PROCEEDMMNGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. @ 100T, 1992

13

Summary of the Parallel Inference Machine and
its Basic Software

Shunichi Uchida

Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan
uchida®icet.or. jp

Abstract

This paper aims ab a concise introduction to the PIM
and its basic software, including the overall frameworl
of the project. Now an FGCS prototype system is under
development. Ife core is called a parallel inference sys-
tem which includes a parallel inference machine, PIM,
and its operating system, PIMOS. The PIM includes
five hardware modules containing about 1,000 element
processors in total. On the pm]ld inference system,
there is a knowledge base management system {HBMS).
The PIMOS and KBMS make a software layer called a
basic software of the prototype systern. These systems
are already being run on the PIM. On these systems, a
higher-level software layer is being developed. It is called
a knowledge programming software. This is to be used
as & tool for more powerlul inference and knowledge pro-
cessing. It contains language processors for constraint
logic programming languages, parallel theorem provers
and natural language processing systems, Several experi-
mental application programs are also being developed for
both general evaluation of the PIM and the exploration
of new application fields for lkenowledge processing. These
achievements with the PIM and its basic software easily
surpass the research targels set up at the beginning of
the project.

1 Introduction

Since the fifth generation computer systems project
(FGCS) was started in June, 1982, 10 years have passed,
and the project is approaching its goal, This preject
assumed that “logic” was the theoretical backbone of
future knowledge information processing, and adapted
logic programming as the kernel programming language
of fifth generation computer systems. In addition to the
adaptation of logie programming, highly parallel process-
ing for symbolic computation was considered indispens.
able for implementing practical knowledge information
processing systems. Thus, the project aimed to create a
new computer technology combining knowledge process-

Knowledge and Symbol

Progessing Applications

and

Parallel Evaluation and
Knowledge Processing Benchmark Programs

stem
Karnel of FGCES S

Parallel Processing

Technlcal Framewark

4
[Knowledge Programming
i

P

ngon | Parallel 05 and KBMS
Culzols

Plmos P

Logle Programming
Language [L1

Parallel Inference Machine

P 1,000 PEs In total
{ Multi-P51 Bystam, 64 PEs })
..

Frototype System of FGCS

Figure 1: Framework of FGCS Project

ing with parallel processing using logic programming.

Now an FGCS prototype system is under develop-
ment, This system integrates the major research achieve-
ments of these 10 years go that they can be evaluated
and demonstrated. Its core is calied a parallel infer-
ence system which includes a parallel inference ma-
chine, PIM, and its operating system, PIMOS. The PIM
includes five hardware modules containing about 1,000
element. processors in total. It also includes a language
processor for a parallel logic language, KL1.

On the perallel inference system, there is a
knowledge base management system (KBMS).
The KBMS includes a database management system
(DBMS), Kappa-P, as its lower layer. The KBMS
provides a knowledge representation language, Quixote,

34

based on the deduetive {and) object-oriented database.
The PIMOS and KBMS make a software layer called a
basic software of the prototype system. These systems
are already being run on the PIM. The PIM and basic
software are now being used as a new research platform
for building experimental paralle] application programs.
They are the most complete of their kind in the waorld.

On this platform, a higher-level softwaze layer s baing
developed. This is to be used as a tool for more power-
ful inference and knowledge processing. It contains lan-
guage processors for consbraint logic programming lan-
guages, parallel theorem provers, natural language pro-
cessing systems, and so on. These software systems all
include the most advanced knowledge processing tech-
nigques, and are at the leading edge of advanced software
science,

Several experimental application programs aze also be-
ing developed for both general evaluation of the PIM
and the exploration of new application fields for knowl-
edge processing. These programs include a legal reason-
ing systern, genetic information processing systems, and
VLSI CAD systems. They are now operating on the
parallel inference system, and indicate that parallel pro-
cessing of knowledge processing applications is very of
fective in shortening processing time and in widening the
scope of applications. However, they also indicate that
more research should be made into parallel algorithms
and leed balancing methods for symbol and knowledge
processing. These achievements with the PIM and its
basic software easily surpass the research targets set up
at the beginning of the project.

This paper aims at a concise introduction to the PIM
and its basic software, including the overall framework
of the project. This project is the first Japanese na-
ticnal project that aimed at making a contribution to
world computer science and the promotion of interna-
tional collaboration. We have published our research
achievements wherever possible, and distributed various
programs from time to time. Through these activities,
we have also been given much advice and help which
was very valuable in helping us to attain our research
targeis. Thus, our achievements in the project are also
the results of our eellaboration with world researchers on
legic programming, parallel processing and many related
fields,

2 Research Targets and Plan

21 ScopeofR & D

The general target of the project is the development of
a new computer technology for knowledge information
processing.

. Having "mathematical logic" as ifs theoretical back-
bone, various research and development themes were e5-
tablished on seftware and hardware technologies focusing

on knowledge and symbol processing, These themes are
grouped into the following three categories:

2.1.1 Parallel inference system

The core portion of the project was the research and de-
velopment of the parallel inference system which contains
the PIM, a KL1 language processor, and the PIMOS. To
make the goal of the project clear, a FGCS prototype
system was considered a major target. This was to be
build by integrating many experimental hardware and
software components developed areund logic program-
ming.

The protolype system was defined as a paralle] infer-
ence system which is intended to have about 1,000 ele-
ment processors and attain more than 100M LIPS (Log-
ical Inference Per Second) as its execution speed. It was
also intended to have a parallel operating system, PL
MOS8, as part of the basic software which provides us
with an efficient parallel programming environment in
which we can easily develop various parallel application
programs for symbol and knowledge processing, and run
them efficiently. Thus, this is regarded as the develop-
ment of a super computer for symbol and knowledge pro-
cessing,

It was intended that overall research and development
activities would be concentrated so that the major re-
search results could be integrated into a final prototype
system, step by step, over the timespan allotted to the
project.
2.1.2 KBMS and knowledge programming soft-
ware

Themes in this category aimed to develop a basic soft-
ware technology and theory for knowledge processing,

» Knowledge representation and knowledge base man-
agement

» High-level problem sclving and inference software
» Natural language processing software

These research themes were intended to create new
theories and software technologies based on mathemat-
ical logic to describe various knowledge fragments
which are parts of “natural® knowledge bases pro-
duced in our social systems. We also intended to store
them in a computer system as components of “artifi-
cial” knowledge bases so that they can be used to
build various intelligent systems.

To describe the knowledge fragments, a knowledge rep-
resentation language has to be provided. It can be re-
garded as a very high-level programming language exe-
cuted by a sophisticated inference mechanism which s
much cleverer than the parallel inference system. Nat-
ural language processing research is intended to cover

35

Farallel VLSI-CAD Systems

Matural Language
Processing Syslems

Exparimenisl Applicetion Syslems

Legal Reasoning System
Genetic Information Processing Systems

Other parallel expert systems

onstraint Logic
Programming Systems

v Ee T '- g

Farallel OS5, PIMOS
KL1 Programming Env.

