PROCEEDINGS OF THE INTERMATIONAL CONFERENCE

OM FIFTH GENERATION COMFPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992

357

Model Generation Theorem Provers
on a Parallel Inference Machine

Masayulki Fujita

Miyuki Koshimura® -

Ryuzo Hasegawa
Hiroshi Fujital

Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan

{mfujita, hasegawa, koshi}@icot.or.jp fujita@sys.crl.melco.co.jp

Abstract

This paper describes the results of the research and devel-
opment on parallel theorem provers being conducted at
ICOT. We have implemented a model-generation based
paraliel theorem prover called MGTP in KLL on a dis-
tributed memory multi-processor, Multi-PSI, and on a
paraliel inference machine with the same architecture,
FIM/m. Currently, we have two versions of MGTP: one
is MGTF/G, which is used for dealing with ground mod-
els, and the other is MGTP /N, used for dealing with
non-ground models. While conducting research and de-
velopment on the MGTP provers, we have developed sev-
eral techniques to improve the efficiency of forward rea-
soning theorem provers. These include model generation
and hyper-resolution theorem provers. First, we devel-
oped KL1 compilation techniques to translate the given
clauses to KL1 clauses, thereby achieving good efficiency.
To aveid redundancy in conjunctive matching, we devel-
oped RAMS, MERC, and A-M methods. To reduce the
amount of computation and space required for obtaining
proofs, we proposed the idea of Lary Model Generation.
Lazy model generation is a new method that avoids the
generation of unnecessary atoms that are mrelevant to
obtaining procfs, and provides flexible control for the ef-
ficient use of resources in a parallel environment. For
MGTP/G, we exploited OR parallelism with a simple al-
lecation scheme, thereby achieving good performance on
the Multi-PSL. For MGTP/N, we exploited AND paral-
lelism, which is rather harder io obtain than OR par-
allelism. With the lazy mode] generation method, we
have achieved a more than one-hundred-fold speedup on
a PIM/m consisting of 128 PEs.

*Present address: Toshiba Information Systems

21 Nissin-cheo, Kawasaki-ku, Kawasaki, Kanagawa 210, Jepan
VPresant address: Mitsubishi Electric Corporation

8-1-1 Taukaguchi-honmachi, Amagasali, Hyogo 661, Japan

1 Introduction

The research om paralle]l theorem proving systems has
been conducted under the Fifth Research Laboratory at
ICOT as a part of research and development on the
problem-solving programming module. This research
aims at the realization of highly parallel advanced in-
ference mechaniems that are indispensable in building
intelligent knowledge information systems.

The immediate goal of this research project is to de-
velop a parallel automated reasoning system on the par-
allel inference machine, PIM, based on KL1 and PIMOS
technology [Chikayama ef. ol 88]. We aim at ap-
plying this system to various fields such as intelligent
database systems, natural language processing, and au-
tomated programming.

The motive for the research is twofold.

From the viewpoint of logie programming, we try to
further extend logic programming techniques that pro-
vide the foundation for the Fifth Generation Computer
System. The research will help those aiming at extend-
ing languages and for systems from Horn clause logic to
full first-order logic. In addifion, theorem proving is one
of the most important applications that could effectively
be built upon the logic programming systems. In partic-
ular, it is a good application for evaluating the abilities
of KL1 and PIM.

From the viewpoint of automated reasoning, on the
other hand, it seems that the logic programming com-
munity is ready to deal with more classical and difficult
problems|Wos ef. al. 84][Wos 88] that remain unsolved or
have been abandoned. We might achieve a breakthrough
in the automated reasoning field if we apply logic pro-
gramming technology to theorem proving. In addition,
this trial would also canse feedback for logic program-
ming technology.

Recent developments in logic programming languages
and machines have shed light upon the problem of
how to implement these classical but powerful meth-
ods efficiently. For instance, Stickel developed a model-

358

elimination[Loveland 78] based thecrem: prover called
PTTP[Stickel 88]. PTTP is able to deal with any
fiest-order formula in Horn clauvse form (angmented by
contrapositives} without loss of completeness or sound-
ness. i works by employing unification with oceur-
rence check, the model elimination reduction rule, and
iterative deepening depth-firsl search. A parallel wver-
sion of PTTP, called PARTHENON[Bose ef. ol 89],
has been implemented by Clarke et al. on a shared
memory multiprocessor. Schumann et al. buoilt a
connection-method[Bibel 86] based theorem-praving sys-
tem, SETHEC[Schumann 88), in which a method identi-
cal to model elimination is used as & main proof mecha-
nism. Manthey and Bry presenfed a tableaux-like theo-
rem prover, SATCHMO[Manthey and Bry 88), which is
a very short and simple program in Prolog.

As a first step for developing KL1-technology theo-
vem provers, we adopted the model generation method
on which SATCHMO is based. Our ressons were as fol-
lows:

(1) A useful feature of SATCHMO is that full nnifi-
cation is not necessary, and that matching suffices
when dealing with range-restricted problems. This
mekes it very convenient for us to implement provers
in KL1 sinee KL1, as a committed choice language,
provides us with very fast one-way unification,

{2) It is essier to incorporate mechanisms for lemmati-
zation, subsumption tesis, and other deletion strate-
gies that are indispensable in solving difficult prob-
lems such as condensed detachment problems [Wos
88][Overbeek 90][MeCune and Wes 91],

In implementing model generation based prowvers, it is
important to avoid redundancy in the conjunctive match-
ing of clauses against atoms in model candidates. For
this, we proposed the RAMS [Fujita and Hasegawa 91|
and MERC [Hasegawa 91a] methods.

A more important issue with regard to the efficiency
of model generation based provers is how to reduce the
total amount of computation and mhemory required for
proof processes. This problem becomes more critieal if
we try to solve harder problems that require deeper infer-
ences (longer proofs) such as Lukasiewics problems. To
solve this problem, it is important {o recognize that prov-
ing processes are viewed as generalion-and-fest processes
and that generation should be performed only when test-
ing requires it. We proposed the Lasy Model Generation
method in which the idea of demand-driven computation
or ‘generate-only-af-test’ is implemented. Lazy model
generation is a new method that avoids the generation
of unnecessary atoms that are irrelevant to obtaining
proofs, and provides flexible control for the efficient use
of resources in a parallel environment,

We have implemented two types of model generation
prover: one is used for ground models (MGTP/G) and
the other is used for non-ground medels (MGTPE /).

In implementing MGTP/G, we developed a compil-
ing technigue to franslate the given clauses into KL1
clauses by using advantage (1) listed above, This makes
MGTP/G very simple and efficient. MGTP/ 3 can prove
non-Horn problems very efficiently on a disteibuted mem-
ory multi-processor, the Mulii-PSI, by expleoiting OR
parallelism.

MGTP/N, on the other hand, aims at proving diffi-
cult Horn problems by exploiting AND parallelism. For
MGTP/N, we developed new parallel algorithms based
on lazy model generation method. They run with op-
timal load balancing en a distributed memory architec-
ture, and require a minimal amount of computation and
memory to obtain proofs.

In the next section, we explain the model generation
method on which our MGTTP provers are based. In Sec-
tion 3, we discuss the problem of meta-programming in
KL1, and outline the characteristics of MGTP/G and
MGTP/N. In Section 4, we describe the essence of the
main techniques developed for improving the efficiency
of model generation theorem provers. In Section 5,
we present OR parallelization and AND parallelization
methods developed for MGTP/G and MGTP/N. Section
6 provides a conclusion.

