PROCEEDINGS OF THE INTERNATIONAL CONFERENMCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by YCOT. @ 1COT, 1992

175

Object-Based Versus Logic Programming

Peter Wegner

Brown University, Box 1910, Providence, RL 02912

pwi@es.hrown.edo

Abstract: This posilion paper argues thal mainstream applica-
lion programming in the 21st century will be object-based rather
thin logic-based for the following reazons, 1) Object-based pro-
grams model application domains more directly than logic pro-
grams, 2} Object-based programs have & more (lexible program
structure than logic programs. 3) Logic programs can be intract-
able, in part because the satisfiabifity problem is NP-complete,
4) Soundness limits the granularity of thinking while complete-
ness limits s scope. 5) Inductive, gbductive, probabilistic, and
nonmonetonic reasoming sacrifice the centainty of deduction for
greater hewristic effectiveness,) Extensions 1o deductive logic
like nonmenotonic or probabilistic reasoning are betier realized
in a general computing environment than as extensions o logic
programming lanpuages. 7) Object-bazed systems are open in
the sense of being both reactive and extensible, while logic pro-
grams are nol reactive and have limiled extensibility. 8) The
don’t-know nondelerminism of Prolog procludes reactiveness,
while the don’t-care nondeterminism of concurremt logic pro-
grams makes them nonlogical.

1. Modeling Power and Computability

Object-based programs model applicaiion domains more
dircetly tham logic programs. Computability is an inadeguate
measure of modeling capability since all programming
lanpuages are equivalent in their computing power. A liner
(more disciminating) measune, called ““medeling power™”, is
proposed thar is closely relaled 10 **expressive power™, but sin-
gles oul modeling as the specific form of expressiveness being
sindied. Feawres of object-based programming that contribuie
to its modeling power include:

s assignment and object identity

Objects have an identity that persists when their stale
changes. Objects with a mutable siate capture the dynamically
changing properties of real-world objects more directly than
mathematical predicates of logic programs.
= data absiraction by information hiding

Objects specily the abstract propenies of data by applicable
operations without commilment to a data representation. Diata
abstraction is a more retevant fom of abstraction for medeling
than lagical abstraction.

s messages and communication

Messages model communication among objects more
elfectively than logic variables. The mathematical bebavior of
individual ofyjects can be captured by algebras or aulomosla, bul
communication and synchronization protocols actually wsed in
practical object-based and concurrent sysiems have no nest
mathematical modeks,

These features are singled oul because they cannot be
casily expressed by logic programs. Shapire |Shi) defines the
comparalive expressive power (modeling power) of two
languages in terms of the difficully of mapping programs ol one
linguage inlo the other. Language L1 is said 1o be more expoes-
sive than language L2 if programs of L2 can be casily mapped
iniey those of L1 but the reverse mapping is diffbcull (aecording 1o
a complexily metric for language mappings).

The specification of comparative capressive power in ienns
of mappings between languages i nol entirely saisfactory. For
example, mapping asscmbly languages inlo problem-oriented
languages is difficult because of lack of design rather than qual-
ity of design. Howgver, when applied o two well-structuncd
language classes like object-based and logic languages this
approach does appear promising.

Since logic programs have a procedural interprotation with
goal atoms as procodure calls and Iogic variables as shared com-
munication channels, logic programming can be viewed as a spe-
cial (reductive) style of procedurc-oricmied programming.
Though language featunes like nondeierminism, iogic vadahles,
and partially instantialed struciures are nol dircoily modeled, ihe
basic struclure of logic programs I8 procedural. In coniris,
ohject-orienicd programs in Smallialk or Ce+ do not have o
dircct interprelation as logic programs, since objects and clisscs
cannat be easily modeled. Computational objecis thal descrilw

ehavior by collections of operations sharing a hidden stale con
nol be casily mapped into Fgic program courerpins,

2. Limitations of Inference and Mendeterministic Control

All deduction Tollows [rom the principle that if an elomen
belongs W a set then il belongs 10 any supersel. The Arstplelinn
syllogism AN humans are mortal, Socrates (s human, Sercfor
Socrares i mormal’" infers that Socraes belongs o the superscl
of moals from the fact that he belongs to the subset of humans,
This problem can be specified in Prolog as loHows:

Prolog clause: mortalfx) « fuemanix).
Prolog fact; fugmani Socrares).
Prolog poul: mortali Socrates).

