PROCEEDINGS OF THE INTERMNATIONAL CONFERENCE
OM FIFTH GEMERATION COMPUTER SYSTEMS 1992,
edited by 1COT. @ 1COT, 1992

405

A Parallel Cooperation Model for Natural Language Processing

Shigeichiro Yamasaki, Michiko Turuta, Tkuko Nagasawa, Kenji Sugiyama

Fujitsu LTD,
1015, Kamikodanaka Nakahara-Ku, Kawasaki 211, Japan

Abstract

This paper describes the result of a study of a natural
langnage processing tool called “Laputa®, which is based
on parallel processing. This study was done as a part of
the 5ih generation computer project. The purpose of
this study is to develop a software technology which in-
tegrates every part of natural language processing: mor-
phological analysis, syntactic analysis, semantic analysis
and so on, to make the best use of the special features
of the Parallel Inference Machine.

To accomplish this purpose, we propose a parallel co-
operation model for natural language processing that
is constructed from a common processor which per-
forme every sub-process of natural language process-
ing in the same way. As a framework for such a
common processor, we adopt a type inference system
of record-like type structures similar to Hassan Ait-
Kaci's psi-term [Ait-Kaci 86], Gert Smolka's sorted fea-
ture logic [Smolka 88] or Yasukawa and Yokota's object-
tem [Yasukawa 90].

We found that we can wtilize parallel parsing algo-
rithms and their spesd-up technology to comstruct our
type inference system, and we then built a type infer-
ence system using an algorithm similar to a context-free
chart parser. As a resull of experimentation to evaluate
the performance of our system on Multi-PSI, the simula-
tor of the Parallel Inference Machine, we have been able
to achieve a speed-up of a factor 13 when utilizing 32
processors of Multi-PSI.

1 Introduction

With the advance of semiconductor technologies, com-
puters can be made smaller and cheaper, so that we
can increase the value of a computer by giving it multi-
processor abilities. However, the software application
technology for a parallel machine is still at an unsatis-
factory level except for some special cases.

The Parallel Inference Machine which is being devel-
oped in the 5th generation computer project has some
special features such as an auntomatic synchronization
mechanism and a logic programming language allowing

declarative mterpretations.

Such features make complicated parallel processing
tasks, that used to be practically impossible, possible
to realize. Knowledge Information Processing is one such
application which needs lots of computational power and
consists of very complicated problems, but we expect
that the Parallel Inference Machine will make these prob-
lems amenable to parallel processing. The purpose of
this study is to propose a parallel cooperation model
which makes natural language processing more natural
by making use of the parallel inference machine features,

In this paper, we will discuss the schema of the parallel
cooperation model, as well as its realization and show
the experiment results of the model capacity evaluations
on the Multi-PSI, the simulator of the parallel inference
machine.

2 Parallel cooperation model

The advantages of using the Parallel Inference Machine
lie not only in the processing speed, but also in the prob-
lem solving techniques. We were able to find more nat-
ural ways of solving a problem by locking at it from the
parallel processing point of view.

In recent years, system integration has often been sug-
gested in the field of natural language processing. This
involves the integration of morphological analysis, syn-
tactic analysis, semantic analysis and speech recognition,
and the integration of analysis and generation. The tm-
plication is that the various natural processing mecha-
nisms at every stage must be linked to each other in
order to understand natural language entirely. [Hishida
91]

As the basis of this way of thinking, it is emphasized
that our information processing has been carried out un-
der “partialness of information”, in other words, incom-
pleteness of information. From the above, we can derive
that a system which aims at integrating natural language
processing could adopt parallel processing because it dis-
regards the processing sequence,

We adopted a mechanism which integrates all natural
langnage analysis processing stages and makes them co-
operate in parallel as the fundamental processing model,

406

Also we have added a priority process as an extension, in
order to improve the processing efficiency. This priority
process is the combination of both load balance and the
parallel priority control. We call this process ‘competi-
tion' and we call the extended parallel cooperation model
the “model of cooperation and competition”. However,
we shall not discuss 'competition® in this paper.