2 Model Generation Theorem
Prover

Throughout this paper, a clause is represented in an im-
plicational form:

Ah.ﬂ:r-“,:{" -+ GI;GE;"";GTN-

where Al < i < n} and J3(1 < 7 < m) are atoms;
the antecedent is a conjunction of A, As,...,A,; the
consequent is a disjunction of &4, Ca,. .., Crm. A clause
is said to be positive if its antecedent is true(n = 0), and
negative if its consequent is false(m = 0). A clause is
also said to be tester if its consequent is false(m = 0),
otherwise it is called generafor.

The model] generation method incorporates the follow-
ing two rules:

o Model extension rule: If there is a generator clause,
A — O, and a substitution ¢ such that As is satis-
fied in & model candidate M and O is not satisfied
in M, then extend M by adding C into M.

Model rejection rule: If a tester clause has an an-
tecedent Ae that is satisfied in a model candidate
M, then reject M.

We call the process of obtaining Ao a conjunctive
matching of the antecedent literals against elements in
a model. Note that the antecedent: (true) of a positive
clause is satisfied by any model.

The task of model generation is to fry to construct 2
model for & given set of clauses, starting with a null set as
amodel candidate, If the clause set is satisfiable, a model
should be found, The method can also be used to prove
that the clause set is unsatisfiable, by exploring every
possible model candidate to see that no model exists for
the clacee set. .

For example, consider the following set of clauses,
51 [Manthey and Bry 88):

C1l: p(X),s(X) — false.
C2: g(X),s(Y) — false.
C3: g(X) = s(f(X)).
Cd: r(X) — s X).

C5: p(X) — o(X)ir(X).
C6: true — pla); q(B).

Figure 1: A proof tree for 51

A proof tree for the 51 problem is depicted in Fig. 1.
We start with an empty model, My = ¢. My is first
expanded into two cases, My = {p{a)} and M, = {g(4}},
by applying the model extension rule to C'6. Then M,
is expanded by C5 into two cases: My = {p(a),g(a)}
and My = {pla),r(a)}. M is further extended by O3
to My = {p(a), g(a), s(f(a))}. Now with Mg the model
rejection rale is applicable to C'2, thus M is rejected and
marked as closed. On the other hand, M is extended
by C4 to Mg = {p(a),r(a),s(a)} which is rejected by
1. In a similar way, the remaining model candidate
My is extended by C3 to My = {g(b), s(f(0))}, which is
rejected by C2. MNow that there is no way to construct
any model candidate, we can conclude that the clause set
81 iz unsatisfiable,

The model generation method, as its name suggests, is
closely related to the model eliminatien methed. How-
ever, the model generation method is a restricted version
of the model elimination method in the sense that the

359

polarity of literals in a clause of implicational form is
fixed to either positive or negative in the model gener-
ation method, whereas it is allowed to be both positive
and negative in the model elimination method. More
over, from the procedural point of view, model genera-
tion is restricted to proceeding bottom-up (as in forward-
reasoning) starting at positive clauses (or facts). These
restrictions, however, do not hurt the refutation com-
pleteness of the method.

Model generation can also be viewed as wnil hyper-
resolufion. Our calculus, however, is much closer fo
tableaux caleulus in the semse that it explores a tree,
or a tableaw, in the course of finding a proof. Indeed, a
branch in a proof tree obtained by the tableaux method
corresponds exactly to a model candidate.

3 Two Versions of MGTP

3.1 Meta-programming in KL1

Prolog-Technology Theorem Provers such as PTTP and
SATCHMO utilize the fact that Horn clause problems
can be solved very efficiently. In these systems, the the-
orem being-proven is represented by Prolog-clauses and
most deductions are performed as normal Prolog execu-
tion. However, that approach cannot be taken in KL1
because a KL1 clause is not just & Horn clause; it has
extra-logical constructa such as a guard and a commit
operator.

We should, therefore, treat the clanse set as data rather
than as a KL1 program. In this case, the inevitable prob-
lem is how to represent variables appearing in a given
clause set. Two approaches can be considered for this
problem:

(1) representing object-level variables with KL1 ground

Lerms, or

(2} representing cbject-level variables with KL1 vari-
ables

The first approach might be the right path in meta-
programming, where object- and meta-levels are strictly
separated, thereby providing clear semantics. However,
it forces us to write routines for unification, substitution,
renaming, and all the other intricate operations on vari-
ables and environments. These routines would become
extremely large and complex compared to the main pro-
grain, and would make the overhead bigger.

In the second approach, most operations on variables
and environments can be performed beside the underly-
ing system, rather than as routines running on top of it.
This means that a meta-programmer does not have to
write tedious routines, and gains high efficiency.

Also, & programmer ¢an use the Prolog var predicate
to write routines such as occurrence checks in order to

360

make built-in unification sound, if such routines are nec-
essary. This approach malkes the program much more
simple and efficient, even though it males the distine-
tion between object- and meta-levels ambiguous,

In KL1, however, the second approach is not always
possible. This i because the semantics of KLL never
allow us to unse a predicate like var. In addition, KL1
built-in unification is not the same as its Prolog coun-
terpart in that unification in the guard part of a KLI
clause can only be one-way, and a unification failure in
the hud_',r part is rc,gardud 4% i PrOgram error or exoeptinn
that cannob be backtracked.

3.2 Characteristics of MGTP/G and
MGTP /N

Taking the above discussions into consideration, we de-
cided fo develop both the MGTP/G and MGTP/N
provers so that we can use effectively them according
to the problem domains dealt with.

The ground version, MGTP/G, aims to support finite
problem domains, which include most problems in vari-
ous fields, such as database processing and nalural lan-
guage procesging.

For ground model cases, the model generation method
malkes it possible to use just matching, rather than full
unification, if the problem clauses satisfy the ramge-
restrictedness condition ' [Manthey and Bry 88]. This
suggests that it Is sufficient to use KL1's head unification.
Thus we can take the KL1 variable approach for rep-
resenting object-level variables, thereby achieving good
PETECrINADLCE,

The key points of KL1 programming techniques devel-
oped for MGTP/G are as follows: (Details are described
in the next section.)

» First, we translate a given set of clauses into a cor-
responding set of KL1 clauses. This t.rn.nsla.h.nu i
quite simpie.

* Second, we perform conjunctive matching of 2 literal
in & clause against a model element by using KL1
head unification.

» Third, at the head unification, we can automatically
obtain fresh variables for a different instance of the
literal nsed.

The non-ground version, MGTP (N, supports infinite
problem domains. Typical examples are mathematical
thearems, such as group theory and Jmpllcat!o‘ﬂﬂ caleu-
lus.

LA clause is said to be range-restricted if cvary variable in the
clanse has at lepst one oceurrence in its antecedent. For example, in
the 51 problem, all the clawses, C'1-C'6, are range-restricied since oo
variable appears in clause ©8; tha variable X in clanses C1, O3, 04
and 5 has an ocenrrence in their antecedents; and variables X and
¥ in CF have their occurrences o ibs antecedent,

e(1,p(0),0, i=true|B=cont .
cl(l,s(X), [p(X}] R} -trua|R=false.
e(2,q(X),) :=true | R=cont .

c(2, B(‘ﬂ Dq{l)] R} -true |R=false.

C {E,q_(}l) :-true |R=[a(f (X)3].
e r@of, Retmelinfel. oo,
c(6,true,[1, B): -trutiH.![p(a};q{b}]
athema

E(-.-,_,RJ -true|R=Ffail.

Figure 2: 51 problem transformed to KL1 clauses

For nom-ground model cases, where full unification
with occurrence check is required, we are forced to fol-
low the KL1 ground terms approach. However, we do
not necessarily have to maintain variable-binding pairs
as processes in KL1. We can maintain them by using
the vector facility supported by KL1, as is often used in
ordinary language processing systems. Experimental re-
sults show that vector implementation is several hundred
times faster than process implementation.