The clause “sortlix) « hwnanfx), which specilies tha
the set of monals is a supersed af the set of humans, allows U
goal “mortalfSecrates/” o be proved from the lao
“laneang Socrares)

A Prolog clause of the form **Plx} o Qfx)"" assens tha s
st of facts or objecls satsfying Q is a subsct of those satisiying
P, being cquivalent to the asserion “For afl x, Qfx) implics
Pixj. A Prolog goal G(x) is true il there arce lacts in the daa-

226

base that satisly G by virtue of the selfsubset relations implied
by e clauses of the Prolog program. Prolog resolution and
unification allows the subset of all database facts satisfying O to
b fiound by setfsubset inference.

Inferences of the form “'setfx) if subserfx]" are surprizingly
powsarful, permitting all of mathematics to be expressed in lerms
of et theory. Bul the exclusive use of **set if subset'” inference
for computation end/or thinking is unduly constraining, since
both computation and thinking o beyond mere classification.
Thinking includes heuristic mechanizms like generalization and
free association that go beyond deduction,

Mondeterminism is another powerful computation mechan-
ism that limils the expressive power of logic programs. Prolog
nondeterminically searches the complete goal tree for solutions
that safisfy the goal, In a Prolog program with a predicate P
appearing in the clause head of N clauses ""PrAi} — Bi", a goal
P{A) riggers nondeterministic execution of those bodies Bi for
which A unifies with Ai. This execution rule can be specified by
a choice statement of the form:

choice (AI|B], A2|B2, ... , AN|BN) endchoice
nondeterministically execute the bodies Bi of all clauses for
wiiich the clause head P{AL) wnifies with the goal F{A).

Bodies Bi are guarded by patems Af that must unify with
A for Bi to qualify for execution. This form of nondeterminism
is called don’ -krow nondeterminism because the programmer
need not predicl which inference paths lead to svecessful infer-
ence of the goal. Frolog programs explore all allernatives until a
successful inference path is found and repor failure only if no
inference path allows the goal to be inferred.

The order in which nondetemiinistic allermatives are
explored is delermined by the system rather than by the user,
though the user can influence execution order by the order of
listing allernatives. Depth-firsl search may cause unnecessary
nonierminating computation, while breadth-first search avoids
this problem but is usually less efficient. Prolog provides
mechanisms like the cut which allows search mechanisms to be
tampered with. This extra flexibility undermines. the logical pur-
ity of Prolog programs,

Sequential implementation of don’l-know nondelerminism
requires backtracking from failed inference paths so that the
effects of failed computations become anobservable, Since pro-
grams cannol commit o an observable output until a proof is
complete, don'i-know nondeierminism cannot be vsed as a com-
putational model for reactive systems (hat respond to exiemal
stimuli and produce incremental output [Sh2].

3. Intactability and Satisfiability

Certain well-formulated problems like the halting problem
for Turing machines are noncomputable. Practical computability
is further restricied by the requirement of tractability. A problem
is tractable if its computation time grows no worse than polyno-
mially with its size and intractable if its computation time grows
al least exponentially.

The class P of problems computable in polynomial time by
a determministic Turing machine is tractable, while the class NP
of problems compuiable in polynomial time by a nondeterminis-
tic Turing machine has solutions checkable in polynomial tme
though it may take an exponential time 1o find them [G}]. The
question whether P = NP is apen, but the curent belief is thai
MNP comging inherently intractable problems, like the
satizfiability problem, that are not In P,

The satisfiability problem is NP-complete; a polynomial
time algorithm for satizfability would allow all problems in NP
to be solved in polynomial time, The fundamental problem of
thearem proving, that of finding whether & goal can be satisfied,
is therefore intraclable unless it tums out that ' = NP.