Parallel KEMSDBMS
Kappa-P + Quixole

Figure 2: Organization of Prototype System

research on knowledge representation methods and such
inference mechanisms, in addition to research on easy-
to-use man-machine interface functions, Experimental
software building for some of these research themes was
done on the sequential inference machines because the
level of research was so basic that computational power
was not the major problem,

2.1.3 Benchmarking and evaluation systems

¢ Benchmarking software for the parallel inference
system

v Experimental parallel application software

To carry out research on an element technology in com-
puter science, it is essential that an experimental soft-
ware sysiem is built. Typical example problems can then
be used fo evaluate theories or methods invented in the
progress of the research,

To establish general methods and technologies for
knowledge processing, experimental systems should be
developed for typical problems which need to process
knowledge fragments as sets of rules and facts,

These problems can be taken from enginesring sys-
tems, including machine design and the diagnosis of ma-
chine malfunction, or from social systems such as medical
care, government services, and company management.

Generally, the exploitation of computer technology for
knowledge processing is far behind that for scientific cal-
culation. Recent expert systems and machine translation
systems are examples of the most advanced knowledge
processing systems. Howsever, the numbers of rules and
facts in their knowledge bases are several hundreds on
average.

This scale of knowledge base may not be large enough
io evaluate the maximum power of parallel inference sys-
tem having about 1,000 element processors. Thus, re-
search and development on large-scale application sys-
tems 1s necessary not only for knowledge processing re-
search but also for the evaluation of the parallel infer-
ence system. Such application systems should be widely
locked for in many new fields.

The scope of research and development in this project
is very wide, however, the parallel inference system is
central to the whole project. It is a very clear research
target. Sofiware research and development should also
caver diverse areas in recent software technology. How-
ever, it has “logic” as the common backbone.

It was also intended that major research achievements
should be integrated into one prototype system. This has
made it possible for us to organize all of our research and
development in & coherent way, At the beginning of the
project, only the parallel inference machine was defined
as a target which was described very clearly. The other
research targets described above were not planned at the

36

beginning of the project, They have been added in the
middie of the intermediate stage or at the final stage.

2.2 Overall R & D plan

Alter three years of study and diseussions on determining
our major research fields and targets, the final research
and development plan was determined at the end of fiseal
1931 with the budget for the first fiscal year.

At that time, practical logic programming languages
had begun to be used in Europe mainly for natural lan-
guage processing. The [easibility and potential of logic
languages had not been recognized by many computer
scientisis. Thus, there was some concern that the level
of language wes too high to describe an operating sys-
tem, and that the overhead of executing logic programs
might be too large to use it for practical applications.
This implies that research on logic programming was in
its infancy.

Rescarch on parallel architectures linked with high-
level languages was alse in ils infancy. Research on
datallow architeciures was the most advancesd at that
Livne, Some dataflow avchitecture was thought to have
Lhe patential for knowledge and symbol processing, How-
vver, iLs [easibility for practical applications had not yet
e evaluated,

Muost of the elemenl lechnologies necessary to build the
core of the parallel inference system were still in their in-
fancy. We then tried Lo define a detailed research plan
step by step for the 10-year project period. We divided
Lhee D-year period into three stages, and defined the re-
search to be done in each stage as follows:

¢ Initial stage (3 years) :
-lesearch on poleatial element technologies
-Dhevelopment of research tocls

» Tntermediate stage {4 vears) :
-Firat seleciion ol major elemenl. iechnologics for fi-
nal targets
-Fsperimeatal bailding of medium-senle svitems

* Final stage (3 vears) :
-second selection of niajor element technologies for
linal targets
-Haperimental Buikling of & final full-scale system

At the beginning of the project, we made & detailed
research and developiment plan only for the initial stage.
We decided to make detailed plans for the intermediate
aed final stages a: the end of the stage before, so that
the plans would reflect the achievements of the previous
slage. The research budget and manpower were to be
decided depending on the achievements. It was likely
that the project would effectively be terminated at the
end of the initial stage or the intermediate stage.

3 Inference System in the Initial
Stage

3.1 Personal Sequential Inference Ma-
chine (PSI-T)

To actually build the parallel inference system, especially
a productive parallel programming environment which is
now provided by PIMOS, we needed to develop various
element technologies step by step to obtain hardware and
sofiware components. On the way toward this develop-
ment, the most promising methods and technologies had
fo be selected from among many alternatives, followed by
appropriate evaluation processes. To make this selection
reliable and successful, we tried to build experimental
systems which were as practical as possible.

In the initial stage, to evaluate the descriptive power
and execution speed of logic languages, & personal se-
quential machine, PSI, was developed. This was a logic
programming workstation. This development was also
aimed at obtaining & common research tool for software
development. The PS] was intended to attain an execu-
tion speed similar to DEC10 Prolog running on a DEC20
system, which was the fastest logic programming system
in the world.

To begin with, a PSI machine language, KLO, was de-
signed based on Prolog. Then a hardware systemn was de-
signed for the KL0. We employed tag architecture for the
hardware system, Then we designed a system descrip-
tion language, ESP, which is & logic language having a
¢lass and inheritance mechanisms to make program mod-
ules efficiently.[Chikayama 1984] ESP was used not only
to write the operating system for PSI, which is named
SIMPOS, but also to write many experimental software
systems for knowledge processing research.

The development of the PSI machine and SIMPOS was
successful. We were impressed by the very high software
productivity of the logic language. The execution speed
of the P51 was about 35K LIPS and exceeded its target.
However, we realized that we could improve its architec-
ture by using the optimizatien capability of a compiler
more effectively. We produced about 100 PSI machines
to distribute as a common research tool. This version of
the PEI is called PSI-1.

In conjunction with the development of PSI-I and
SIMPOS, research on parallel logic languages was ac-
tively pursued. In those days, pioneering efforts were
being made on parallel logic languages such as PAR-
LOG and Concurrent Prolog. [Clark and Gregory 1984],
[Shapiro 1983] We learned much from this picneering re-
search, and aimed to obtain a simpler language more
suited for a machine language for a parallel inference ma.
chine. Near the end of the initial stage, a new parallel
logic language, GHC was designed. [Ueda 1986)

37

Table 1: Development of Inference Systems

Esguantlal Inference Tech. Parallsi Inference Tech.
'82-'84 Sequential Logic Programming 11.
Initial Languages, [Kﬂ.% and E&fﬁ
stage pa ?amas]r&%reme Parallel Logic Programming]
il wuj@ﬁ mﬁ (Languages @HE and KL
'25-'88 Mew model of PSI, PSI'", Experimental Model of PIM, '
Inter- BIRLIPS fer KLY NIUI-PS] stem,
mediate| SMLIES /B4PES ez bl
Stage '1
" Parallel 05, PIMO2 and Small
Lkt Application Programs)
‘Ge-"92 .
Final '[e L T] Prototype of FGCS, Pii,
Stage . 2 1000 PEs total ,
AULIFS for KL 200ULIPS / 512PEs for (LY |
fedi
3.2 Effect of PSI development on the prototyping.

research plan
The experience gained in the development of PSI-I and
SIMPOS heavily affected the planning of the intermedi-
ate stage,

4.2.1 Efficiency in program production

Une of Lthe important questions related Lo logic language
was the feasibility of wiiting an operating system which
needs to describe fine detailed contrel mechanisms. An-
other was its applicability to writing large-scale pro-
grams. 3IMPOS development gave us answers to these
questions. The SIMPOS has a multi-window-based user
interface, and consists of more than 100,000 ESP pro-
gram lines. T was completed by a team of about 20
software rescarchers and engineers over about two years,
Most of the software engineers were not familiar with
logic languages at that time.