In this caze, however, we cannot use the programming
technigues developed for MGTP/G. Instead, we have to
usge a conventional technique, thiat i3, interpreting a given
set of clauses instead of compiling it info KL1 clauses.

To ease the programmer's burden, we developed Mefa-
LibraryKeshimura ef. ol 90]. This is a collection of
KLl programs to support meba-programming in KLL.
The meta-library includes facilities such as full unifica-
tion with oceurrence check, variable management rou-
tines, and term memory[Stickel 89][Hasegawa 9lc].

4 Technologies Developed for
Efficiency

4.1 KL1 Compiling Method

This section presents the compiling techniques developed
for MGTF/G to translate given clauses to KL1 clauses.
It also shows a simple MGTP/G interpreter obtained
by using the techniques[Fuchi 90][Fujita and Hasegawa
00)[Hasegawsa et. al. 90a).

4.1.1 Transforming problem clauses to KL1
clanses

Our MGTP/G prover program consists of two parts:
an interpreter written in KL1, and a set of KL1 clauses
representing a set of clanses for the given problem. Dur-
ing conjunctive matching, an antecedent literal expressed
in the head of a KLI clause is matched against a model
element chosen from a model candidate which is retained
in the interpreter.

Although conjunctive matching can be implemented
simply in KLL, we need a programming trick for support-

ing variables shared among literals in a problem clause.
The trick is to propagate the binding for a shared variable
from one literal to another.

To understand this, consider the previcus example, 51.
The original clause set is transformed into a set of KLI
clauses, 2 shown in Figure 2. In c(W,P,5,R), Windicates
clause number; P is an antecedent literal to be matched
against an element taken from a model candidate; 3 iz a
pattern for receiving from the interpreter a stack of literal
instances appearing to the left of P, which have already
matched model elements; and R iz the result returned to
the interpreter when the match suecesds.

Notice that original clause C1 {p(X), s{X) = false)
is translated to the first two KL1 clanses. The conjune-
tive matching for C1 proceeds as follows, First, the in-
terpreter picks up a model element, Fy, from a model
candidate, and tries to match the first literal p(X} in
Cl against Ey by initiating a goal, C{I,EI‘D,R{;I. If the
rnatching fails, then the result By = fail iz returned by
the last LI clause. If the matching succeeds, then the
result Ky = cont is returned by the first K11 clause and
the interpreter proceeds to the next literal (X)) in C1,
picking up ancther model element, B, from the model
candidate and initiafing a goal, o1, By, [Ey], Hz). Since
the literal instance in the third argument, [E,], is ground,
the variable X in [p(X)] in the head of the second KL1
clanse gets instantiated to a ground term. At the same
time, the term (X)) in that head is also instantiated due
to the shared variable X. Under this instantiation, s{X)
15 checked to see whether it matches £y, and if the match-
ing succeeds then the result, By = false, is returned.

4.1.2 A simple MGTP/G interpreter

With the problem clauses are transformed to KL1 clauses
as above, a simple interpreter is developed as shown in
Figure 3%

The interpreter, given a list of numbers identifying
problem clavses and 2 model candidate, checks whether
the clauses are satisfiable or not. The top-level predicate,
clauses/5, dispatches a task, ante/T, fo check whether
each clause is satisfied or not in the current model. T all
the clauses are satisfied in the current model, the result,
sat, is returned by sat/4 combining the results from the
ante processes.

For esch clause in the given clauses, conjunctive
matching is performed betwesn the elements in the model
candidate and the literals in the antecedent of the clause
with ante/7 and antel/9 processes. The conjunctive
mafching for the antecedent literals proceeds from left to
right, by calling /4 one by one, An ante process retains

*In the program, ‘alternatively’ is a KL]1 compiler directive
which gives a preference ameng clauses to evaluate their guards
in such a way that clauses above alternatively are evaluated
before those below it. The preference, however, may not be strictly
obeyed. This depends on implementation.

361

a stack, 5, of literal instances. If the match succeeds at
a literal, L;, with a medel element, P, then P is pushed
onto the stack 5, and the task proceeds to matching the
next literal, Ly, together with the stack, [P]S].

According to the result of o/4: fail, cont, false
or 1ist(F), an antel/9 process determines what to do
next. If the result is cont, for example, antel will fork
multiple ante processes to try to make every possible
combination of elements out of the current model for the
conjunctive matching.

If the conjunctive matching for all the antecedent lit-
erals of a clause succeeds, a cnsq/6 process is called to
check the satisfiability of the consequent of the clause,
cnsq1/8 checks whether a literal in the consequent is a
member of the current model. If no literal in the con-
sequent is & member of the current model, the current
model cannol satisly the clanse. In this case, the model
will be extended with each disjunct literal in the conse-
quent of the clause by calling an sxtend/S process,

After extending the current model, a clauses/5 pro-
cess i called for each extension of the IEI.DL:I.I:'.].:, and the
results are combined by unsat/4. When a clauses pro-
cess for some of the extended models returns sat as the
result, it means that a model is found and the clause
set is known to be satisfiable. If every extension of the
model leads to unsat, the current model is not a part of
any model for the given set of clauses.

Thus, if the top-level elauses/5 process returns sat
ag the result, then the given clause set bas a model and is
satisfiable, and if it returns unsat, then the given clause
set has no model and is unsatisfiable.

4.2 Avoiding Redundant Conjunctive
Matching

To improve the performance of the model generation
provers, it s essential fo avoid, as much as possible, re-
dundant computation in conjunctive matching.

Let us consider a clause, C, having two antecedent
literals. To perform conjunctive matching for the clause,
we nead to pick a pair of atoms out of the eurrent model
candidate, M. Imagine that, as a result of a satisfiahility
check of the clause, we are to extend the model candidate
with &, which is an atom in the consequent of the clause,
€, but not in M. Then, in the conjunctive matehing for
the clause, O, in the next phase, we need to pick a pair
of atoms from M U A, The number of pairs amounts te:

(MUuAP=MxMUMxAUAxMUAxA.

362

| clauses(_,_,_,_,quit) :-trua|true.

alternatively.

clauses([J|Cs] ,C M, A,B) :-tTue|
ante(J,[tru=|¥], 0 .C,M,41,B},
gat(A1,42 4,B), clavses{Ca,C,H, 42 ,B).

clauses([],_._.&,_):-true|A=saz.
antal_,_youcsopo,quit) i-true|troe.
alternatively.

antel(J,[PIM2] ,5,.C,M,4,B) i ~trual
mgtp:c(J,P,5,R),
antel(J,R,P,5,M2,C,M,4,B).

antel_,[],_ ., ,_.A,) :=true|i=sat,

antel(J, fail,_,5,H2,C ,M,4 ,B):~trus|
ante(J,M2,5,C,M,4,B).

antel{J,cont F,3,M2,C,M,4,B) :=trus|
ante(J,N, [PI1S],C,M,AL,B},

antel{_,false,_,._,_,.,M,A,B):-trua|
A=unsgat,B=guit.

antel{J,F,_,5,M2,0,M, 4,B):-1ist{F}|
cneq(F,F,C,H,41,B),

sat{Al,A2,A,B), antel(J M2,5,C,M,A2,B).

sat(A1,A2,4,B), antel(J,M2,5.0,M,42,0).

engql.,_.o.es Quit):~trus|trus.

alternatively.

cnsq([D110s] ,F,C,M,4,B) :-trus|
ensqi(Di, M, De F,C,N,A,B).

enzq([],.F,0,H,4,_)i-trusl
axtand(F,M,C,4,_).

ensql(D, (D], csesesa b,) i=trualA=sat.

cnsgl(.,[],Ds,F,C,N,A4,B):-trual
cnsq(Ds,F,C,M,A,B).

cthervisa. . .

ensql(D, [LI1M2] ,Ds ,F, 0, M,4,B) - ~truel
cnzqi(D,M2,0s,F,C,H,4.B).

extend(_,_,_,.,quit):-tTuelcrue.
alternatively.
extend{[D|Da] ,K,C,4,8) :~tzual
clauzes(C,C,[DIM] AL,),
unzat(hl,AZ,4,8), extend{De,M,C,A2,B).
Cextend{[],_,_,4,_):-true|i=unsat.

sat(eat eat,A,_J}:-true|l=sat.
gat{unsat,_,4,E):-true |A=unsat ,B=quit.
sat{_,unsat A B} :-true |A=wmsat B=quit.

unsat{(unsat unsat, A, _):-true|A=unsat.
unsat(sat,.,4,B):-trus|d=sat ,B=quit.
unsat(_,sat,A,B):-trus|A=sat B=quit.