3 Realization of automatic par-
allel cooperation

It is well known that the integration of natural language
processing and parailel cooperation is a natural model.
However, very few systems based on this model are re-
ported to have been actnally buili. One of the main
problems has been modularity.

Various research projects in natural language process-
ing have been achieving good results in the fields of
morphological analysis and syntactic analysis. However,
these systems were designed as independent modules and
very often their interfaces are very restricted and inter-
nal information is normally invisible from the outside.
To carry out efficient parallel cooperation, all processes
must be able to exchange all of their information with
each other. Therefore construction of methods of infor-
mation exchange between the varions modules and the
control of these exchanges will be serious and compli-
cated problems.

One way to solve this problem is to make an abstrae-
tion of the processing framework, so that analysis phases
such as morphological analysis, syntactic analysis etc.
are carried out by one single processing mechanism. One
such approach is Hashida's Constraint Transformation
[Hasida 90]. We have adopted an approach similar to
that of among others Hashida, in the sense that all levels
of processing are carried out by one and the same pro-
cessing mechanism. Our processing framework, however,
does not utilize Constraint Transformation, but rather
Type Inferencing with respect to record-like type struc-
tures, which is comparable to Hassan Ait-Kaci’s LOGIN
, Gert Smolka's Feature Logic, or the Object Terms in
Yasukawa and Yokota's QUIXOTE.

In our system, the usage of type inferencing can be
seen to have two aspects: it works as a framework for
analysis processing as well as for cooperation. Analysis
processing employs a vertical kind of type judgment, as
exemplified by.the cooperation between marphological
analysis and syntactic analysis. In morphological anal-
yeis characters are comsidered to be objects, and mor-
phemes are to be taken as types; but when we perform
synfactic analysis, morphemes are considered to be ob-
jects.

The usage of type inferencing as a framework for coop-
eration, the second aspect of this usage mentioned above,
is as a means for exchanging information between objects

and types and for structuring the contents of this infor-
mation. Here both objects and types are represented
as typed record structures containing shared or com-
mon variables, and information exchange is implemented
through the unification of shared variables in two typed
record structures representing an cbject and a type.

This nnification mechanism of typed record structures
has a mechanism to judge the types of objects that are
instantiated to field elements through communication,
and this is what was called the vertical type judgment
mechanism.

Parallel cooperation between syntactic and semantic
processing is expressed through the unification mecha-
nism of typed record structures,

Even if we treat all phases of natural language pro-
cessing as similar in kind, it is still natural, for the sake
of ease of grammar development and debugging, to do
the development of the distinct processing phases sepa-
rately. For this reason, we have structured our system so
that concept organization rules for morpholagical, syn-
tactic and-semantic processing can be developed sepa-
rately, Parallel cooperation is then realized automati-
cally by merging these diverse rules and definitions.

4 The realization of parallel
analysis processing

4.1 Type judgment mechanism

Efficient algorithms exist for morphelogical and syntactic
processing, and we cannot afford to ignore such knowl-
edge in developing a practical system, even in the case of
an integrated natural language processing system. Luck-
ily we have found that there is a strict correspondence
between our vertical type judgment and known syntactic
analysis methods. Matsumoto’s parallel syntactic analy-
sis system PAX [Matsumoto 86] performs syntactic pro-
cessing in parallel through a method called the “layered
stream method”, which is an efficient processing mech-
anism for search problems involving parallel logic pro-
gramming languages.

PAX employs what is basically a chart parsing algo-
rithm. Our vertical type judgment processing formalism
involves a reversal of the relationship between process
and communication data in PAX. A syntactic analysis
system using a similar processing method to ours is be-
ing considered by Icot's Taki [Sato 90]. Whereas PAX
is strongly concerned with the clause indexing mecha-
nism of logic programming languages, our method con-
centrates on increasing OR-parallellism and reducing the
amount of data communication in parallel execution.

How we interpret phrase structure rules, using the type
ordering relation “<" and type variables, is shown below.