We found that logic languages have mmuch higher
productivity and maintainability than conventional von
Neumann languages. This was obvious enough to con-
vince us to describe a paraliel operating system also in a
logic language.

3.2.2 Execution performance

The PSI-I hardware and firmware attained about 351
LIPS, This execution speed was sufficient for most knowl-
edge processing applications. The PSI bad an 80 MB
main memaory, It was a, very big memory compared to
mainframe computers at that time. We found that this
large memory 2nd fast execution speed made a logic lan-
guage & practical and highly productive tool for sofiware

The implementation of the PSL-I hardware reguired
11 printed cireuit boards. As the amounti of hardwarc
became clear, we established that we could obtain an
element processor for a parallel machine if we used V1L5]
chips for implementation.

For the KLO language processor which was imple-
mented in the firmware, we estimated that better op-
timization of object code made by the compiler would
preatly improve execution speed. (Later, thiz op-
timization was made by infroducing of Lhe “WAM"
code, [Warren 1983])

The PSI1 and SIMPOS proved that logic languages
are a very practical and productive velicle for comples
knowledge processing applications.

4 Inference Systems in the In-
termediate Stage

4.1 A parallel inference system

4.1.1 Conceptual design of KL1 and PIMOS

The most important target in the intermediate stage was
a parallel implementation of a KL1 language processor,
and the development of a parallel operating system, Pl-
MOS.

The full version of GHC, was still toe complex for the
machine implementation. A simpler version, FGHC,
was designed.[Chikayama and Kimura 1985] Finally, a
practical parallel logic language, KL1, was designed
based on FOQHOC,

The KLl is a parallel language classified as an

38

AND-parallel logic programming language. Tts lan-
guage processor includes an automatie memeory manage-
ment mechanism and & dataflow process synchronization
mechaniem. These mechanisms were considered essential
for writing and compiling large parallel programs. The
first problem was whether they could be implemented ef-
ficiently. The second problem was what kind of firmware
and hardware support would be possible and effective.

In addition to problems in implementing the KL1 lan-
Euage processor, the design of PIMOS created several im-
porfant problems. The role of PIMOS is different from
that of conventional operating systems. PIMOS does
not need to do primary process scheduling and mem-
ory¥ management because these tasks are performed by
the language processor. [t still has to perform resource
management for main memory and elemnent processors,
and control the execution of user programs. However, a
mich more difficult role was added, Tt must allow a user
to divide a job into parallel processable processes and
distribute them to many element processors. Processor
loads must be well balanced to attain better execution
performance. In knowledge and symbol processing ap-
plications, the dynamic structure of a program is not
regular. Tt is diffieult to estimate the dynamic program
structure. It was desivable that PIMOS could offer some
support for efficient job division and load balancing pmb-
lems,

These problems in the language processor and the op-
erating system were very new, and had not been studied
as practical software problems. To solve these problems,
we realized that we must have appropriate parallel hard-
ware as & platform to carry out practical software exper-
iments using a trial and error.

4.1.2 PSI-II and Multi-PSI system

In conjunction with the development of KLl and PI-
MOS, we needed to extend our research and develop new
theories and software technologies for knowledge process-
ing using logic programming. This research and develop-
ment demanded improvement of PSI-I machines in such
aspects as performance, memory size, cabinet size, disk
capacity, and network connection.

We decided to develop a smaller and higher-
performanee model of PS5 to be called PSI-IL This
was intended to provide a better worketation for use as
a common teol and alse to obtain an element processor
for the parallel hardware to be used as a platform for
parallel software development. This hardware was called
a multi-PSI system. [t was regarded as a small-scale
experimental version of the PIM. As many PSI-II ma-
chines were produced, we anticipated having very stable
element processors for the mulbti-PSI system.

The PSI-II used VLSI gate array chips for its CP1J.
The size of the cabinet was about one sixth that of PSI-
I. Its execution speed was 330K LIPS, about 10 times
faster than that of PSI-I. This improvement was attained

mainly through employment of the better compiler opti-
mization technique and improvement of its machine ar-
chitecture. The main memory size was also expanded to
320 MB so that prototyping of large applications could
be done quickly.

In the intermediate stage, many experimental systems
were built on PSL-I and PSEII systems for knowledge
processing research. - These included small-to-mediem
scale expert systems, a natural language discourse un-
derstanding system, constraint logic programming sys-
fems, a database management gystem, and so on. These
systems were all implemented in the ESP language using
about 300 PSI-1T machines distributed to the researchers
a3 their personal tools.

The development of the multi-PSI system was com-
Pleted in the spring of 1988, It consists of 64 element pro-
cessors which are connected by an 8 by 8 mesh network,
One element processor is contained in three printed cir-
cuit boards. Eijght element processors are confained in
one cabinet. Bach element processor has an 80 MB main
memory. Thus, a multi-P5I was to have aboui 5G3
memories in total, This hardware was very stable, as
we had expected. We produced 6 multi-PSI systems and
distributed them to main research sites.

4.1.3 KL1 language processor and PIMOS

This was the first trial implementation of a distributed
language processor of a parallel logic language, and a
parallel operating system on real parallel hardware, used
as a practical tool for parallel knowledge processing ap-
plications.

The KL1 distributed language processor was an inte-
gration of various complex functional modules such as a
distributed garbage collector for loosely-coupled memo-
ries. The automatic process synchronization mechanism
based on the dataflow model was also diffieult to imple-
ment over the distributed element processors. Parts ef
these mechanisms had o be implemented combined with
some PIMOS functions such as a dynamic on-demand
loader for object program codes. Other important func-
ticns related to the implementation of the language pro-
cessor were support functions like system debugging, sys-
tern diagnostic, and system maintenance funetions.

In addition to these functions for the KL1 language
processor, many PIMOS functions for resource manage-
ment and execution control had to be designed and im-
plemented step by step, with repeated partial module
building and evaluation.

This partial module building and evaluation was done
for core parts of the KL1 language processor and PIMOS,
using not only KL1 but also ESP and C languages. An
appropriate balance between the funclions of the lan-
guage processor and the functions of PIMOS was con-
sidered. The langnage processor was implemented in a
PSIII firmware for the first time. It worked as a pseudo
parallel simulator of KL1, and was used as a PIMOS

39

[Sequantist
LEL:ELD)

o)

e e

]
&';4

+ Machine language: KL1-b
Max. 64PEs and two FEPs (PSI-I1) connected to LAN
» Architecture of PE:
-~ Microprogram contral (64 bits/word)
— Machine eyele: 200ns, Reg file: G4W
— Cacha: 4 KW, set associative/write-back
= Data width: 40 bitsfword
— Memory capacity: 160MW (BOMB)
* Metwork:

= I-dimensional mesh
—EMB /s x 2 directionsch with 2 FIFO buffers/ch
= Pachet routing controd function

Figure 3: Multi-PSI System: Main features and Appearance

development, tool. It was eventually extended and trans-
ported to the multi-PSI system.

In the development of PIMOS, the first partial mod-
ule building was done using the C language in a Unix
environment. This system is a tiny subset of the KLI
language processor and PIMOS, and is called the PI-
MOS8 Development Support System (PD3S). It is now
distributed and wsed for educational purposes. The
first version of PIMOS was released on the PSI-II with
the KL1 firmware language processor. This is called a
peeundo multi-PST system. It is corrently used as a
personal programming environment for KL1 programs.