Figure 3: A simple MGTP /G interpreter

It should be noted here that A = Af pairs were already
considered in the previous phase of conjunctive match-
ing. If they were chosen in this phase, the result would
contribute nothing since the model candidate need not
be extended with the same A, Hence, redundant consid-
eration on M % M pairs should be avoided at this time,
Instead, we have to choose only the pairs which contain
at least one A, This discussion can be generalized for
eages in which we have more than two antecedent liter-
als, any number of clauses, and any number of model
candidates,

We have taken two approaches to aveid the above re-
dundancy. One approach uses & stack to keep the inter-
mediate results obtained by maiching a literal against an
element out of the model candidate. The other approach
recomputes the intermediate matehing results without
keeping them.

Dix A
DixM t— Disg (1 =1)
Six A
Dix A D2x A
D2 Dix M D3{|D2x M
Dy {4 S1x A Sax A
S S2 Sa
Ad, Az, Az —>C

Figure 4: RAMS method

4.2.1 RAMS Method

The RAMS { ramified-stack } method [Hasegawa ef. al,
90a)[Hasegawa ef. al 90b][Fujita and Hasegawa 91] re-
taing in a stack an instance which is a result of matching
a literal against a model element. The use of this method

for & Horn clause case is illustrated in Figure 4, where
M is a model candidate and A is an atom picked from a
model-extending candidate.

o A stack called @ literal instance steck (L1S), is as-
signed to each antecedent literal, A;, in a clause for
storing literal instanees., MNote that LIS for the last
literal expressed in dashed boxes needs not actually
be allocated.

¢ LIS is divided into two parts: [and 5; where
Dii = 1] i3 a set of literal instances generated at
the current stage triggered by A; and 5; is those
created in previous stages.

¢ A task, being performed at each literal, Ai, compuies
the following:
D= A

-Di1-1 :nD,-xﬂU.D;xMUSix&{-izl}

where 4 x B denotes a set of pairs of an instance
taken from A and B. The above tasks are performed
from left to right.

For non-Hern clause cases, each LIS branches to make
a tree-structured stack when case splitting occurs. The
name ‘BAMS' comes from this. The idea 15 as follows:

¢ A model is represented by a branch of a ramified
stack, and the model iz extended only at the top of
the current stack.

¢ After applying the model extension rule to a non-
Horn clause, the current medel may be extended to
ﬂ‘m]tiplt descendant models.

* Every descendant model that is extended from a par-
ent model can share its ancestors with other sibling
models just by pointing o the top of the stack cor-
responding to the parent.

Bach descendant model can extend the stack for it-
self, independent of other sibling models.

The ramified-stack methed not only avwids redundancy
in conjunctive matching but alse enables us to share a
commeon model. However, it has one drawbacl: it tends
to require a lot of memory to retain intermediate literal
instances,

4.2.2 MERC Method

The MERC (Mult:-Eatry Repeated Combination)
method [Hasegawa 9la] tries to solve the above prob-
lem using the RAMS method. This msthod does not
need & memory to retain intermediate results obtained
in the conjunctive matching. Instead, it needs to pre-
pare 2™ = | clauses for the given clavse having n literals
as its antecedent.

363

B Az As /a —
X Generator
S|kel ham o

(A1 A —C

M

A

M 1
NSl
A

sl @] SAE —c

For graund,and fim Asw Ag
{ == means not-uniflable)

rPEZEeeZE

Figere 5: MERC method

An outline of the MERC method is shown in Fig-
ure 5. For a2 clause having three antecedent literals,
Ay, Ay, As — O, we prepare seven clauses. Bach of these
clauses corresponds to & repeated combination of A and
M, and performs conjunctive matching using the combi-
nation patiern. For example, a clause corresponding to
2 cornbination pattern (A, A, M) first matches literal A
against A If the match succeeds, it proceeds to match
the remaining literals, A; and A, againsi an element
picked from Af. Note that each combination pattern in-
cludes at least one A, and that the (M, M, M] pattern is
excluded.

For ground medel cases, oplimization can be used
te reduce the number of clauses by testing the unifi-
ability of antecedent literals. For example, if any an-
tecedent literal in the given clause is not unifiable with
the other antecedent literal in that clause, it is suffi-
cient to consider the following three combination pat-
terns: [A, A, M) [M, A, M] and [M, M, A] . The right-
hand side in Figure 5 shows the clauses obtained after
making the unifiability test.

4.2.3 A-M Method

The problem with the MERC method is that the num-
ber of prepared clauses increases exponentially as the
number of antecedent literals increases. In actual imple-
mentation, we adopted a modified version of the MERC
method, which we call the A-M methed. In place of mul-
tiple entry clavses, the A-M method prepares a template
fikee:
{la. 8][4, M), [M,a])

for clauses with two antecedent literals, and
{['ﬁ: '&'r ":1]1 Iﬂﬁ ﬂ'r M: 1 [&s MI &].:I [M1 &s &It

(A, M, M), [M, &, M), [M, M, A}

364

for clanses with three antecedent literals, and so forth.
According to this pattern, we enumerate all possible com-
binations of atoms for matching the antecedent literals of
given clanses.

There are some trade-offs between the RAMS method
and the MERC and A-M methods. In the RAMS
method, every successful result of matching a Hteral 4;
against mode! elements is memorized so that the same
literal 1s not rematehed against the same model element.
On the other hand, both the MERC and A-M methods
de not nesd to memorized information on partial match-
ing. However, they still contain & redundant compula-
tion. For instance, in the computation for [M, A, A] and
{M, A, M) patterns, the commeon subpattern [M, A], will
be recomputed. The RAMS method can eliminate this
sorf of redundancy.

4.3 Lazy Model Generation

Model-peneration based provers must perform the follow-
ing three operations,

¢ create new model elements by applying the model
extension rule to the given clauses using a sel of
model-extending atoms A and a model candidate
get M (mode! extension).

o make a sulsumplion test for a created atom to check
if it is subsumed by the set of atoms already being
created, usually by the current model candidate.

o make a false check to see if the unsubsurmed model
element derives false by applying the model exten-
gion rule to the tester clauses (rejection test),

The problem with the model generation method is the
huge growth in the number of generated atoms and in the
coraputational cost in time and space, which is incurred
by the generalion processes.

Ta solve this problem, it is important to recognize that
proving processes are viewed as generation-and-tesé pro-
eesges, and that generation should be performed only
when testing requirves it.

For this we proposed a lazy model generation algo-
rithm [Hasegewa 91b][Hasegawa 91d][Hasegawa ef. al
92a||Hasegawa ef. al 92b] that can reduce the amount
of computation and space necessary for oblaining proofs,

This section presents severzl algorithms, including the
lazy algorithm, for the model generation method, and
compares them in terms of time and space. To simplify
the presentation, we assume that the problem is given
only in Horn clavses. However, the principle behind these
algotithins can be applicable to nen-Horn clauses as well.