The fact that satisfiability is intractable is not unaccepiable
especially when compared to the Fact that computability 15 unde-
cidable. But in practice exponential blowup arises more fre-
quently in logic programming than undecidability arises in tradi-
tipnal programming, Sometimes the intractability is inherent in
the sense that there is no tractable algorithm that solves the prob-
lem. But in many cases more careful analysis can yield a tract-
able algorithm, Consider for example the sorting problem which
can be declaratively specified as the problem of finding an
ordered permutation.

sorix) - permuiation(x), ordered{x).

Direct exccotion of this specification requires n-factorial
steps o sort n clements, while more careful anlysis yields algo-
dihms lke quicksort that require only n logn steps. High-level
specifications of a problem by logic programs can lead to com-
binatonally intractable algorithms for problems that are com-
binatorially tractable when more carefully analyzed.

The complexity of logic problem solving is often combina-
torially unacceptable even when problems do have a solution.
The intractability of the satisfiahility problem causes some prob-
lems im artificial intelligence to become intractable when blindly
reduced to logic, and provides a practical reason for being cau-
tious in the use of logic for problem solving.

4. Soundness, Completeness and Hewrlstic Reasoning

Soundness gssures the semantic accuracy of inference,
requiring all provable assertions o be true, while completensss
Euaraniees inference power, requiring all true assertions o be
provable. However, soundness strongly constrains the granular-
ity of thinking, while complatensss restricts iz semantic scope.

Sound reasoning cannot yield new knowledge; it can only
make implicit knowledge explicit. Uncovering implicit
knowledge may require creativity, for example when finding
whether P = NP or Fermat's last thecrem. But such creativity
generally requires insights and constructions that go beyond
deductive reasoning. The design and construction of software
may likewise be viewed as uncovering implicit knowledge by
creative processes that transcend deduction. The demonstration
that a given solution is correct may be formally specified by
“sound" reasoning, but the process of finding the solution is
generally not deductive, '

Human problem solvers generally make use of heuristics
that sacrifice soundness to increass the effectivensss of problem
solving, McCarthy suggested supplementing formal systcms by
a heuristic adwice taker as early as 1960 [GR), but thiz idea has
not yet been successfully implemented, presvmably because the
mechanisms of hewristic problem solving are too difficult to
automate,

Heuristics that sacrifice soundness (0 pain inference power
include inductive, abductive, and probabilistic forms of reason-
ing. Induction from a finite set of observations to a general law
is central 1o empirical reasoning but is not deductively sound,
Hume's demonsiration that induction could not be justified by
“'pure reason’” senl shock waves through nineteenth and twen-
tieth century philosophy.

Abductive explanation of effects by their potential causes
iz another heuristic that sacrifices spundness 10 permit plausible

though wncertain conclusions. Choice of the most probable
explanation from a set of potental explanations is yet another
form of unsound heuristic inference. Inductive, abductive, and
probabilistic reasoning have an empireal justificaton that
sacrifices certainty in the interests of common sense,

Completeness limits thinking in a qualitatively different
manner fram soundness. Completeness constraing reasoning by
commitment to & predefined (closed) domain of discourse, The
requirement that all true assertions be provable requires a closed
notion of truth that was shown by Godel 1o be inadequate for
handling naturally occurrting open mathematical domains like
that of arithmetle. In guaranteeing the semantic adequacy of a
set of axioms and rules of inference, completeness limits their
semantic expressivencss, making difficult any extension to cap-
ture a richer gemantics or refinement to capture more detailed
semantic properiies, Logic programs cannot easily be extended
to handle nonformalized, and possibly nonformalizable,
knowledge outside specific formalized domains,

The notion of compleieness for theories differs from that
for logic; a theory is complete if it is sufficiently strong to deter-
mine the: truth or falsity of all its primitive assertions. That is, if
every ground atom of the theory is either true or false. Theores
about observable domains are generally inductive or abductive
generalizations from incomplete data that may be logically com-
pleted by uncertain assumptions about the truth or falsity of
unobserved and as yet unproved ground atoms (facts) in the
domain. For example, the closed-world assumption [GN]
assumes that every fact not provable from the axioms is false,
Such premature commitment to the falsity of nonprovable
ground assertions may have o be revoked when new facts
become known, thereby making reasoning based on the closed-
world assumption nonmonotonic.