With the KL1 language processor fully implerented
in firmware, one element processor ar a PSLIT attained
about 150 KLIPS for a KL1 program. It is interesting
to compare this speed with that for a sequential ESP
program. As a PSLII attains about 300 KLIPS for a
sequential ESP program, the overhead for KL1 caused
by automatic process synchronization halves the execn-
tion speed. This overhead is compensated for by effi-
cient parallel processing. A full-scale multi-PSI system
of 64 element processors could attain 5 - 10 MLIPS. This
speed was considered sufficient for the building of exper-
irnental saftware for Eljrmbnl and knwlﬁdge pnjﬁ&ﬁﬁﬂg
applications. On this system, simple benchmarking pro-
grams and applications such as puzzle programs, & natu-
ral language parser and a Go-game program were guickly
developed. These programs and the multi-PSI sys
tem was demonstrated in FGCS'88.[Uchida et al. 1988]
These proved that L1 and PIMOS could be used as a

new platform for parallel sefiware research.

4,2 Overall design of the parallel in-
ference system

4.2.1 Background of the design

The first question related to the design of the parallel
inference system was what kind of functions must be
provided for modeling and pregramming complex prob-
lems, and for making them run on large-scale parallel
hardwars,

When we started this project, research on parallel pro-
cessing still tended to focus on hardware problems. The
major research and development interest was in SIMD
or MIMD type machines applied for picture processing
ot large-scale scientific calculations. Those applications
were programmed in Fortran or C. Control of parallel
execution of those programs, such as job division and
load balancing, was perfermed by built-in programs or
prepared subroutine libraries, and could not be done by
ardinary users.

Those machines excluded most of the applications
which include irregular computations and require gen-
eral parallel programming languages and environments,
This tendency still conlinues. Among these parallel ma-
chines, some datafiow machines were exceptional and had
the potential to have functional languages and their gen-
eral parallel programming environment.

We were confident that & general parallel programiming

40

language and environment is indispensable for writing
parallel programs for large-scale symbol and knowledge
processing applications, and that they must provide such
functions as follows:

1. An automatic memory menagement mechanism for
distributed memories (parallel garbage eollector)

2. An automatic process synchronization mechanism
based on a dataflow scheme

3. Various support mechanisms for atlaining the best
job division and load balancing.

The first two are io be embedded in the language pro-
cessor. The last is to be provided in a parallel operating
syslem. All of these answer the question of how to write
parallel programs and map them on parallel machines.

This mapping could be made fully automatic if we
limited our applications to very regular calculations and
processing. However, for the applications we intend, the
mapping process, which includes job division and load-
balancing, should be done by programmers using the
lunctions of the language processor and operating sys-
Lem.
4.2.2 A general parallel programming enviren-
ment

Above mechanisms for mappiog should be implemented
in Lhe following three layers:

L. A parallel hardware system consisting of element
processors and inter-connection network {PIM hard-
Ware

2. A parallel language processor consisting of run-time
routines, built-in linclions, compilers and so on
(LI language processor)

3. A paralle]l operating system including a Program-
ming environment (FIMOS)

At the beginning of the inlermediate stage, we tried to
determine the roles of the hardware, the language pro-
cessor and the operating system. This was really the
start of development,

One idea was to aim at hardware with many functions
and using high density VLSI technology, as described in
early pepers on dataflow machine research. It was & very
challenging approach. However, we thought it too risky
because changes to the logic cirenits in VLS chips would
have a long turn-around time even if the rapid advance of
VLS5I technology was taken into account. Furthermore,
we thought it would be difficult to run hundreds of so-
phisticated element processors for a few days to a few
weeks without any hardware faults.

Implementation of the language processor and the op-
erating system was thought to be very difficult too. As

there were no prior examples, we could not make any re-
liable quantitative estimation of the overhead caused by
these software systems. This implementation was there
fore considered risky too.

Finally, we decided not to make an element proces-
sor too complex , so that our hardware engineers could
provide the software researchers with a large-scale hard-
ware platform stable enough to make the largest-scale
software experiments in the world.

Hewever, we tried to add cost-effective hardware sup-
port for KL1 to the clement processer, in order to at-
tain a higher execution speed. We employed tag archi-
tecture to support the antomatic memory management
mechanism as well as faster execution of KL1 programs.
The automatic synchronization mechanism was to be im-
plemented in firmware. The supports for job division
and load balancing were implemented partially by the
firmware as primitives of the KL1 language, but they
were chiefly implemented by the operating system. In a
programming environment of the operating system, we
hoped to provide a semi-automatic load balancing mech-
anizm ag an ultimate research goal

PIMOS and KL1 hide from users most of the archi-
tectural details of the element processors and network
gystem of PIM hardware. A parallel program is modeled
and programmed depending on a parallel model of an
application problem and algorithms designed by a pro-
grammer. The programmer has great freedom in divid-
ing programs because a KL1 program is basically con-
structed from very fine-grain processes.

As a second step, the programmer can decide the
grouping of fine-grain processes in order to obtain an ap-
propriate granularity as divided jobs, and then specify
hew to dispatch them to element processors using a spe-
cial notation called “pragma”. This two step approach
in parallel programming makes it easy and productive.

We decided to implement the memory management
mechanism and the synchronization mechanism mainly
in the firmware. The job division and load balancing
mechanism was to be implemented in the software. We
decided not to implement uncertain mechanisms in the
hardware.

+ The role of the hardware system was to provide a sta-
ble platform with enough element processors, execution
speed, memory capacity, number of disks and so on. The
demands made on the capacity of a cache and a main
memory were much larger than these of a general pur-
pose microprocesser of that time. The employment of
tag architecture contributed to the simple implementa-
tion of the memory management mechanism and also
increased the speed of KL1 program execution.

5 R & D in the final stage
5.1 Planning of the final stage

At the end of the intermediate stage, an experimen-
tal medium-seale parallel inference system consisting of
the multi-PS1 system, the KL1 language processor, and
PIMOS was successfully completed. On this system,
several small application progrems were developed and
run efficiently in parallel. This proved that symbel and
knowledge srocessing problems had sufficient parallelism
and could be writien in L1 efficiently. This suceess en-
abled us to enter the final stage.

Based on research achievermnents and newly developed
teels produced in the intermediate stage, we made a de-
tailed plan for the final stage. One general targel was to
make a big jump from the hardware and software tech-
nologies for the multi-PSI systern to the snes for the
PIM, with hundreds of element processors. Another gen-
eral target was to make a challenge for parallel processing
of large and complex knowledge processing applications
which had never been tackled anywhere in the world,
using KL1 and the PIM.

Through the research and development directed to
these targets, we expected that a better parallel pro-
gramming methodology would be established for logic
programming. Furthermore, the development of large
and complex application programs would not enly en-
courage us to creats new methods of building more in-
telligent systems svetematically but could also be used
as practical benchmarking programs for the parallel in-
ference system. We intended Lo develop new technigues
and methodologies.