8 <= np,Tp

This is rewritten based on the rightmoest element as fol-
lows.

vp < (np -> B)

Here the .ordering relation “<" expresses
a superordinate-subordinate relationship between types,
Intuitively this means that the object that Is judged to
be a subordinate type can also be judged to be a super-
ordinate type. It follows that the meaning of this rule is
that the object that can be judged to be the vp, can also
be judged to be a function of type np to s,

g8 <= advp,np,vp

In a case like this one, we embed functions to produce
the following.

vp < {np => (advp =-> s))

When there are several possibilities, this is expressed in
a direct sum format as follows.

vp < (op =» ((advp -> 8) + 8))

The dictionary is a collection of type declarations as fol-
lows.

{in,the,end) :advp
love:np
wing:vp

Analysis is executed as a process of type judgment of a
word string. In other words, analysis iz the execution
of the judgment of a type assignment such as the one
below,

{in,the,end,love,wing) ;&

The execution is bottom-up. First the type of every word
is looked up among the type declarations. The words
then send these type judgments to their right adjacent
element. If these types again have superordinate types,
then they are treated as follows.

If the superordinate type is function, then a process
ie generated which checks the possibility that the typed
object received from the left is appropriate, If it is not a
function (in which case it is atomic), then this type judg-
ment formula is sent to the right adjacent element, and
also it is checked whether it has a superordinate type.
When the result of a superordinate type or function ap-
propriateness is a direct sum, then this result is handled
in OR-parallel form. Repeating this kind of processing
over and over, we get as answers all the combinations of
elements from the leftmost to the rightmost that satisfy
g,

Oune of the special features of this processing formal-
ism is that, when sending an object of atomic type, the
pointer to the ‘position of the leftmost of the elements
that make up this object is sent along as the “exit of

407

communication path”. Hereby the partial tree that is
constructed upon reception of this object in fact is ca-
pable of including all atomie-type objects that are stroc-
tured to the left of the received object. If we translate
this to structure sharing in sequential computation, we
see that we can avoid unnecessarily repeating the same
computation while retaining the computational efficiency
of a chart parsing algorithm for context-free grammars.

Below we give the KL1 program for the fundamental
part of vertical type judgment. Note however that the
notation we have used above is transformed to KL1 no-
tation, in the manner explained directly below.

direct sum
type+, ..., +type ==> [type,...,type)
type declaration
object:type ==> type(object,T} :-
true| T=typa.
type ordering
type < type ==* upper(type,T) :-
true| T=type.
input format
{in,the,end,love,wins) :s

==>judgment{[in,the,end, love,wins) ,s,R).

Note: R will contain the result of computation

Also we use " for the operator that comstructs the
pair of the sending atomic type and the stream, and the
atom “Leftmost” as an identifier for the leftmost position
of the input.

judgment{0bjects,Type, Result} :- true|
objects(0bjects, 'Leftmost? ,B),
judged_as(R,Type,Result).

objects([],L,R} :- true|Ll=R.

objects([Word|Z].L,R) :- true|
typa(Word, Type) ,
sun_type(Type,L,R1},
objects(Z, [Word |B1] ,R).

sum_typa([],L,R)} :- true|L=R.

sum_typel[Eype -> Type2l|Z],L,R} :- truel|
function_type(Type ->Type2,L,R1),
sum_type(Z,L,R2),
merge{{R1,R2},R).

otherwise.

eum_type([TypelZ],L,R) :- true|
atomic_type(Type.L,R1),
sum_type(Z,L,R2),
merge ({81 ,R2},R).

function_type(Type -»> TypeZ,[],R) :-
true|R=[] .

function_type(Type -> Type2, 'Leftmost’,R) :-
true|R=[].

function_type{Type-> TypeZ, [Type *L1|L]1,R) :-

408

true|
gum_type (Type2,L1,R1},
function_type(Type -> Typel,L,R2),
merge({R1,82},R).

othervise.

function_type(Type -> TypeZ2, [_|L],R) :-
true|
function_type(Type -> Type2,L.R).