Nonmonotonic reasoning is a fundamental extension that
transforms logic into a more powerful reasoning mechanism,
But there i a sense in which nonmonotonic reasoning violates
the foundations of logic and may therefore be viewed a5 nonlogi-
cal. The benefits of extending logie to nonmonotonic reasoning
must be weighed against the altemative of completely abandon-
ing formal reasoning and adopting more empirical principles of
problem solving, like those of object-oriented programming,
Attempls to generalize logic 10 nonmonotonic or heuristic rea-
soning, while intellectally interesting, may be pragmatically
inappropriale as a means of increasing the power of human or
computer problem solving. Such extensions to deductive logic
arc better redlized in a general computing envircnment than as
extensions (o logic programming languages, :

Both complete logics and complete theories require an
early commitment to a closed domain of discourse. While the
closed-world assumption yields o different form of closedness
than that of logical completeness or closed application programs,
there is a sense in which these forms of belng closed are relared,
In the next section the term open system is examined to charac-
terize this notion as precisely as possible.

5 Open Systems
A system §s said to be an open system if its behavier can

easily be modified and enhanced, either by interaction of the sys-
tem with the environment or by programmer modification.

L. A reactive (interactive) system thal can accept input from its
environment to modify its behavior is an open system.
2. An extenzible system whose functionality andfor mumber of
components can be easily extended is an open system.

227

Our definition includes systems that are reactive or extensi-
ble or both, reflecting the fact that a system can be open in Ay
different ways. Extensibility can be intrinsic by interactive 8y5-
tem evolution or extringic by programmer modification. Intrin-
sic extensibility accords bemter with blological evolution and
with human leaming and development, but extrinsic extensibility
is the more practical approach o software evoletion. The fol-
lowing characterization of openness explicitly focuses on this
distinction:

1. A system that can extend itself by interaction with its environ-
ment is an open system. o
2. A system that can be extended by programmer modification
{usually hecause of its modularity) is an open system.,

Singe extrinsic extensibility is extremely important f_rmfu
the point of view of cost-effective life-cycle management, it is
viewed as sufficient to qualify a system as heing open. While
either one of these properties is sufficient to qualify a system as
being open, the most flexible open systems are open in both
these senses.

Object-orienled systems are open systems in both the frst
and second senses. Objects are reactive server modules that
accept messages from their environment and relum a result.
Systems of objects can be statically extended by mndu_‘ymg the
behavior of already defined objects or by introducing new
objects. Classes facilitate the abstract definition of behavior
shared among a collection of objects, while inheritance a]ll:m'_s
new behavior to be defined incrementally in terms of how it
modifics already defined behavior. Classes have the openfcloved
property [Me]; they are open when used by subclasses for
behavior extension by inheritance, but are closed when wsed by
ohjects to exccute messages. The idea of open/closed subsys-
tems that are both open for clients wishing to extend them and
closed for clients wishing to execute them needs 0 be funher
explored.

ic 1 exhibiting don't-know nondeierminism
are nmli:ﬁ Iaﬂ:ﬁaﬁg senge, while soundness and completencss
restrict extensitdlity in the second sense. To realize reactive
openness concurtent logic languages abendon don’t-know non-
determinism in favor of don't-care rondeterminism, sacrificing
logical completeness.

Prolog programs can easily be extended by adding clauses
and facts =0 they may be viewed as open in the second sense.
But Ingical extension i5 very different from object-based extensi-
bility by modifying and sdding objects and classes. Because
ohject-based languages directly model their domain of discourse,
object-based extensibility gemerally reflects incremental exten-
giong that arise in practice more directly than logical extension.

6. Don't-Care Nondeterminism

Don't-care nondeterminism is explicitly used in CORCUTEnt
languages to provide selective fexibility st entry points to
modules. It is also a key implicit control mechanism for realiz-
ing selective fexibility in sequential objeci-based languages.
Access o an object with operadons opl, op2, ..., opN is con-
trolled by an implicit nondetermnistie select statement of the
fiorm:

select (opl, op2, ..., opN) endselece

Execution in a sequential object-based systemn is deter-
ministic from the viewpoint of the system as a whole, but is non-

224

delerminiztic from the viewpoint of cach object considered 25 an
isolated system. The object does not know which operation will
be exccuted next, and must be prepared to select the next execut-
able operation on the basis of patlem maiching with an incoming
message. Simee no backtracking can occur, the nondeterminism
is dan't cane (committed choice) nondeterminism.