1. Efficient parallel software technology

{a) Parallel modeling and programming techniques
-Parallel programming paradigms
-Parallel algorvithms

{b) Efficient mapping techniques of parallel pro-
cesses to paralle]l processors
-Diynamic load balancing techniques
-Performance debugging support

2. New methodologies to build intelligent systems ue-
ing the power of the parallel inference system

(a) Development of a higher-level reasoning or in-
ference engine and higher-level programming
languages

(b} Methodologies for knowledge representation
and knowledge base management (methodal-
ogy for knowledge programming)

The research and development themes in the final stage
were set up as follows:

4l

. PIM hardware development

We intended to build several models with differ-
ent architectures so that we could compare map-
ping problems between the architectures and pro-
gram models. The number of element processors for
all the modules was planned about 1,000.

. The KL1 language processor for the PIM modules

We planned to develop new KL1 language processors
which took the architectural differences on the IR
modules into account.

. Improvement and extension of PIMOS

We intended to develop an object-oriented language,
AYA, over KL1, a parallel file system, and extended
performance debugging tools for its programming
environment.

. Parallel DEMS and KBMS

We planned to develop & parallel and distributed
database management system, using several disk
drives connected to PIM element processors, was in-
tended to attain high throughput and consequently
a high information retrieval speed. As we had al-
ready developed a data base management sysiem,
Kappa-Il, which employed & nested relational model
on the PST machine, we decided to implement a par-
allel version of Kappa-11. However, we redesiged its
implementation, employing the distributed database
model and using L1, This parallel version is called
Kappa-P. We plan to develop a knowledge base man-
agement system on the Kappa-P. This would be
based on the deductive objecl-oriented DB, having
a knowledge representation language, Quixote.

. Research on knowledge programming sofiware

We intended Lo continue various basic research ace
tivities to de:'.felup new theories, me_thndulogies and
tools for building knowledge processing application
systems. These activities were grouped together as
research on knowledge programming software.

This included research themes such as a parallel
constraint logic programming language, mathemat-
ical systems including thecrem provers, natural lan-
guage processing systems such as a grammar design
system, and an intelligent sentence generation sys-
tem for man-machine interfacing.

. Benchmarking and experimental parallel applica-

tion systems

To evaluate the parallel inference system and the
various tools and methodologies developed in the
above themes, we decided to make more effort to

42

explore new applications of parallel knowledge pro-
cessing. We began research into a legal expert sys-
tem, a genetic information processing systems and
50 0T

5.2 R & D results in the final stage

The actual research activities into the themes deseribed
above differed according to characteristics. In the de-
velopment of the parallel inference system, we focused
on the integration of PIM hardware and some software
components. In our research on knowledge programming
software, we continued basic research and experimental
software building to create new theories and develop par-
allel software technologies for the future.

5.2.1 PIM hardware and KL1 language proces-

20T

A role of the PIM hardware was to provide software re-
searchers with an advanced piatform which would allow
large-scale software development for knowledge process-
ing.

Another role was to obtain various evaluation data
in the architecture and hardware structure of the ele-
ment processors and network systems. In particular, we
wanted to analyze the performance of large-scale parallel
prograrms on various architectures (machine instruction
sets) and hardware structures, so that hardware engi-
neers could design more powerful and cost-effective par-
alle]l hardware in the future.

In the conceptual design of the PIM hardware, we real-
ized that there were many alternative designs for the ar-
chitecture of an element processor and the structure of a
network system. For the architecture of an element pro-
cessor, we could choose between a CISC type instruction
set implemented in firmware and a RISC type instruction
set. On the interconnection network, there were several
opinions, including & two dimensional mesh network like
the multi-P31, a cross-bar switch, and a commeon bus and
coherent cache.

To design the best hardware, we needed to find out the
mapping relationships between program behavior and
the hardware architectures and struciures. We had to
establish criteria for the design of the paralle] hardware,
reflecting the algorithms and execution structures of ap-
plication programs.

To gather the basic data we needed Lo obtain this de-
sign criteria, we tried to categorize our design choices
into five groups and build five PIM modules. The main
features of these five modules are listed in Table 2. The
number of element processor required for each module
wag determined depending on the main purpose of the
module. Large modules have 256 to 512 element proces-
sars, and were intended to be used for soltware experi-
ments. Small modules have 16 or 20 element processors

and were built for architectural experiments and evalua-
tion.

All of these modules were designed to support KL
and PIMOS, so that software researchérs could run one
program on the different modules and compare and an-
alyze the behaviors of parallel program execution.

A PIM/m module employed architecture similar to
the multi-PSI system. Thus, its KL1 language proces-
sor could be developed by simply modifying and extend-
ing that of the multi-PSI system. For other modules,
namely PIM/p, PIM/c, PIM/k, and PIM/i, the KLl
language processor had to be newly developed because
all of these modules have a cluster structure. In a clus-
ter, four to eight element processors were tightly coupled
by a shared memory and 2 commen bus with coherent
caches. While communication between element proces-
sors is done through the common bus and shared mem-
ory, comrmunication between clusters is done via a packet
switching netwerk. These four PIM modules have differ-
ent machine instruction sets,

We intended to aveid the duplication of development
work for the KL1 language processor. We used the KLI-
C language to write PIMOS and the usual application
programs. A KL1-C program is compiled into the KL1-
B language, which is similar to the “WAM" as shown
in Figure 5. We defined an additional layer between
the KL1-B language and the real machine instruction.
This layer is called the virtual hardware layer. It has a
virtual machine instruction set called “PSL”. The spec-
ification of the KL1-B interpreter is described in PSL.
This specification is semi-automatically converted to a
real interpreter or runtime routines dedicated to each
PIM modules. The specification in PSL is called a vir-
tual PIM processor (the VPIM processor for short) and
is common to four PIM modules.

PIM/p, PIM/m and PIM/c are intended to be used
for large software experiments; the other modules were
intended for architectural evaluations. We plan to pro-
duce a PIM/p with 512 element processors, and a PIM/m
with 384 element processors. Now, at the beginning of
March 1992, a PIM/m of 256 processors has just started -
Lo run & couple of benchmarking programs,

We aimed at a processing speed of more than 100
MLIPS for the PIM modules. The PIM/m with 256 pro-
cessors will attain more than 100 MLIPS as its peak per-
formanee. However, for a practical application program,
this speed may be much reduced, depending on the char-
acteristics of the application program and the program-
ming technique, To obtain better performance, we must
attempt to augment the effect of compiler optimization
and to implement a better load balancing scheme. We
plan to run various benchmarking programs and exper-
imental application programs to evaluate the gain and
loss of implemented hardware and software functions.