4.3.1 Basic Algorithm

The basic algorithm shown in Figure § performs model
generation with a search strategy in a breadth-first fash-

M= ¢;
D= {A|(true - A) € a set of given clauses};
while D & ¢ do begin e
=D A;
il O Mypeater (&, M) 3 false
then return(suceess);
new = CJ Meonerater (8, M);

M=MUA;
new' := subsurnplion(new, M U D);
B = DU new

end return(fail)

Figure 6: Basic algorithm

ion. This is essentially the same algorithm as the hyper-
resolution algorithm taken by OTTER [McCune 90] 2.

In the algorithm, M represents model candidate ,
D' represents the model-extending candidate (a sel of
model-extending atoms which are generated as a result
of the application of the model extension rule and are
going to be added to Af), and A represents 2 subset of
I, Initially, M is set to 20 empty set, and [) is a set of
positive [unit) clauses of the given problem.

In each cycle of the algorithm,

1) A is selected from D,

2) a rejection test [conjunctive matching for the lester
clauses) is performed on A and M,

3) if the test succeeds then the algorithm terminates,

4) if the test fails then model extension (conjunctive
matching on the generator clauses) is performed on

A and M, and

5) asubsumption test is performed on new against MU
i,

If D is empty at the beginning of a cycle, then the algo-
rithm terminates as the refutation fails (In other words,
& model is found for the given set of clauses),

The conjunctive matching and subsumption test is
represented by the following functions on sets of atoms.

CI Mo (A, M) =
{a‘C | gy, ..., 0dq = ol
A Ay, An—+CeCs
n oA =oB(B e MUA)L < Vi<n)
M il <i<n)ed; =eB(F e A)}

subsumption(A M) = _
{€ € A |¥B € M(EB dosen't subsume C)}

*OTTER is a slightly optimized version of the basic algorithm
where negative unit clavses are tested on literals in new ag goan 2a
they are generated as the full-test algorithm described in the next

section.

M = ¢;
D= {A] (true = A) € 2 set of given clauses};
while D # ¢ do begin
D=0 —4;
TEW 1= GJMGEMFMEIF I:ﬂ., -'w};
Moo= Muh,;
new' i= subsumplion(new, M U D);
if OJ Mrepee(new ., MU D) 3 false
then return(success);
D=0 Unew'
end return(fail)

Figure 7: Full-test algorithm

4.8.2 Full-Test Algorithm

Iigure 7 shows a refired version of the basic algorithm
called the full-test alporithm, The algorithm 1) selects
A from D, 2) performs model extension using & and
M generating new for the next generation of A, 3} per-
forms a subsumpiion test on new against M U D, and
4) performs a rejection test on new’, which passed the
subsumption test, together with M U D,

Theugh this refinement seems to be very small on the
text level, the complexily of time and space is signifi-
cantly reduced, as explained later. The points are as fol-
lows, The algorithm performs subsumption and rejection
tests on all elements of new rather than on A, & subset
of new generated in the past cycles. As a result, if a fal-
sifying atom *, X, is included in new, the algorithm can
terminate as soon as folse is derived from X. That is,
the algorithm neither overlosks the falsifying atom nor
puts it into 0 as the basic algorithm does. Thus, it never
generates atoms which are superfluous after X is found.

4.3.3 Lazy Algorithm

Figure 8 shows another refinement of the basic algorithm,
the lazy algorithm. In this algerithm, it is assumed that
two processes, one for generator clauses and the other
[or tester clauses, run in parallel and eommunicate with
each other,

The tester process 1) requests A to the generator pro-
cess, 2) performs a subsumption test on A against MUD,
and 3) performs a rejection test on A,

For the generator process,

1) if a buffer, Buf, used for storing a set of atoms which
are the results of an application of the model exten-
sion rule, is empty, the generator selects an atom, e,
from [and sets & code for model extension (delay
CJM) for & and M onte Buf,

2) waits for a request of A from the tester process, and

44 falsifying atom, X, is an atom that satisfies the antecedent
of & negative clause by itself or in combination with Mo D,

3es

process tester:
repeat forever
request{ generator, A);
Al = subsumption(A, M U D);
if CTMp (A M UD) € false
then return(success);
D:=DUuA,

process generator:
repeat forever
while Buf = ¢ do begin
D=D—{e}
Buf :=delayCJMg{{e}, M);
M= MuU{e} end;
wait(tester);
& =forceBuf;
until D = ¢ and Buf = ¢.

Figure 8: Lazy algonthm

3) forces the buffer, Buf, to generate A,

delay {zbove) is an operator which delays the execu-
tion of its operand (a function call), Hence, the function
call, CJMg({e}, M), will not be activated during 1), but
will be stored in Buf as a code. Later, at 3), when the
force operator is applied to Buf, the delayed function
call ie activated. This generates the values that are de-
manded. Using this mechanism, it is possible to generate
only the A that is demanded by the tester process. After
the required amount of A is generated, a delayed fune-
tion call for genseating the rest of the atoms is put into
Buf as a continuation,

The atoms are stored in M and D in a way that makes
the order of generating and testing the atoms exactly
the same as in the basic algorithm. The point of the
refinement in the lagy zlgorithm is, therefore, to equalize
the speed of generation and testing while keeping the
order of atoms that are generated and tested the same as
that of the basic algorithm. This eliminates any excess
consumption of time and space due to over-generation of
redundant atoms.

Unit

4.4 Optimization of Tester

Clauses

Given the unit tester clauses in the problem, the threa
algorithms above can be further optimized. There are
two ways to do this.

One is a dynamic way called the lookahead method. In
this method, atoms are generated excessively in the gen-
eration process in order to apply the rejection rule with
unit tester clauses. More precisely, immediately after
generating new, the generater process generates new, o,
which would be regenerated in a succeeding step. Then

366

TEW, ey 1% bested with unit tester clauses. If the test fails,
then new,.. is discarded whereas new is stored.

< A M >= generate(Ay, Az =) = new

< new, M U D »= generate(Ay, Ay — C) = newnen
REW, e = tesi(A — false)

The reason why nett.. is not stored is that testing
with unit tester clauses does not require M or I, but can
be done with only netwge itself. On the other hand, for
tester clauses with more than one literal, testing eannot
be completed, since testing for combinations of atoms
from meit,.- would not he performed.

NEWy ¢ Will be regenerated as new in the succeeding
step. This means that some conjunctive matching will be
performed twice for the identical combination of atoms
in & model candidate. However, the increase in computa-
tional cost due to this redundancy is negligible compared
to the order of total computational cest.

The other method is a static one which uses partial
evaluation. This is used to obtain non-unit tester clauses
from a unit tester clause and a set of generator clauses
Iy resolving the two,

Generator : Ay, A — C.
init tester 1 A — false.

1
Neon-unit tester 1 iy, 04; — false.
where ol = gd

The computational complexity for conjunctive match-
ing using the partial evaloation methed is exactly the
same as that using the lookahead method. The partial
evaluation methed, however, s simpler than the looka-
head J'I;J-cl.]mutl1 since the former does not need any maodifi-
cation of the prover iHsell whereas the latter does. More-
aver, the partial evaluation method may be able to reduce
the search space significantly, since it can provide prop-
agating goal information to generater clauses. However,
in general, partizl evelustion results in an increase in
the number of clanses, Hence it may make performance
WOLSE,

The two optimization techniques are equally effective,
and will optimize the model generation algorithms to the
same order of magnitude when they are applied to unit
tester clanses.

4.4.1 Summary of Complexity Analysis

In this section, we briefly describe the time and space
complexity of the algorithms described above. The de-
tails are discussed in [Hasegawa ef. al. 92a]. For simplic-
ity, we assumed the following.