Concument porgramming languages like CSP and Ada
have explicit don't carc nondelerminism realized by guarded
commands with guards Gi whose truth causes the associated
body Bi to become a candidate for nondeterministic execution;

select (GI|B1, G282, GNIEN} endselect

The keyward select is used in place of the keyword chaice
I denode selective don't care nondelerminism, while guards are
separated from bodies by || in place of),

Guarded commands, originally developed by Dijkstra,
govern the selection of aliermative operations at entry points of
concurrently exccutable tasks, For example, concurment access
1o a buffer with an APPEND operation execurable when the
bulfer is nol full and a REMOVE operation exccutable when the
bulTer is noLemptly can be specified as follows;

select (noffullJAPPEND, natempry||REMOVE) endselect

Monilors suppon unguarded don't-care nomdeterministm at
the medule interface. Selection between APPEND and
REMOVE operations of a buffer implemented by a monitor has
the tollowing implicit select statlement:

select (APPEND, REMOVE) endselect

The menitor operations wait and signal on internal monitor
gueues motfull and notempry play the role of guards. Monitors
decouple guard conditions from nondeterministic choice, gaining
extra flexibility by associating guards wilh access to resources
rather than with rmeodule entry.

Consider & concurrent logic program with a predicate P
appearing in the head of M clauses of the form ““PlAL) —
GiBirT. A goal P(A) tripgers nondeterministie execution of
those bodies Bi for which A unifies with Al and the guards Gi
are satisficd. This execution rule can be specified by a select
statement of the form:

select ((AL;GINIBI, (A2,G2)||B2, ..., (AN;GNHBN) endselect
Bi iz a candidare for execution if A wnifies with Al and Gi ix
satlsfied

Since no backiracking can oceur once execution has com-
milled o a particulzr select aliemative, the nodeterminism is
don‘t-care nondeterminism. However, don't care nondetermin-
ism in concurrent logic languages is less Aexile than in object-
based languages because data abstraction and object-based mes-
sage communication is not supporied.

Don't-care nondeterminism is useful in realizing reactive
flexibility, but is neither necessary nor sufficient for concurrent
sysiems. Concument nonreactive systems for very fast computa-
tions are commonplace, while sequential object-based systems
are reactive bul not nonconcurrent, Reactiveness and con-
currency are orthogonal propemies of compuling systems.
Dan‘t-care nondeterminism is pimarily concemed with enhane-
ing reactive flexibility and is not swricily necessary for con-
CUITERCY.

Wondeterministic selection is refatively complex because it
combines merging of incoming messages from multiple sources
with selection among alternative next actions by patiern match-
ing. The essential nondeterminism in concument systems arises
from uncertainly aboul the arrival order (or processing order) of
incoming messages and is modeled by implicit nondeterministic
merging of streams rather than by explicit selection, For cxam-
ple, the nondeterministic behavior of 8 bank account with
$100.00 when two clients each attempt to withdraw $75.00
depends not on selective don't-care nondeterminism but simply
on the arrival order of messages from clients.

7. Are Concurrent Logic Programs Nonlogical?

Don't-care nondeterminism serves 1o realize reactive com-
p‘Lﬂ:’l[iﬂﬂs and also w keep the number of nondeterministic alter-
natives explored 1o 4 manageable size. But it may cause prema-
ture commitment o an inference path not containing a solution
at the expense of paths that possibly contain solutions. Don’t-
care nondeterminism is nonmonotonic since adding a rule may
have the effect of preveming commitment to an already existing
rule. Logic programs employing don't-care nondeterminism are
incortplere in the sense that they may fail to prove frue asser-
tions that would have been derivable by don't-know nondeter-
minism from the same set of clavses. It becomes the responsibil-
ity of the programmer to make sure that programs do not yield
different results for different orders of don't-care commiment.