atomic_type(Type,L,R) :-
true|
upper(Type, Upper_Type),
R=[Type*L|R1],
sum_type(Upper_Type,L,R1),

judged_as([],Type,Result) :-
true[Result=[1.
judged_as([Type+'Leftmost’|L] ,Type,Result) :-
true|
Result=[Type K],
judged_as(L,Type,R).
othervwise.
judged_as([_|L],Type,Result) :- true|
judged_as(L,Type,Result),

% Example of dictionary:

type({love ,Type) :- true|
Type=[np] .
type(wins,Type) :- truel
Type=[vp] .
typelend,Type) :- true|
Type=[the ~-> [in -> [advpl]].

% Example of grammar:

uppex (vp,Upper_Type) :- true|
Upper_Type=[np -> [advp -> [a], 2]].

4.2 Unification mechanismm of the

record-like type structure

A record-like type structure is a pair of a sort symbol
and a description. A sort symbol denotes the sort to
which the type belongs. A description is 2 so-called
record structure formed by pairs of feature names and
their values. The feature value is also a description or
an object. However a description s unlike an ordinary
record structure in that its feature and value pairs are not
always apparent. Indeed, the purpose of this structure
is to obtain incremental precision from partial informa-
tion, just like the feature structures used in unification
grammar formalisms such as LFG.

In systems like Ait-Kaci's psi-term, Smolka's sorted
feature structure or Yasukawa & Yokota's object term,
the value of a feature is also a record-like type struc-

ture. However in our system, a value of a feature is not
a record-like type structure but a description and only
the terminal nodes of a feature structure tree are typed
objects. This is to improve the efficiency of calculation.

In our system an object is represented as a pair of
a record-like fype structure and an identifier of the ob-
ject. The value of a feature can be a variable, However
the unification of descriptions invalves merging feature
struciures rather than instantiating variables.

Variables of feature value play the role of a tag for the
merging peint in feature unification. In our system such
variables also play the role of communication pass to ex-
change information for our parallel cooperation. Some-
times a variable can be assigned a type. When a variable
is assigned a type such a typed variable must be instan-
tiaied by an object.

Below we give an example of a record-like type struc-
ture,

{human, [parents=[father={human,211, [name=taroc]},

mother=X:{human, [1}]17}

This example shows a type which is sorted “human” and
satisfies some constraints as a description. The descrip-
tion has a feature “parents” and the value of the feature
is also a description that contains the feature of “father
and feature of “mother”. The value of the feature “fa-
ther" is an object that is of sort “human” and named
“taro” and its object identifier is “211". The value of
feature “mother” is a typed variable. The type of ihe
variable ie sorted “human® and its description has no
information. g

The unification mechanism for the record-like type
structure is realized as the addition of information to the
fable of the pairs of the tag and the structure to which
the tag referred. The unification process is the merging
process to construct the details of the record-like type
structure. When the typed variable is instantiated by an
object, the fype judgment process is invoked.

This i= in conereto how our parallel cooperation mech-
anism for semantic analysis and syntactic analysis works.

4.2.1 Parallel cooperation and record-like type
structure

A iype can be seen as a program which can process an
object. Thisimplies that there is a close relation between
merging of information using record-like type structures
on the one hand, and the “living link” between objects
or programs on the other. As an example, imagine that
a graph object which was created by a spread sheet pro-
gram is passed on to an object which is a word processor
document. If we want such a graph object to be a “Tiv-
ing" object, re-computable by the creator program, then
it must be annotated by its creator as a data type in the
record structure of the word processor document. Now

when the data is re-computed, the system will invoke
its creator application program automatically. The type
theory of record-like type structures can be viewed as a
framework for this kind of cooperation of different appli-
cation programa.

Laputa's principle of automatic parallel cooperation
is a parallel version of this “live linking". Vertical type
judgment of morphological analysis and syntactic analy-
gis is an application program in this sense.