1) The problem consists of generator clauses with two
antecedent literals and one consequent literal, and
tester clanses with at most two literals.

2) A is a singleton set of an atom selected from D.

3) The rate at which conjunctive matchings succeed for
a generator clause, and atoms generated as the result
pass & subsumption test, the survival rate, is p(0 <
p<1).

4) The erder in which A is selected and atoms are gen-
ereted according to A is fixed for all of the three
algorithms.

Table 1 summarizes the complexity analysis. T/5/G
stands for complexity entry of rejection test fsubsump-
tion test/model extension, and M stands for the required
memory space. The value of ol < a < 2) represents the
efficiency factor of the subsumption test. o = 1 meana
that a subsumption test is performed in a constant erder,
because the hashing effect is perfect. o = 2 means that a
subsumption test is performed in a time proportional to
the number of elements, perhaps because a linear search
was made in the list. As for the condensed detachment
problem, the hashing effect is very poor and o is very
close to two.

The memory space required for the basic, full-testlazy
and lezy lookahead algorithms decresses along this arder
by a sguare root for sach. This means that the number
of atoms generated decrcases as the algorithm changes,
which in turn implies that the number of subsumption
tests decreases accordingly. In the case of @ = 2, the
mast expensive computation of all is 2 subsumption test,
and a decrease in its complexity means a decrease in total
complexity. On the other hand, in the case of @ = 1, the
most expensive computation of all is the rejection test
with two-literal tester clavses. This situation, however,
is the same for all of the algerithms and adopting lazy
computation will result in speedup by a constant factor.
In any case, by adopting lazy computation, the complex-
ity of the total computalion is dominated by that of the
rejection test .

4.4.2 Performance Experiment

An experimental result is shown in Table 2. The ex-
ample, Theorem 4, is taken from [Overbeek 90]. We did
not use heuristics such as weighting and sorting, but only
limited term size and eliminated tautologies.

Every algorithm is implemented in KL1 and run on
a pseudo Multi-PSI in PSI-IT [Nakashima and Nakajima
87]. The OTTER euntry represents the basic algorithm
optimized for unit tesfer clauses and implemented in
KLl. The figures in parentheses are of algorithms for
tester clauses with two literals as a result of applying
partial evaluation to unit tester clauses. In unify entries,

367

Table 2: Experimental result { Theorem 1)

basic full-test lazy lazy lookahead OTTER
Time (sec) = 14000 109.17 107.58 210.45 10916
(463.86) (82.40) (81.82) {81.69) {462.13)
Unify — | 1636+74800 | 1656-74737 BLO56+4095 165674800
(43081 +74254) | (43981+4158) | {4308144158) § (43981+1095) | (43981474254)
Subsumption — 5736 5736 593 3736
test (5674) (596) (596) {593 {5674)
M = 377 272 63 272
Memory (272 {63) {63) (63) (272}
D - 1384 1351 300 1381
{1375) (209) {209) {209) {1373)

Table 1: Summary of complexity analvsis

Urnit tester clanse
T 5 G M
basic [gm? | pp®m™ | p'm? | p'm?
full-test [/ lazy | pm? pm m* | pm?®
lazy lookahead | m* | (u/p)m® | m/p m

2 literal tester clause

T 5 G M
bagic | p#m¥ | gotm™ | og"m | pPm

full-test [lazy | p'm™] am®™® | m*| pm*
t m is the number of elements in model candidate
when false is detected in the basie algorithm.
{ pis the survival rate of a generated atom, uis the
rate of successful conjunctive matchings (p £ p).
and o is the efficiency factor of a subsumption test.

a figure to the left of + represents the number of conjunc-
tive matchings performed in tester clauses. and a figure
to the right of + represents the number of conjunctive
matchings performed in generator clauses.

These results are a fair reflection of the complexity
analysis shown in Table 1. For instance. to solve The-
orem 4 without partial evaluation optimization. the ba-
sic algorithm did not reach a goal within 14,000 seconds.
whereas the full-test and lazy algorithms reached the goal
in about 400 seconds. The most time-consuming compu-
tation in all of the three algorithms (basic, full-test and
lazy), is rejection testing. The difference in the time com-
plexity between the basic algorithm and the other two
algorithms is (pp*m*)/(pm?) = p*m™. which results
in the time difference mentioned above.

The basic algorithm and the full-test/lazy algorithm
do not differ in the number of unifications performed in
the tester clauses. However, the number of unifications
performed in the generator clauses and the number of
subsumption tests decreases as we move from the hasic

algorithm to the full-test and lazy algorithms. The de
crease is about vne hundredth when partial evaluation is
not applied. and about one tenth when it is applied.

Bv applving lockahead optimization. the lasv algo-
rithi is further improved, Though the lookahead opti-
mization and the partial evaluation optimization are the-
oretically comparable in their order of improvement. their
actmal performance is sometimes very different. For The-
orem 4, the lezy algorithm optimized with partial eval-
uation took $1.32 seconds. whereas the same algorithm
optimized with lookahead optimization took 21045 sec-
onds. This difference is caused by the difference in the
number of unifications performed in the tester clavses.
This iz because i the lazy algorithms with lookahead
optimization. the generator clause. p{ X). ple| X.}]] =
pl¥). generates an atom before the unit tester clanse.
plA) —+ false tests the atom. In the same algoritho.
with the partial evaluation optimization. the instantia-
tion information of 4 is propagated to the antecedent of
plY L plef X A)) — folse and the unilication failure can
be detected earlier

Partial evaluation optimization is effective loe all the
algorithms except OTTER. This is becavse luokahead
optimization. in the OTTER algorithm. & alveady ap-
plied to unit tester clauses, and the algorithne somains
the basic one for non-unit tester clauses,

5 Parallelizing MGTP

There ave several ways to parallelize the proving provess
in the MGTP prover,
These are o exploit parallelism in:

s conjunctive matching in the antecedent part.
& subsumption test. and
& case splitting

For ground nou-Horn cases. it is sulficient to exploil
OR parallelism induced by case splitting. Here we use

368

Mdastar

W -

Figure 9: Simple allocation scheme

OR parallelism to seek a multiple model, which produces
multiple solutions in parallel.

For Horn clause cases, we have to expleit AND paral-
lelisen. The main source of AND parallelism is conjunc-
tive matching. Performing subsumption tests in paralle]
is also very effective for Horn clause cases,

In the current MGTP, we have not yet considered non-
ground and non-Horn cases.

5.1 OR Parallelization for MGTP/G

With the current version of the MGTP/G, we have
only attempted to exploit OR parailelism[Fujita and
Hasegawa 00) on the Multi-P51 machine[Nakajima et. al,
89).

5.1.1 Proecessor Allocation

The processor allocation methods we have adopted
achieve ‘bounded-OR" parallelism in the sense that OR-
parallel forking in the proving process is suppressed so as
to meet resiricted resource circumstances,

One simple way of doing this, called simple allocation,
iz depicted in Figure 9. We expanded model candidates,
starting with an empty model, using a single master-
processar until the number of candidates exceeded the
number of availeble processors. We then distributed the
remaining tasks to slave-processors. Each slave processor
explored the branches assigned without further distribut-
ing tasks to any other processors. This simple allocation
scheme for task distribution works fairly well, since the
communication cost can be minimized.

