PROCEEDINGS OF THE INTERMATIONAL CONFERENCE

ON FIFTH GENERATION COMPUTER SYSTEMS 1993,
edited by ICOT, £ ICOT, 1992

230

Concurrent Logic Programming as a Basis for Large-scale
Knowledge Information Processing

Koichi Furukawa

Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan

furukawa@icot.or.jp

1 The Future of Information
Processing

As the Fifth Geperation Computer Systems project
claims, the information processing field is pursuing
knowledge information processing.

Since the amount of information being produced is
increasing rapidly, there 15 a growing need to extract
useful information frem this information. The most im-
portant and promising technologies for information ex-
traction are knowledge acquisition and machine learn-
ing. They include such activities g5 classification of in-
formation, rule acguisition from law data and summary
generation from documents. For such activities, heavy
symbolic computation and parallel symbolic processing
are essential.

Combinatorial problems are another source of appli-
cations requiring heavy symbolic computation. Human
genome analysis and the inversion problems are examples
of these problems, For example, in diagnosis, it is quite
eaey Lo forecast the symptoms given the disease. How-
aver, to identify the disease from the given symptoms is
usually not so easy. We need to guess the disease from
the symplom and to verifly the truth of that guess by fur-
ther ohservation of the system. If the system is linear,
then the inversion problem is simply to compute the ma-
trix inverse. But, in general, there is ne straightforward
way to solve the inversion problem. There may be many
candidates for any guess and this becomes even worse
when we take multiple faults into account. Note that ab-
ductive reasoning, one of the most important reasoning
processes for open-ended problems, is also characterized
as & general inversion formalism against deduetion.

Caoperative problem solving (or distributed AI) is an-
other important direction for future information process-
ing. Like human society, one feasible way of dealing with
large-scale problems i for & number of experts to coop-
erate. To exchange idess between experts, mutual un-
derstanding is essential, for which we need complicated
hypothetical reasoning to fill the gaps in terminology be-
tween them.

These three examples show the need for heavy con-
current information processing in the field of knowledge
mformation processing in the future.

2 The Role of Logic Program-
ming
Logic programming provides a basic tool for representing

and solving many non-triviel artificial intelligence prob-
lems.

1. As a knowledge representation tool, it can express
situations without being limited to a closed world,
as was believed until recently. The negation by fail-
ure rule makes it possible to express an open-ended
world, which is essential for representing cormmon
sense and dealing with non-monotonic reasoning.
Recently, a model theory for dealing with general
logic programs which contains negation-by-failure
literals in the body of clauses has been studied. The
theory, called stable model semantics, associates a
sel of feasible models, natural extensions of least
models, to each general logic program.

2. As an inference engine, logic programming provides
a natural mechanism for computing search problems
by automatic backtracking or by an OR-parallel
search mechanism, Hecent research results show the
possibility of combining top-dewn and bottom-up
strategies for searching.

3. Asa syntactic ool for non-deductive inference, logic
programming provides a formal and elegant formal-
ism. Abduction, induction and analogy can be natu-
rally formalized in terms of logic and logic program-
ming. Inoue et al. [Inoue et al. 92] showed that
abductive reasoning problems can be compiled into
proof problems of first order logic. This means that
non-deductive inference problems can be translated
into deductive inference problems. Since abduction
is a formalization of a kind of inversion problems,

this provides & straightforward way to solve such
problems,

There was a common belief that logic and logic pro-
gramming had severe restrictions as tools for complex
Al problems that require open endedness. However, re-
cent research results shows they are expressive enough
to represent and solve such problems,

3 The Role of Concurrent Logic
Programming

Concurrent logic programming is a derivative of logic
programming and is good for expressing concurrency
and executing in parallel. From a2 computational
viewpoint, concurrent logic programming only supports
AND-parallefism, which is essential for describing con-
current and cooperative activities.

The reason why we adopted concurrent logic program-
ming a5 our kernel language in the FGCS project is
that we wanted simplicity in the design for our machine
fanguage for parallel processors. Since concurrent logic
programming languages support only AND-parallelism,
they are simpler than those languages which support
both AND- and OR-parallelism.

We succeeded in writing many useful and complex ap-
plication programs in KL1, the extension of our concur-
rent logic programming langunage, FGHC, for practical
parallel programming. These include a logic simulator
and a router for VLSI-CAD, and a sequence alignment
program in genome analysis. These experimental stud-
ies show the potential of our language and its parallel
execution fechnology.

The missing comnputational scheme in concurrent logic
programming is OR-parallelism. It comes from the very
fundamental nature of concurrent logic programming
language, that is, the committed choice mechaniem. OR-
parallelism plays an eszentizl role in many Al problems
because of the requirement for searching. A great deal of
effort has been made to achieve OR-parallel searching in
concarrent logic programming by devising programming
techniques. We developed three methods for different ap-
plications: a continuation-based method for algorithmic
problems, a layered stream method for parallel parsing,
and & guery compilation method for database problems,
These three methods cover many realistic applications.
Therefore, we have almest developed OR-parallelism sue-
cessfully, This means that there is a possibility of build-
ing parallel deductive databases in concurrent logic pro-
Eramrning.

One of the most significant achievernents using the
query compilation methed is a bottom-up theorem
prover, MGTP [FujitaHasegawsa 91]. This is based on
the SATCHMO prover by [Manthey 28], MGTP is a very
efficient theorem prover which uiilizes the full power of

231

KL1 in & natural way by performing only one way unifi-
cation. SATCHMO has a restriction in the problems it
can efficiently solve: range-restrictedness [Furukawa 92].
However, most real life problems satisfy this condition
and, therefore, it is very practical,

We succeeded in computing abduction, which was
translated to & theorem proving problem in first order
logic, by using MGTP. We succeeded in solving a very
important class of inversion problems in parallel on our
parallel inference machine, PIM.

4 Conclusion

Concurrrent logic programming gained its expressive
power for concurrency at the sacrifice of Prolog's search
capability. By devising prograrnming techniques we have
finally almost recovered the lost search capability. This
means that we now have a very expressive parallel pro-
gramming language for a wide range of applications.

As an example, we have shown that the technigue en-
abled realization of an efficient parallel theorem prover,
MGTP. We have also shown success in deductively solv-
ing an important class of inversion problems, formulated
by abduction, by the theorem prover,

Our rescarch results indicate that our concurrent logic
programming and parallel processing based technologies
have great potential for solving many complex future AT
problems.

References

[Fujitalasegawa 91] H. Fujita and R. Hasegawa, A
Model Generation Theorem Prover in
KLI Using o Ramified-Stack Algo-
rithm. In Proc. of the Eighth Interna-
tional Conference on Logic Program-
ming, Paris, 1991.

K. Furukawa, Summary of Basic Re
search Activities of the FGCS Project.
In Proc. of FGCS92, Tokyo, 1992.

[Inoue ef ol. 92] K. Inoue, M. Koshimura and R.
Hasegawa, Embedding Negation as Fail-
ure into a Model Generation The-
orern Prover. To appear in CAD-
11: The Eleventk International Confer-
ence on Automated Deduction, Saratoga
Springs, NY, June 1992,

E. Manthey and F. Bry, SATCHMO: A
Theorem Prover Implemented in Prolog.
In Proc. of CADE-88, Argonne, llinois,
1988,

[Furukawa 92]

[Manthey 88]