We can extend this live linking even further by using
variables that are shared between objects and types, so
that we can propagate information to objects within ob-
jects. For example, if a graph object from a spread shest
is pasted to & word processor document, and some of
the data within the graph is shared with a part of the
document text, then re-computation of the spread sheet
program will happen when that part of the document
text is modified. In our system, such re-computation is
realized by communication of processes.

5 The grammar and lexicon for
parallel cooperation

In this section we explain the syntax and description
method for the grammar and lexicon for our aystem.
Grammar rules and lexical items are described as a type
definition or an ordinal relation of types. Our paral-
lel processing mechanism treats morphelogical data and
syntactic data in a uniform way. However it is not effi-
cient to use exactly the same algorithm for morphological
processing as for syntactic processing, becaunse morpho-
logical processing examines only immediately adjacent
items and therefore does not need context-free grammar.
Our processing mechanism treats characters and mor-
phemes in a slightly different way. For this reason char-
acters and morphemes are distingnished as data types.
Another, more essential reason for this is the problem
posed by morphemes that consist of only one character.
If there is no difference between a character and a mor-
pheme, then our type judgement process will never be
able to stop.

5.1 Some examples of grammatical and
lexical description

5.1.1 Dynamic determination of semantic rela-
tion of subject and objeci

The semantic categories of snbject and object are not
determined only by the verb with which they belong, In
many, if not most cases, the adequacy of the semantic
category of the object changes according to the subject.
Because of this, the required semantic categories of sub-
ject and object should not be fixed in the lexical descrip-
tion of the verb.

409

The example grammar rules below show how the ade-
quacy of the semantic category of the grammatical object
can vary dynamically depending on the subject.

{up, [sem=0b]} < ({vt,VT} ->» {vp,VT=[obj=0b]})
{vp.VP} < ({np,[sem=Agl} -> {=.VP=[agent=Ag]})

In this example the first grammar rule shows that the
superordinate type of the type “np” is a function of type
Ypi— > wp". This rule means that an object which
is judged as the type “np” is also a function which, if
applied to an object of type “vi”, results in an object
of type “vp". In this rule every description of "wt* is
merged fo “vp" and the value of the feature “sem” of
“pp" is unified with the value of feature “obj" of the
type “vp”.

The next grammar rule means that an object of type
“vp” i also a funetion of type “np— > #°. This rule
means that the value of the feature “sem™ of subject
“np" iz unified with the value of the feature “agent” of
P’

Now we also show some lexicon entries to go with these
rules.

eats:{vt, [agent=Ag:{animal, [eat_obj=0b]},obj=0b]}
john:{np, [sem={human, Id, [name=*John’1}1}
the_tiger :{np,[sem={tiger,Id,[1}1}

In the lexicon the object “eats” has type “vt" and com-
plex description. In the description the value of the fea-
ture “agent” is a typed variable and the type of the vari-
able is sorted “animal” and the value of the feature of
“gat-obj" is unified with the value of the feature of “obj”
of type "vp".

The rules specifying semantic categories look as fol-
lows,

{tiger,[1} < {animal, [eat_obj=E:{animal,[}}]}
{human, [1} < {animal, [eat_obji=E:{food, [J}1}

These rules mean that a tiger is an animal which eats
animals and a human is an animal which eats food, re-
spectively.

Althongh under these rules of grammar, lesxicon and
semantic categories 'john' and ‘the tiger' are both ani-
malg, the judgment (the tiger.eatsjohn):s succeeds but
(john,eats,the_tiger):s fails, because John is 2 human and
a human is an animal which eats food but a tiger can-
not be judged as food from the rules governing semantic
categories,

5.1.2 Subcategorization

The next example is the lexical entry for the Japanese
verb "hanasu” (to speak). This verb is subcategorized by
3 “np"s which are marked for case by the particles “ga”,
Ywo" and “ni”.

410

hanasu:{vp, [subcat=Case:{ga,wo,ni},
predicate=[ga=[gram_rel=subj,
sem=0],
wo=[gram_rel=comp,
sem=W] ,
ni=[gram_rel=obj,
sam=N],
gem=[rel=speak,
agent=G:{human, []},
object=N:{human, [1},
topic=W:{event, [1}111}.