5.1.2 Performance of MGTP/G on Multi-PSI

One of the examples we used was the N-queens problem.
This problem can be expressed by the following clause
s

Table 3: Performance of MGTP/G on Multi-PSI

Number of processors
Problem 1 2 4 2 14
d-queens &
Time (mses) 40 40 39 44 44
Speadup 1.00 1.00 1.02 0.50 0.80
Kred 145 147 1.48 1.50 1.50
fi-quesns
Time (maec) G50 407 266 189 154
Speedup 1.00 1.59 244 A4 4,22
Kred 23.7 23.7 il 238 218
B-gueoens .
Time (msec) | 12,538 6,425 | 3,336 | 1,815 | 1,005
Speedup 1.00 1.95 3.76 6.91 12.57
Hrad 480 460 EL] 480 460
10-gueens
Time (msec) || 315,498 | 159,881 | 79.921 | 40,852 | 21,820
Speedup 1.00 1.97 | 384 | 7.72| 145
Kred | 11,117} 11,117 | 13,117 { 11,117 | 13,117

true — p(1,1); p(1,2);. . p(1,n).
true — p(2,1);p(2,2);. .. p(2, n).

true — p(n, 1); p(n,2);.. . ; p(n,n).
p(X0, 1), p(X0, Ya), unsa fe(Xy, V1, X0, V2] — false.

The first ¥ clauses simply express every possibility of
placing queens on the N by N chess board. The last
clause expresses the constraint that a pair of quesns must
satisfy. The problem can be solved when either a model
{one solution} or all of the models (all solutions)® are
obtained for the clause set.

Performance was measured on the MGTP/G prover
running on the Multi-PSI with the simple allocation
method. Table 3 gives the result of the all-solution search
on the N-queens problem. Here we should note that the
total number of reductions stays almost constani, even
though the number of processors used increases. This
means that no extre computation is introduced by dis-
tributing tasks. Speedup obtained by using up to 16
proceszors is shown in Figures 10 and 11. For the 10-
gueens and 7-pigeons problems, the speedup obtained ag
the number of processors increases is almost linear, The
speedup rate is small only for the d-queens problem. This
is probably because the constant amount of interpreta-
tion overhead in such a small problem will dominate the
tasks required for the proving process.

SAll models can be obtained, if they are finite, by the MGTP
interprater in all-sclutien mede,

rd
{ -
- /,j
.- . r o
12 -
L] v“/ ;ﬂ-’
u s ——
il /r" v —
- r"'
' 74
4 4 1l
T
- . i
z E = ? i
1 - =
L] L -
61 2 4 i] 1w 18 - L]
Rusrzer 2f FEa
Figure 10: Speedup of MGTP/G on Multi-P5I
([N-queens) .
i
1%
" |
. ALE
" Pa
—
i ’ /”f =1 <+
: . | e
NN~
. 1 o R
H
=
[-
i 1
a q
g v 2 2 L] [] L]] 14 L]
Humbar of PES

Figure 11: Speedup of MGTP/G on Multi-PSI
I:Pigmn]1:\]1:}

Y

369

5.2 AND Parallelization for MGTP /N

We have several cheoices when parallelizing model-
generation based theorem provers:

1) proofs which change or remain unchanged according
to the number of PEs used,

2] model sharing (copying in a distributed memory ar-
chitecture) or model distribution, and

3} master-slave or masterless,

The proof obtained by a proof changing prover may be
changed according to a change in the number of PEs. We
might get super-linear speedup if the length of a proof de-
pended on the number of PEs used. However, we cannot
always expect an increase in speed as the mumber of PEs
increases,

On the other hand, a proof unchanging prover does not
change the length of the proof, no matter how many PEs
we use. Hence, we could always expect greater speedup
as the number of PEs inereased, though we would only
get linear apeedup at best.

With model tharing, each PE has a copy of the model
candidates and distributed model-extending candidates.
With model distribution, both the model candidates and
model-extending candidates are distributed to each PE.

Model sharing and model distribution both have ad-
vantages and disadvantages. From the distributive pro-
cessing point of view, with model distribution, we can
obtain memory scalability and mere parallelism than
with the model sharing method. For a newly created
atom &, there are n parallelisms in the model distribu-
tion method, since we can perform conjunctive match-
ings and subsumption tests for it in parallel where n is
the number of processors. On the other hand, in the
model sharing method, we cannot exploit this kind of
parallelism for 2 single ereated atom unless conjunctive
matchings and subsumption tests are made for a different
region of model candidates,

From the communication peoint of view, however, the
communication cost with model sharing is less than with
model distribution. The communication cost with model
distribution increases as the number of PEs increases,
since generated atoms need to flow to all PEs for sub-
sumption testing. For example, if the size of model el-
ements finally obtained is M, the number of communi-
cations amounts to O{M?) for 2 clause having two an-
tecedent literals. On the other hand, with model sharing,
we do not have to flow the generated atoms to all PEs.
In this case, time-consuming subsumption lests and con-
functive matchings can be performed independently at
each PE, with minimal inter-PE communication.

The master-slave configuration males it easy to build a
patallel system by simply connecting a sequential version
of MGTP/N on a slave PE to the master PE. However,
its devices must be designed to minimize the load on

370

the master process. Omn the other hand, a masterless
configuration such &s ring connection allows us to achieve
pipeline effects with better load balancing, whereas it
becomes harder to implement suitable control to manage
collaborative work among PEs.

Our policy in developing paralle]l theorem provers is
that we should distinguish between the speedup effect
camsed by parallelization and the search-pruning effect
cavsed by strategies. In proof changing parallelization,
chaonging the number of PEs is merely betiing, and may
cause a strategy Lo be changed for the worse even if it
results in the finding of 2 shorter proof,

In order Lo ensure the validity of our policy, we imple-
mented proofl changing and unchanging versions. In the
following sections, we describe actual parallel implemen-
tations and compare them.

5.2.1 Proof Changing Implementation

1. Model Sharing
This implementation uses model sharing, and a 6ng
architecture in which process;(l < { < n) iz con-
nected to process;; and process, is connected to
process;, where n is the number of PEs|Hasegawa
IETR

process; has a copy of model candidates M and dis-
tributed modsl-extending candidates D;.

A rough shetch of operations performed in
precess(l < i = n) follows,
{1) Receive A;_, from process;_;.

{2) Pick up an atom & from [y such that & is
not subsumed by any elements in M and Ay,
D; == D; - {&).

(3) Ayi= A U {4}

{4] 1' '::.J "lHTHf!"[{éI-}!- ;H Ulﬂq_l } 3 fﬂ-!-ﬂ'\: tb.m S5€n d
a termination message to all processes, other-
wise,

{Ej D{ = ﬂi'u GJMC-‘:n-m'ntnr[{'Ei}yM u ﬂ'-|I-—I:|-

(6) M= MuA; (update M in process;).

(T} Send A; to processiy.
For process,, instead of aclions (3) and (6), the fol-
lowing actions are performed.

(3 Ay = {&]), and

(6" M :=MUuA,.

Mote that actions (4)~(3) can be performed in par-
alkel.

Figure 12 shows how moedels are copied, and con-
junctive matching is executed in a pipeline manner
in the case of n = 4.

PE1 PEz PEa PEs

-

EEMA
==

.

=1
N

hne‘#
<l

11 T |= Stage T
16 8 1
a] = d Stage s
a d [
7| ¢ |Smgel [H | a_|=
8 b < -'Il'
5 [A I b | Stege4
4 b omhs a
k] [#] - E:] Be
2 a 1
k] a :—4‘ Stage 2
A M M M

Stage 1

Figure 12: Proof Changing and Model Sharing

A letter denotes a model candidaie element and an
asterisk indicates an element on which conjunctive
matching is performed. For example, process; on
FE; selects an unsubsumed model element a (from
its own model-extending candidate) at time ¢;, and
sends it to process; on PEy.

process; stores element o into the model candidates
in PE,, proposes a model-extending element b, sends
a and b to the processs, and starts . conjunctive
matching of b and {a} U M.