Under don‘t-care nondeterminism the resull of a computa-
tion from a set of clauses depends on the order of don't-care
commilment. This weakens the claim that concurrent logic
languages are logical, reducing them to the status of ondinary
programming languages. Clauses lose the stams of inference
rules, becoming mere computation rules. As hinted at in [Co),
don’t care nondeterminism takes the L out of LP, redecing logic
programming to programming. The committed-choice inference
paradigm loses the status of a proof technigue and becomes a

computational heuristic whose rules impose a rigid streciure on
both conceprualization and computation,

Don‘t-know nondeterminism provides & computational
model for logical inference, while don't-care nondeterminism
models incremental, reactive computation, but sacrifices logical
inference, Reactive systems are open systems in the sense that
they may react to stimuli from the environment by returming
results and changing their intemal state, Objects are a prime
example of reactive systems, responding interactively o mes-
sages they receive. The inability of don't-know nondeterminism
to handle reactiveness i5 a serious weakness of both logic pro-
grams and deductive reasoning. The fundamental reason for this
is the inability of inference systems to commit themselves 1o
ingremental cutput,

While pure logic programming is incompatible with reac-
trveness it is definitely compatible with concurrency. The com-
ponents of logical expressions may be concurrenily evaluaied,
Universal and exisiendial gquamification, which is simply
transfinite conjunction and disjuncticn, can be approximated by
concurrent evaluation of components. Reactiveness is orthogo-
nal to concurrency in the sense thal concurment nonreactve sys-
tems for very fast computations are commonplace, while sequen-
tial object-Dased systems are reactive but not NONCONCUITENL
However, reactive responsiveness is as important in large appli-
cations as concurrency. The identification of reactiveness and
concurrency as independent goals of system design marks a step
forward in our understanding of System requirements,

The process interpretation of concurrent logic programs
views goal atoms a5 processes and logic variables a5 streams.

The set of poals at any given point in the computation becomes a
dymamic network of processes that may be reconfigured during
every goal-reduction step. Every concarrent logic program has a
process inlerpretation, but concurrent object-oricnted application
programs cannot be directly mapped into concurrent logic pro-
grams. Thus concurrent logic programs are less cxpressive than
object-oriented programs in the sensc of [Sh1]. Logical
processes have no local state; they are atomic predicates whose
granularity cannot be adapted to the granularity of objects in the
application domain. Concurnent logic programs give up their
claim to be logical withour gaining the communication and com-
putation Aexibility of wraditional concurrent languages.

#. Are Multiparadigm Logic/Object Systems Possible?

Can the object-based and logic programming paradigms be
combined to capture both the decomposition and abstraction
power of objects and the regsoning power of logic? Expericnce
suggests that logic is mot by isell a sufficient mechanism for
problem solving and that combining logical and nonlogical para-
digms of problem solving is far harder than one might expect.
Logic plays a greater role in verifying the corectness of
programs than in their development and evolution. Finding a
solution to & problem is less traciable than verifying the cormect-
ness or adeguacy of an already given solulion. For example,
solutions of problems in NP can be verified in polynomial time
but appear 1o require exponential time to find. Verification and
validation is generally performed separately after a program {or
physical engineering struciure) has been constructed.

The logic and object paradigms have different conceptual
and compuiational models. Logic programs have a clausal infer-
ence structure for ressoning about facts in a database, while
object-based programs computz by message passing among
heterogeneous, loosely-coupled software compenents. Logical
reasoning is top-down (from goals to subgoals), while object-
based desipgn is bottom-up (from objects of the domain).
Ohject-based programs lend themsehves 1o development and evo-
lution by incremental program changes that directly cormespond
to incremental changes of the modeled world. Inference rules
provide less scope for incremental descriptive evolution, since
rules for reasoning are not as amenable o change as object
descriptions.

1ICOT's choice of logic programming as the vehicle for
future computing contrasts with the US Department of Defense's
choice of Ada. Because Ada was designed in the 1970s, when
the technolegy of concurrent and distributed software com-
ponents was stll in 2 primitive state, it has design flaws in its
module architecrure, But its goals are squarely in the object-
oriented tradition of model building based on abstraction.