In addition to the above, suppose that we also have the
following lexical entries and grammar rules.

ga:{noun,N} -> {np,N=[case_marker=ga]}
ni:{noun,N} -> {np,N=[case_marker=no]}
wo:{noun,H} =» {np,N=[case_marker=wol}

{vp ,VP=[=ubcat=Case:SUE]} <
{np, [case_marker=Case]} ->
{vp,VP=[subcat=New:SUB-{Case}]}

In that case the type judgments for the sentences below
will be successful.

(john,ga,mary,ni,anckoto,wo,hanasu) : {vp, (1}
(mary,ni,anckoto,¥o,john,ga,hanasu) : {vp, [1}

5.1.3 Example of the conceptual system rules

The conceptual system rules are sets of rules which de-
termine superordinate and subordinate relations of con-
cepts. The semantic analysis of Laputa uses these con-
ceptual rules when it performs semantic judgemant.

{object,[1} < {’Top’, [1}

{event, [1} < {*Top’,[1}
{concrete-object, (1} < {object,[]}
{creature,[1} ¢ |concrete-object,[1}
{human, [} < {creature,[]1}

{student, [1} < {human, [1}

6 An experiment using Laputa

6.1 Conditions of the experiment
computer Multi-PSI 32PE construction
08 PIMOS 3.0.1

The size of the grammar and dictionary
grammar rules 631

words 14,613
morphemes 8,268
concepts 770

We used the syntactic grammar and morphological
grammar which were developed by Sanc of ICOT's

6th Laboratory [Sano 91). We made the concep-
tual sysiem rules in accordance with the concepiual
system of the Japan Electronic Dictionary Research
Institute EDR.

The experiment We used 22 test sentences and exam-
ined 3 types of cooperation pattern: (1) syntactic
analysis only, (2) cooperation of morphalogical anal-
ysis and syntactic analysis, and (3) cooperation of
morphological analysie, syntactic analysis and se-
mantic analysis.

‘We checked the relation between the number of pro-
cesgor elements utilized and the number of reduc-
tions and processing time for each of these 3 cases,

All the tests have been performed three times, and
the measurements given here are the averages com-
puted from these three processing runs.

Example of analysis result To indicate the level of
processing of this experiment, I will show the result
of analysis of a example sentence.

Example sentence

MEA e PR B
(He inherited his father's business.)
Analysis result

vp(1l,[subcat=BUB:[],

infl=m_ga,
predicate=|
lex=#,
soa=[ga=[sen={man,1, []},
gram_rel=subj],
wo=[sem={job,6,
[of_type={man,2, [1}1},
gram_rel=comp] ,
sem={tugu,§,
[agent={=man,1, 1},
object={job,6,
[of_type=
{man, 2, [1}¥1}1}
tenseless=action],
polarity_of_soa=true,
judgment=affirmation,
aspect=not_continuous],
mood=finished,
recognition=[modality=descriptive,
acceptance=affirmative]l)

6.2 Outcome of the experiment

The the following graph shows, for the analysis of ex-
ample sentence 12, how the speed-up ratic changes as
the number of processors is increased frem 1 to 32.

40
o 30 1
B
S 20
o
4
" 10 -
G—I
0 40
prOCESSOrS
= imaginary
== morph+Syf+5am
gy MOph-+syn

—o— syn

Figure 1: Example 12 processors and speed up ratio

The behavior of the cooperative process of morphologi-
cal, syntactic and semantic analysie is almost identical to
that of syntactic analysis alone, while the cooperation of
just morphological and syntactic analysis shows a much
better speed up ratio relatively. This might lead one to
think that cooperation of just morphological and syntac-
tic analysis makes for a better speed-up ratio. However
examples involving a greater amount of calenlation do
not show this difference. Figure 2 is the result of the
analysis experiment on example sentence 14,

This graph show that all three types of cooperation
have the same speed-up ratio, which is a different result
than that we dedueed from example sentence 12,

