits messages only to its adjacent PEs. For
example, when the problem is scaled up by increasing
the number of nodes from 90K to 230K and 1M, the
speedups for the 128 PE system hecome 87 and 109 re-
spectively, as shown in the figure.

“Since large problems cannot rum on small size systems, the
speedups are estimaled by multiplying 32PE speedups for small
problems by 32 to 128 PE specdups for large problems.
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In penfomino, its load distribution strategy might
cause hot spot PEs which poal loads and distribute them
in demand driven manner, The hot spot, however, is pos-
gibly that of computation for load generation rather than
communication for distribulion. The problem size may
aleo limits the speedup, because the execution time of
the 128 PE system js only 1.3 sec. The speedup of larger
size problem, which is for 10 = 6 box and takes 211sec
on the 12BPE system, iz 105 as shown in the figure*.
We are new planning further evaluation and analysis to
confirm these observations ar find out other reasons,

As for 15-puzzle, we measured the speedups of 64 and
128 PE systems changing the problem size as shown in
Figure 11. The figure also shows the number of nodes
in the scarch space for each of seven initial states of
the game board. The results for the 64 FE sysiem of
PIM/m is also quite similar to that of Multi-PSI/+v2.
The speedup of the 128 PE system, 38.7 to 109.2, are
Lightly related to the size of problems. The analysis of
this relation is also lefl as a future work.

5 Concluding Remarks

This paper presenied the hardware architeciure of PIM /m
system, ibs processor element, and the pipelined micro-

processor dedicated to the fast execution of KL pro-

grams. The KL1 implementation issues focused on ils re-

lation with garbage collection were also described. Then

preliminary performance evaluation resulis were shown

with brief discussions on them.

We are now planning & research concentrated on fur-
ther evaluation of the performance of PIM/m and the
behavior of various KLl programs. The evaluation re-
sults and detailed analysis on them should greatly con-
tribute not only to the performance Llune-up of PIM/m
but also to the research on parallel inference machines in
next step.
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