43

EXPERIMENTAL PARALLEL
APPLICATIONS PROGRAMS
e F*ar:nlhl VLSI-CAD system

« Legal inference system
+ Parallel Go playing systam
Ha'u.ural language analysis

(- Parallel expert system
- Logic design

- Equipment diagnosls

+ Parallel software develop-

v G:artann information ment support
| @nalysis ol - Parallel algorithm
Software group - Intelligent programming
for functional demonstration and __envirenmant
parallel application /
experiment Knowledge pmgrnm=) sy
+ Discourse prmlllil'ﬂlrl“m mlng environment I ?Egrsgllaailmcg:ﬂgtgrgrmﬂ b
« Confextual nmr + Man-machine HB :::mal :
- Languags k uduo bass intarface ruction rocessing system
T itk)\ | eoco)
+ Parallal natural |anguags nndynh » Problem solving & "
sxparimental systom ammi theorem-proving system
. L mf;@ e - MGTP prover y
+ Parallel ammi
=1 tpmg " . + Deduction/object-orianted DB)
- mlimﬁnn tool Basic software - Iﬂgmladgmﬁammn
(ParaGragh) srstnm - Gens D application
. !nfnmm:e expedment
m:é.':{li ula
meau
PIMOS “aﬂ
>

Prototype Hardware Systems
Parallel Inferance Machine (PIM) Sub-modules

% G

iy
Figure 4: Research Themes in the Final Stage
Table 2: Features of PIM modules
Item PiMip PiMie PiM/m PINA PIMx
Mach RISC- Horizontal Horizontal RISC-type RISC-type
ina nstrucons macro uetions | microinstructions micnsinstructions

Targat cycle me 60 nsac 65 nsec 50 nsec 100 nsec 100 nsec
LSl devicas Standard cell Gale array Cell base Standard cell | Cuslom
Process Technology - _ﬂ.ﬂspm 0.8 pm 0.8 pm 1.2 pm 1.2 pm
{line width)

Mutticluster usler Two-dimensional | Shared memory | Two-lavel
R conneclions (8 PEs %chﬁmu (B PEs mash ne bwork connacions parallel cache

finked to a shared | + CClinkedina conneclions through & conneclions

memery)ina shared memaory) paraliel cache

network | in a crossbar network

MNumber of PEs connacted | 512 PEs 256 PEs 256 PES 16 PEs 16 PEs

')

(l KL1 Paralis] Implementation |

KL1 Program L) .
Compilation into an intermediate languge,
KL1-B (similar to WAM of Prolog).
There are many transformation methods
KLI-B Code corresponding to hardware archileclures.
Runtime Librarles, Specification
Microprograms, or = CLELE CEETE T of KL1-B
Object Codes Translormation Abstract Machine
e S
(PIM/p, PIM/m, PIM/c, PIM/i, (Shared-memory Multiprocessors
PIM/k, Multi-PST) + Loosely-coupled Network)

e

Figure 5: KL1 Language Processor and VPIM

tultiple Hyparcirbe Ratwerk

=

FEP
=]

0 i [
" Il

“Wigterg T Hlister; iiatingg

Machine language: KL1-b
Architecture of PE and cluster
= RISC + HLIC{Microprogrammed)
= Machine cycle: 60ns, Reg.file: 40bits x 32W
— 4 stage pipeling for RISC inst.
— Internal last, Mem: 50 bits x 8 KW
= Cache: Gt KB, 256 column, 4 sets, 328/block
= Protocol: Write-back, Invalidation
= Data width; 40 bits/word
= Shared Memory capacity: 256 MB
+ Max, 512 PEs, 8 PE/cluster and 4 clusters/cabinet
& Metwork:
= Dauble hyper-cube {Max 6 dimensions)
— Max, 20MB fsec in each link

Figure 6: PIM model P: Main Features and Appearance of a Cabinet

45

= Machine language: KL1-b

» Architecture of PE:
— Microprogram control (64 bits/word x 32 KW)
— Data width: 40 bits/word
— Machine cycle: 60ns, Reg.file: 40 bits x 64W
— 5 stage pipeline
= Cache: 1 KW for Inst., 4 KW for Data
— Memory capacity: 16MW x 40 bits (80 ME)

» Max. 256 PEs, 32 PE/cabinet

« Matwork:

= Z-dimensional mesh
~ 4. 2MB s x 2 directionsch

Figure 7: PIM model M: Main Features and Appearance of four Cabinets

5.2.2 Development of PIMOS

PIMOS was intended to be a standard parallel operating
system for large-scale parallel machines used in symbaol
and knowledge processing. It was designed as an in-
dependent, self-contained operating system with a pro-
gramming environment suitable for KL1. Its functions
for resource management and execution control of user
programs were designed as independent from the archi-
tectural details of the PIM hardware. They were imple-
mented based on an almost completely non-centralized
management scheme so that the design could be ap-
plied to a parallel machine with one million element
processors.[Chikayama 1092

PIMOS is completely written in KL1. Its manage
ment and control mechanisms are implemented using a
“meta-call” primitive of KL1. The KL1 language pro-
cessor has embedded an antomatic memory management
mechanism and a dataflow synchronization mechanism.
The management and control mechanisms are then im-
plemented over these two mechanisms.

The resource management function is used to manage
the memory resources and processor resources allocated
to user processes and input and output devices. The pro-
gram execution control function is used to start and stop
user processes, control the order of execution following
priorities given to them, and protect system programs
{rom user program bugs like the usual sequential aperat-

ing systems.

PIMOS supports multiple users, accesses via network
and so on. [t also has an efficient KL1 prograrming en-
vironment. This environment has some new tools for de-
bugging parallel programs such as visualization programs
which show a programmer the status of load balancing in
graphical forms, and other monitoring and measurement
programs.

5.2.3 EKnowledge base management system

The knowledge base management system consists of two
layers. The lower layer is a parallel database manage
ment system, Kappa-P. Kappa-P is a database manage-
ment system based on a nested relational model. It is
more fexible than the usnal relational database man-
agement system in processing data of irregular sizes and
structures, such as natural langnage dictionaries and bi-
clogical databases.

The upper layer is a knowledge base manage-
ment systemn based on a deductive object-oriented
database, [Yokota and Nishio 1989] This provides us
with a knowledge representation language, Quixote.
[¥okota and Yasukawa 1992] These upper and lower lay-
ers are written in KL1 and are now operational on PI-
MOS,

The development of the database layer, Kappa, was
gtarted at the beginning of the intermediate stage.

46

Kappa aimed to manage the “natural databases™ accu-
mulated in society, such as natural language dictionaries.
It employed a nested relational model so that it could
eagily handle data sets with irregular record sizes and
nested structures. Kappa is suitable not only for nat-
ural Jangwege dictionaries but also for DNA databases,
rule databases such as legal data, contract conditions,
and ofher “natural databases” produced in our social
systems,

The first and second versions of Kappa were developed
on a P51 machine using the ESP language. The second
version was completed at the end of the intermediate
stage, and was called Kappa-II.[Yokota et al. 1058]

In the final stage, a parallel and distributed imple-
mentation of Kappa was begun. It s written in KIL1
and iz called Kappa-P. Kappa-P is intended to use large
PIM main memaories for implementing the main memory
database scheme, and to obtain very high throughput
rate for disk input and output by using many disks con-
nected in parallel to element processors.

In conjunction with the development of Kappa-II and
Kappa-P, research on a knowledge representation lan-
guage and a knowledge base management system was
conducted. After repeated experiments in design and im-
plementation, a deductive object-oriented database was
emploved in this research.

At this point the design of the knowledge represen-
tation language, Chuixote, was completed. Tts language
processor, which is the knowledge base management sys-
tem, is under development, This language processor is
being built over Kappa-P. Using Quixote, construction
of a knowledge base can then be made continuously from
a simple database. This will start with the accumulation
of passive fact data, then gradually add active rule data,
and will finally become a complete knowledge base.

The Quixote and Kappa-P system is a mew knowl-
edge base management system which has a high-level
knowledge representation language and the parallel and
distributed database management system as the base of
the language processor. The first versions of Kappa-P
and Quixote are now almest complete. It is interesting
to see how this big system operates and how much its
overhead will be.