We can interpret this difference as resulting from a dif-
ference in the amount of caleulation. Both the syntax-
only calculation and ihe cooperative syntactic and mor-
phological analysis process for example sentence 12 sim-
ply do not involve emough computation to fully show
the potential speed-up ratio. Sentence 14, on the other
hand, requires enough computation for any of the three
types of cooperation, so that we can more clearly see the
speed-up ratio,

To verify this assumption, we plot the speed-up ratio
against the amount of calculation for the three types of
cooperation. As the graph shows, all three cooperation
types show similar behavior for this relation. We can
understand why this is so if we recall that in our system,
all modes of processing employ the same basic processing
mechanism.

In the graph, we can see that the speed-up ratio rises
steeply while the number of reductions remains small,
but gradually becomes saturated as the number of re-
ductiong grows.

411

40

30 1
2
-
g 20-
g
o
& 104

0+ T o T v T N
0 10 20 30 40
processors
— imaglnary

—— morph+Syn+sem
e mOrph+Syn
—o— gyn

Figure 2: Example 14 processors and speed up ratio

In the bar graph of Figure 4, we can see that the
number of reductions for sentence 12 in the case of co-
operative morphological and syntactic analysis is about
1,200,000, while in the other two cases it is about half
as much (appreximately 600,000). Because the number
of reduwctions as a whole is small, this difference i= im-
portant. Example 14 on the other hand involves encugh
computation so that the effect is minimized and the sim-
ilarities befween the processing modalities are allowed to
come out.

7 Conclusion

In this paper, we proposed a model for integrated natn-
ral langunage processing on & parallel inference machine,
This model is realized by choosing similar processing
schemes for morphological, syntactic and semantic anal-
yeis and having these cooperate in parallel.

Also, we have carried out an experiment to evaluate
the practicality of our processing model.

As the result of our experiment we have been able to
realize speed-up to a factor of about 13 when utilizing
32 processor elements.

The results also showed that the speed-up ratio is de-
termined only by the amount of computation, and is not
influenced by the configuration of cooperating analysis
processes,

If our processing model is to be practical as a method
for a real parallel inference machine, the object of analy-
sis should require a great amount of calculation becanse
when the amount of caleulation is low we can not expect
a satisfactory speed-up ratio.

We think that our processing model has the potential

412

0 — T T T T | —
Oe+0 2e+B de+6 Ge+B Be+d o7
reductions
—=— moph+syn+sem
T morphasyn

—e— g

Figure 3: reductions and speed-up ratio

to be a practical technolegy for natural language pro-
cessing, and that it can help increass the amount of co-
aperation with fields like pragmatics, speech recognition
and the utilization of world knowledge.

Acknowledgments

We would like to thank Yuuichi Tanaka, Hirashi Sano
and other members of 6th laboratory of ICOT.

We were supporfed by Hiresi Onodera, Naoto Hirota,
Yoshiko Kamimura and other members of Fujitsu-FIP
Litd in our experiments,

We are alsc grateful to Eric Visser for his support in
finalizing this paper,

References

[Martin-L5f 84] Per Martin-Léf : Intuitionistic Type
Theory, Studies in Proof Theory, Lecture
Notes, 1084,

[Aft-Kaci 86] Hassan Ait-Kaci and Roger Nasr, LOGIN:
A Logic Programming Language with Built-
in Inheritance, The Journal of LOGIC PRO-
GRAMMING, Vol. 3, No. 3, Oct. 1986.

[Schmidt-Schauss 89] M. Schmidt-Schaufi, Computa-
tional Aspects of an Order-Sorted Logic
with Term Declarations, Lecture Notes
in Artificial Intelligence, Springer-Verlag,
1980,

Exampleld

Examplai2
Exampla santence
| morphs syn+sam

E morph+syn
B sn

Figure 4: cooperation case and reductions

[Smolka. 88] Gert Smolka, A Feature Logic with Sub-
sorts, IBM Dentschland, Stuttgart, West
Germany, LILOG Report 33, May 1988,

[Vasukawa 90] Hideki Yasukawa, Kazumasa Yokota,
The Overview of a Knowledge Representa-
tion Language Quixote, ICOT (draft}, Oct.
21, 1990.