" During the past 15 years we have accumulated much
experience in designing object-orented, distributed, and
knowledge-based systems. The intematicnal computing com-
munity may well be ready for a major atiempt 1o synthesize this
expericnce in developing a standard architecture for distributed,
intellipent problem solving in the 215t century. Such an archi-
tecture would be closer 1o the ohject-oriented than o the logic
programming tradition,

"Mext-generation computing architectures should ry to syn-
thesize the logic and obiect-oriented traditions, creating a mul-
tiparadigm environment 1o support the cooperative use of both
ghstraction and inference paradigms. For example, an object’s
operations could in principle be implemented as logic programs,
though the uwse of Prolog as an implementation langeage for
object interfaces presents some technological problems. Perhaps
technological progress in the 21st centry will resolve these
problems 50 that multiparadigm environments can be developed

229

facilitating the cooperative application of both abstraction and
inference paradigms.

Problem solving is a social process that involves coopera-
tion among people, especially for large projects with a long life
cycle, Decomposition of a problem into object abstractions is
important both for cooperative software development and for
incremental maintenance and enhancement. While object-
oriented problem representation is not uniformly optimal for all
problems, it does provide a robust framework for cooperative
ingremental software evelution for & much larger class of prob-
Iems than logical representation,

The early optimism that artificial intelligence could be
realized by a general problem solver pave way in the 19605 o an
appreciation of the importance of domain-dependent knowledge
representation. The debate concemning declarative versus pro-
cedural knowledge representation was resolved in the 1970s in
favor of predicaie calculus declarative representation, Al fext-
books of the 19805 [CM, GN] advocate the predicate caloulus as
& umiversal framework for knowledge representation, with
domain-dependent behavior modeled by nonlogical predicate
symhols satisfying nonlogical axioms.

The logic and network approaches to Al have competed for
research funds since the 19505 [Gr], with the logic-based symbol
system hypothesis dominating in the 1960s and 1970s and distri-
buted pattern matching and connectionist [eaming networks stag-
ing a comeback in the late 19808 [RM]. The idea that intelli-
pence evolves throwgh leaming is an appealing altemative o the
wiew that intelligence is determined by logic, bul attempts to
realiee nontrivial mtelligence by Jeaming have proved comhbina-
torially intractable. Distributed artificial intelligence rescarch
[BC) and Minsky's The Society of Mind [Min], view problem
solving as a cooperative activity among distributed agents very
much in the spirit of object-orented programming. Ascribing
mental qualities like beliefs, intentions, and consclousness o
agents i5 likewise cnmp.nﬁhle'wim the object-oriented approach,

9. References

[BG] A. H. Bond and L. Gasser, Readings in Disiributed
Artificial Tntelligence, Morgan-FKaufman [958,

[Co] J. Cohen, Introductory remarks for the special CACM issue
on logic programming, CACM, March 1992

[CM] E. Chamiak and D. McDermaott, frtroduction to Artificial
Intelligence, Addison-Wesley 1984

[GI] M. R. Garey and D. 5. Johnson, Computers and Infractabil-
iry: A Guide 1o the Theory of NP-Completeness, Freeman 1978,
[GN] M. E. Genesereth and N. J. Milson, Logical Foundations of
Artificial Imtelligence, Morgan-Kaufmann 1987.

[Gr] The Artificial Intelligence Debate, Bditor Stephen Graubard,
MIT Press 1988

[Me] Bertrand Meyer, Object-Oriented Software Construction,
Prentice-Hall Intemnational 1988,

[Min] Marvin Mingky, The Socfery of Mind, Simon and Schuster,
1987

[EM] D E. Rumethart and 1. L. McLelland, Paraife! Distributed
Frocesses, MIT Press 1986,

[Shl] E. Shapiro, Separating Concurrent Languages with
Categories of Lanpuage Embeddings, TR C3591-05, Weizmann
Institute, March 1991

[3h2] E. Shapiro, The Family of Concurrent Programming
Languages, Computing Swrveys, Sepember 1989