5.2.4 Knowledge programming software

"This software consists of various experimental programs
and tools built in theoretical research and development
into some element technologies for knowledge process-
ing. Most of these programs and tools are written in
KL1. These could therefore be regarded as application
programs for the parallel inference system.

1. Constraint logic programming system

In the final stage, a parallel constraint logic pro-
gramming language, GDCC, is being developed.

This language ia a high-level logic language which
has & constraint solver as a part of its language
processor. The language processor is implemented
in KL1 and is intended to use parallel processing
to make its execution time faster. The GDCC
is evaluated by experimental application programs
such as a program for designing a simple handling
robot.| Aiba and Hasegawa 1992] .

2. Thecrem proving and program transformation

A model generation theorem prover, MGTF, iz be-
ing implemented in KL1. For this application, the
optimization of load balancing has been made suc-
cessfully. The power of parallel processing is almost
proportional to the number of element processors
being used. This prover is being used as a rule
based reasoner for & legal reasoning system. It en-
ables this system to use knowledge representation
based on first order logic, and to contribute to easy

knowledge programming.
3. Natural language processing

Software tools and linguistic data bases are being
developed for use in implementing natural language
interfaces. The tools integrated into a library called
a Language Tool Box (LTB). The LTB includes nat-
ural language parsers, a sentence generators, and the
linguistic databases and dictionaries including syn-
tactic rules and so on.

5.2.5 Benchmarking and experimental parallel

application software

This software includes benchmarking programs for the
parallel inference system, and experimental parallel ap-
plication programs which were built for developing paral-
lel programming methodology, knowledge representation
techniques, higher-level inference mechanisms and so on.

In the final stage, we extended the application area
to include larger-scale symbol and knowledge processing
applications such as genefic information processing and
legal expert systems. This was in addition to engineering
applications such as VLSI-CAD systems and diagnostic
systems for electronic equipment. [Nitta 1992)

1. VLSI CAD programs

Several VLSI CAD programs are being developed
for use in logic simulation, routing, and placement.
This system is aimed at developing various parallel
algorithms and load balancing methods. As there
are sequential programs which have similar func-
tions to these programs, we can compare the per-
formance of the PIM against that of conventional
machines.

2. Genetic information processing programs

SJequence alignment programs for proteins and a
protein folding simulation program are being devel-
oped. Research on an integrated database for bio-
logical data is also being made using Kappa.

3. A legal reasoning system

This system infers possible judgments on a crime
using legal rules and past cases histories. It uses
the parallel theorem prover, MGTP, as a core of the
rule-based reasoner. This system is making full wse
of important research results of this project, namely,
the PIM, PIMOS, MGTP and high-level inference
and knowledge representation fechniques,

4. A Go game playing system

The search space of a Go game is too large to apply
any exhaustive search method. For & human player,
there are many text books to show typical position
sequences of putting stomes which is called “Joseki®
patterns. This system has some of the Joseki pat-
terns and some heuristic rules as its knowledge base
to win the game against & human player. It aimns to
attain 5 to 10 “kyun” level.

The applications we have described all employ symbol
and knowledge processing. The parallel programs have
been programmed in KL1 in a short time. Particularly
for the CAD and sequence alignment programs, the pro-
cessing speed has improved almost proportionally to the
oumber of element processors.

However, as we can see in the Go playing system,
which is a very sophisticated program, the power of the
parallel inference system can not alwaye increase its in-
telligence effectively. This implies that we cannot effec-
tively transcribe “natural” knowledge bases written in
text books on Go into data or rules in “artificial” knowl-
edge base of the system which would make the system
* clever”. We need to make more effort to find out a
better program structure and better algorithms to make
full use of the merit of parallel processing.

6 Evaluation of the parallel in-
ference system

6.1 General purpose parallel program-
ming environment

The practical problems in symbol and knowledge pro-
cessing applications have been wrilten efficiently in KT1,
and solved quickly using a PIM which has several hun-
dred element processors. Productivity of parallel soft-
ware using in KL] has besn proved to be much higher

47

than in any conventional language. Thiz high productiv-
ity is apparently a result of using the automatic mem-
ory management mechanism and the automatic dataflow
synchronization mechanism.

Our method of specifying job division and load balanc-
ing has been evaluated and proved successful. KL1 pro-
gramming takes a two-step approach. In the first step, a
programmer writes a program concentrating only on the
program algorithms and a model, When the program is
completed, the programmer adds the specifications for
job division and load balancing using a notation called
“pragma” as the second step. This separation makes the
programming work simple and productive.

The specification of the KL1 language has been evaly-
ated as practical and adequate for researchers. However,
we realize that application pregrammers need a simpler
and higher-level KL1 langnage specification which is a
subset of KL1. In the future, several application-oriented
KLl language specifications should be provided, just as
the von Neumann language set has a variety of different
languages such as Fotran, Pascal and Cobeol.

6.2 Evaluation of KL1 and PINMOS

The functions of PIMOS, some of which are implemented
as KL1 functions, have been proved to be effective for
running and debugging user programs on parallel hard-
ware, The resource management and execution mech-
anizms in particular work as we had expected. For in-
stance, priority control of user processes permits pro-
grammers to vse about 4,000 priority levels and enables
them to write various search algorithms and speculative
computations very easily. We are convineed that the
KL1 and PIMOS will be the best practical example for
general purpose parallel operating systems in the future.

6.3 Evaluation of hardware support
for language functions

[n designing of the PIM hardware and the KLI language
processor, we thought it more important to provide a us-
able and stable platform which has a sufficient number of
element processor for parallel software experiments than
to build many dedicated functions into the element pro-
cessor. Ouly the dedicated hardware support built in
the element processor was tag architecture. Instead, we
added more support for the interconnection between el-
ement processors such as message routing hardware and
a coherent cache chip,

We did not embed complex hardware support, such as
a matching store of a dataflow machine, or a content-
addressable memory. We thought it risky because an
implementation of the complex hardware would take a
long turn around time even by a very advanced VLSI
technology. We also considered that we should create a
new optimization technique for a compiler dedicated to

48

the embedded eomplex hardware support, and that this
would not easy too.

The completion of PIM hardware is now one year be-
hind the original schedule, mainly becanse we had many
unexpected problems in the design of the random logic
circuits, and in submicron chip fabrication. If we had
employed & more complex design for the element pro-
cessor, the PIM hardware would have been further from
completion,

68.3.1 Comparison of PIM hardware with com-

mercially available technology

Rapid advances have been made in RISC processors re-
cenily. Furthermore, a few MIMD parallel machines
which use & RISC processor as their element processor
have started to appear in the market. When we began
fo design the PIM element processor, the performances
of both RISC and CISC processors were as low as a few
MIPS. At that time, a dedicated processor with tag ar-
chitecture could attain & better performance. However,
now gome RISC processors have attained more than 50
MIPS. It is interesting to evaluate these RISC processors
for KL program execution speed.

We usually compare the execution speed of a PIM ele-
ment precessor to that of a general-purpose microproces-
sor, regarding 1 LIPS as approximately equivalent to 100
IPS. This means that & 500 KLIPS PIM element proces-
sor should be comparable to a 50 MIPS microprocessor.
However, the characteristics of KL1 program execution
are very different from these of the usual benchmark pro-
grams for general-purpose microprocessors,

The locality of memory access patterns for practical
KL1 programs is lower than for standard programs. As
the length of the object codes for a RISC instruction
get has to be longer than a CISC or dedicated instrue-
tion set processors, the cache miss ratio will be greater.
Then, simple comparison with the PIM element proces-
gor and some recent RISC chips using announced peak
performance is not meaningful. Thus, the practical im-
plementation of the KL1 language processor on a typical
RISC processor is necessary.