[Same 91) Sanc Hiroshi, User's Guide to SFTB, ICOT

(draft), Sep. 1991.

[Hasida 91] Koiti Hasida, Aspects of Integration in Nat-
ural Language Processing (In Japanese),
Japan BSoclety for Scfiware Science and
Technology, COMFUTER SOFTWARE,
Vol. 8, No. 6, Nov. 1891.

[Hasida 90] Koiti Hasida, Sentence Processing as Con-
straint Transformation, Proceedings of Oth
European Conference on Artificial Imtelli-
gence, 1990

[Matsumoto 86] Yuuji Matsumoto, A Parallel Pars-
ing System for Natural Language Analy-
sis, Proc. of 3rd Internatioanl Conference on
Logic Programming, London, 19886,

[Sato 90] Hiroyuki Sato, An improvement of a paral-

lel natural language analyzing system PAX

(In Japanese)), Proc. of KL1 Programming

Workshop 80, ICOT, Tokyo, 1990.

Appendix

Example sentences

Examplel Ao THD
{1 will get fat.}

ExampleZ FRiCFreHE A
(Do not connect bambos ta wood.)

Exampled A oITHE K
(He inherited his father's business.)

Exampled g oEiEE s A
(Daon't hang up the telephone in the middle of o conversa-
tion.)

Exampleb SHOE oDl Ll K=sTwik
[Today’s Nanakeo is fatter than before.)

Examplet BEMGHEERD AL »F 20 EEwn
(Turn off the fight when you leave the ronm.)

Example? #EMATNEEH -k LHHIC S TS
(Because | called and scolded him, it is progressing well.)

Examples ESn B rREN -l AR LE LS
i

{5he began to tell me that that was the reason why she eut

her hair.)

Esxampled WK T € i - AT kAR C b de bt
BoTEA
{When the train that ghe, whe was geing to “l'okyo, was on

started moving, snow hegan to fall.)

Examplel0 #HRELFELCWROICESwSHs TREET
hEkftaTokdalk
{Though | believed her, Manako didn’t return uneil the night
on purprase.)

Examplell oSECRERSEREHEok oiivdibo
bl R T
{Beeause only | expressed my opinion at that meeting, lator
at the company we had this kind of prohlem)

Examplel2 HHAEEIOEHbENbA—F 4 CMEEROE
RS FREELELTWE
{While waiting for the train, Nanako told him about the
friends that she would invite to the party.)

Exampleld #HOLHEEOTRERA~THEC RS Ty
YT I ETERORER RIS Tk
(First my father opened the package in guestion amd showed
it to him, and later we got & telephane call from & woman
fromm the Wingdean of Saudi Arabia.)

Exampleld #) awaofiKPFHdblaT ol TEHS
EHLEEELTWELTHC L ok
(A& 1 talked to my father while waiting for Nanako to come
home from school on Christmas Eve, i started snowing.)

Examplels 724V adeb o B LT lifefFa£nn
B ORRERRSH D 5
{Since he called that managing director 1 was telling you
about before from America, that wnecle will probably inherit
iy Tather's business.)

Examplelt #HEduEoFELEMwCrhdokno il
FHoTwEEFICHD - T Ol ER -k
(Since enly | hadn't solved that equation, my friends who
knew how to salve it helped e out and | snlved the prob-
bem.)

413

Examplel? HEOEIofBtMetwvidoihbMEN
P Tw I ESECEb s T EolE e TR
{Sin{'(‘ ﬂn]y 1 hadn't sclved that ﬂ]llnh‘inn, my Triends who
knew how to sobve it helped me out and 1 solved the problem
and went to hed.)

Examplels HE6T A 1D & il 30 L T A W E0T A
T b B DF AT O R RO 5
{Since the president called that managing director 1 was
telling you ahout before from America, that uwnele will proh-
ably tnhent my father’s hisiness.)