Most of the MIMD machines currently on the market
lack a general parallel programming environment. The
porting of the KL1 language processor may allow them
te employ new scientific applications as well as symbol
and knowledge processing applications.

In the future processor design, we believe that a gen-
eral purpose microprocessor should have tag architecture
support as a part of its standard functions.

6.3.2 Evaluation of high-level programming

overhead

Parallel programming in KL1 is very productive, espe-
cially for large-scale and complex problems. The control

of job division and load balancing works well for hun-
dreds of element processars. No conventional language
is so productive. However, if we compare the process-
ing speed of a KL1 program with that of a conventional
language program with similar fanctions within a single
element processor, we find that the KLI overhead is not
5o small. This is a comumon trade-off problem between
high-level programming and low-level programming,
One straightforward method of compensating is to
provide a simple subroutine call mechanism to link ©
language programs to KL1 programs. Another methed
is to improve the optimization techniques of compilers.
This method is more elegant than the first, Further re-
search on optimization technique should be undertaken.

T Conclusion

It is obvious that a general-purpose parallel program-
ming language and environment is indispensable for solv-
ing practical problems of knowledge and symbeol process-
ing. The straightforward extension of conventional von
Neumann languages will not allow the use of hundreds
of element processors except for regular sclentific ealeu-
lations.

We anticipated the difficulties in efficient implemen-
tation of the automatic memory management and ayn-
chronization mechanisms. However, this has been now
achieved. The productivity and maintainability of KL1 is
much higher than we expected. This more than compen-
sates for the overhead in high-level language program-
ming.

Several experimental parallel application programs on
the parallel inference system have proved that most
large-scale knowledge processing applications contain po-
tential parallelism. However, to make full use of this par-
allelism, we need to have more parallel algorithms and
paradigms to actually program the applications.

The research and development targets of this FGCS
project have been achieved, especially as regards the par-
allel inference system. We plan to distribute the KL1
langnage processor and PIMOS as free software or pub-
lic domain software, expecting that they will be ported
to many MIMD méchines, and will provide a research
platform for future knowledge processing technology.

Acknowledgment

The development of the FGCS prototype system was
conducted jointly by many people at ICOT, cooperating
manufacturers, and many researchers in many countries.
The author would like to express my gratitude to all the
people who have given us much advise and help for more
than 10 years.

References

[Uchida 1987] 8. Uchida. “Inference Machines in FGCS
Project”, TR 278, ICOT, 1987T.

[Uchida et al. 1888] 5. Uchida, K. Talki, K. MNakajima, A.
Goto and T, Chikayama, “Research and Development
of The Parallel Inference System in The Intermedi-
ate Stage of The project”, Proc. Int. Conf. on Fifth
Generation Computer Systems, Tokyo, Nov.28-Dec.2,
1988,

[Goto et al. 1988] A. Goto, M. Sato, K. Nakajima, K.
Taki, and A. Matsumoto, ® Overview of the Paral-
lel Inference Machine Architecture (PIM)*, In Proc.
of the International Conference on Fifth Generation
Computing Systems 19882, Tokyo, Japan, November
1088.

[Taki 1992] K. Taki, “Parallel Inference Machine, PIM®,
Proc. Int. Conf. on Fifth Generation Computer Sys-
tems, Tokyo, Jul.1-5, 1992,

[Chikayama 1984] T. Chikayama, “Unique Features of
ESP", In Proc. Int. Conf. on Fifth Generation Com-
puter Systems 1984, ICOT, 1984, pp. 292-208.

[Warren 1983] D.H.D. Warren, “An Abstract Prolog In-
struction Set”, Technical Note 309, Artificial Intelli-
gence Center, SRI, 1983,

[Clark adn Gregory 1983] Keith L. Clark and Steve Gre-
gory, “Pailog: A parallel logic programming lan-
guage”, Research Report TR-83-5, Imperial College,
March 1983,

[Clark and Gregory 1984] K. L. Clark and S. Gregory,
“Notes on Systems Programming in PARLOGY, In
Proc. Int. Conf. on Fifth Generation Computer Sys-
tems 1984, ICOT; 1984, pp. 299-306.

[Shapiro 1983 E. Y. Shapiro, “A subset of Concurrent
Prolog and Its Interpreter”, TR. 003, ICOT, 1987.

[Veda 1986) K. Ueda. Guarded Horn Clauses, “In Logic
Programming”, '85, E. Wada (ed.), Lecture Notes in
Computer Science 221, Springer-Verlag, 1986, pp.168-
179.

[Ueda 1986) K. Ueda, “Introduction to Guarded Horn
Clauses”, TR 209, [COT, 19856,

[Chikayama and Kimura 1985] T. Chikayama and Y.
Kimura, "Multiple Reference Management in Flat
GHC", In Proc. Fourth Int. Conf. on Logic Program-
ming, MIT Press, 1987, pp. 276-293.

[Chikayame el al. 1988] T. Chikayama, H, Sato and T.
Miyazaki, “Overview of the Parallel Inference Ma-
chine Operating System (PIMOS)*, In Proc. Int. Conf.

49

on Fifth Generation Computer Systems 1988, ICOT,
1988, pp. 230-251.

[Chikayama 1992] T. Chikayarna, “Operating System
PIMOS and Kernel Language KL1", Proc. Int. Cenf.
on Fifth Generation Computer Systems, Tokyo, Jul.1-
5, 1992,

[Uchida et al. 1988] S. Uchida,“The Research and De-
velopmeat of Natural Language Processing Systems in
the Intermediate Stage of the FGCS Project”, Proc.
Int. Conf. on Fifth Generation’ Computer Systems,
Tokyo, Nov.28-Dec.2, 1988.

[Yokota et al. 1988] K. Yokota, M. Kawamura, and A.
Kanaegami, “Overview of the Knowledge Base Man-
agement System (KAPPA)”, Proc. Int. Conf. on Fifth
Generation Computer Systems, Tokyo, Nov.28-Dec.2,
1588,

[Yokota and Nishio 1989] K. Yokota and S. Nishio, “To-
wards Integration of Deductive Databases and Object-
Oriented Databases—A Limited Survey”, Proc. Ad-
vanced Database System Symposium, Kyoto, Dec.,
1989,

[Yokota and Yasukawa 1992] K.Yokota
and H. Yasukawa, “Towards an Integrated Knowledge
Base Management System”, Proc. Int. Conf. on Fifth
Generation Computer Systems, Tokyo, Jul.1-5, 1992.

[Aiba and Hasegawa 1992] A. Aiba and R. Hasegaws,
“Constraint Logic Programming System”, Proc. Int.
Conf. on Fifth Generation Computer Systems, Tokyo,
Jul.1-5, 1892,

[Nitta 1992] K. Nitta, K. Taki, and N. Ichiyoshi, “Devel-
opment of Parallel Application Programs of the Paral-
lel Inference Machine”, Prac. Int. Conf. on Fifth Gen-
eration Computer Systems, Tokyo, Jul.1-5, 10692,