Note that conjunclive matching in a process; can be
overlapped. For example, the conjunctive matching
in stage 6 does not have to wait for the completion of
the conjunctive matching in stage 2. This exploits
pipeline effects very well, resulting in low commu-
nication cost compared to the computation cost for
conjunctive matching,

2. Model Distribution

This implementation takes model distribution and
a ring architecture. Each process has its own dis-
tributed model candidates and distributed model-
extending candidates. The algorithm for each pro-
cess is similar to the sequential basic algorithm.
They differ in that: 1) conjunctive matching cannot
be completed in one process because model candi-
dates are distributed. Thus the eontinuations of con-
junctive matching in each process need to go around
the ring, and 2) newly created atoms have to go
around the ring for subsumption testing.

5.2.2 Proof Unchanging Implementation

We implemented a proof unchanging version in a master-
slave configuration, and model sharing based on the lazy
model generation. In this implementation, generator and
subsumption processes run in a demand-driven mode,

while tester processes run in a data-driven mode. The
main advantages of this implementation are as follows:

1) Proof unchanging allows us to obfain greater
speadup as the number of PEs increases,

2) By ulilizing the synchronizaiion mechanism sup-
ported by KL1, sequentiality in subsumption testing
is minimized.

3) Since slave processes sponfaneously obtain tasks
from the master, and the size of each task is well
equalized, good load balancing is achieved.

4} By utilizing the KL1 stream date type, demand-
driven control is essily and efficiently implamented.

By using dernand-driven control, we cannot only sup-
press unnecessary model extensions and subsumption
tests but alse maintain a high running rate, which is the
key to achieving linear speedup.

The model generation method consists of three tasks:

1] generation,
2} subsumption test, and
3) rejection test,
We provided three processes to cope with this:
e Ggenerator),
+ S(subsumption tester), and
s Trejection tester),

The G/ T/ 8§ process has a pointer i/ § /k which indicafes
an element of the stack, shown in Figure 13. The stack
elements are model candidates or model-extending can-
didates, In the figure, M denotes model candidates for
which conjunctive matching performed by &is completed
and [denotes model-extending candidates on which the
subsumption test is completed. G T/5 process iterafes
the following actions.

G: performs model extensions by using the i-th element
(A} and the 1,...,1=1 «th elements (M), and sends
newly created atoms to 5. i =i+ 1.

S: performs subsumption tests on the newly ereated
atoms agaimst 1,..., k=1 -th elements (M U D},
and pushes the unsubsumed atoms to the stack.
k = k + ! where ! iz the number of unsubsumed
atoms.

T: performs model rejection tests on the j-th slement
and the 1,...,j—1 -th elements.

371

—§

T T dn(l,1al-1)

+—G dm{i,1.i-1}

Figure 13: Lazy Implementation

Figure 14 shows a process structure for the preof un-
changing parallel implementation. The central box repre-
sents the shared model and model-extending candidates.

The upper boses represent atoms generated by the gen-
erator (i and the arrows indicate the order in which the
atoms are sent to the master process. Proof unchanging
is realized by keeping this order. To make the system
proof unchanging, the sequence order in which M and
I are updated must remain the same as the sequence
in a sequential case. The master process sends an atom
generated by a generator process to a subsumption tester
process in the same order as the master receives the atom,
that is, the master aligns the elements generated by gen-
erator processes 5o as to be in the same order as in the
sequential case.

Many Gf T/ 5 processes work simultaneously. Themas-
ter process is introdueed to contrel task distribution, that
is, giving a different task (A} to a different process. Each
5 process requests A" to & & process through the master
process. This means that the communication befween &
and S processes is indirect.

The critical resource for 5 processes is the model-
extending cendidates I, The critical regions are the
updating of D by D = D U new' and a part of
subsumption{new, M U D) (see Figure 8).

Most elements of MU D have already been determined
by some subsumption tester process and synchronization
in subsumption testing can be minimized so that most
parts of subsumption tests should not be critical.

To exclusively access the critical resource D), each §
process requests to the master a pair of A" and a key
which indicates the right to update. If A" is subsumed
by the already determined elements in M U .D, the key
is returned to the master process without any reference
to fhe key. [n this case, there is no synchronization with
other S processes, If A" is not subsumed by the already
determined elements in M U D, the 5 process refers to
the key to see if it has the right to update, and updates
Dby D= DU A" if it has, Otherwise, the process
waits until the other § process updates D. If the other
S process updates I, the subsumption test is performed
on the added elements.

2

— kK
— |

— |

Figure 14: Proof Unchanging

The critical resources for the ' processes are both the
model candidates M and the model-extending candidates
D). This is similar to tester processing.

5.2.3 Performance of MGTP/N on Multi-PSI
and PIM

Some experimental results for the proof changing and
unchanging versions in model sharing are shown in Ta-
bles 4 and 5, and Figures 15 and 16. Each program is
implemented in KL1 and runs on the Multi-PSL

Table 4 shows a performance comparison befween the
two versions with 16 PEs. In the proof unchanging ver-
sion {PU column), we limited the term size and elimi-
nated tautologies. In addition to the above, in the proof
changing version (PC eolumn), we used heuristics such
as weighling and sorting. All problems are condensed
detachment problems [MeCune and Wos 91).

We measured performance with 1, 2, 4, 8 and 16 PEs.
In the PC time entry column, the number of PEs in
parentheses indicates the number of PEs which vield the
hest performance. In the proof unchanging version, we
always got the best performance with 16 PEs, whereas
we sometimes got the best performance with 8 PEs in
the proof changing version. We also have an example in
which we got the best performence with 2 PEs.

This comparison impliss that super-linear speedup
does not always signify an advantage in a paralleliza-
tion method, because the proof unchanging version al-

ways beats the proof changing version in absolute speed

with the problems used in the table.
Figures 15 and 16 display the speedup rafio for the
problems 23, #58, £77, #66, #92, and #112 using the

Table 4: Performance Comparison (16PEs)

Problem PU PC
Time (sec) | 218.77 | 6766 (16 PEs)
#3 | KRPS/PE | 34.68 25.99
Speedup 13.27 ~ -
Time (sec) 3.75 | 157.63 (16 PHs) |
#6 | KRPS/PE | 1247 17.75
Speadup 3.65 _6.75]
Time (sec) 3.53 .10.37 (8 FPEas)
#56 | KRPS/PE | 13.39 3.97
Speadup 3.53 415.57
Time (sec) 12.80 | 27.32 (16 PEs)
#58 | KRPS/PE | 27.51 3.75
Speedup 9.23 66.32
Time (sec) 4.56 48.37 (16 PEs)
263 | KRPS/PE | 20.01 15.24
Speedup 6.06 11.07
Time (sec) 6.07 | 23.41 (16 PEs) |
#69 | KRPS/PE | 16.69 4.52
Speedup 4,98 2.90 |
Time (sec) 3.62 | 12.17 (16 PEs)
#72 | KRPS/PE | 14.02 2,10
Speedup 4.47 45.51
Time (sec) | 37.10 62.07 (8 PEs)
277 | KRPS/PE | 36.66 25.62
Speedup | 12.65 109.24

Figure 15: Spesdup ratio 1

———
o 2 4 a a 10 12 14 18
Mo. of PEs

Figure 16: Speedup ratio I1

Tahle §: Performance for 16/64 PEs

Problem 16 PEs 64 Pls
Time (sec) 41725.98 11056.12

Th & Reductions | 38070940538 | 40759689419
| KRPS/PE §7.03 57.60

| Speedup 1.00 377
Time (zec) 48629.93 1351447

Th 7 HReductions | 31281211417 | 37407531427
KRPS/PE 40.20 43.25
Speedup 1.00 3.60

procf unchanging version. There is no saturation in per-
formance up to 16 PEs and greater speedup is obtained
for the problems which consume more time.

Table 5 shows the performance obtained by running
the proof unchanging version for Theorems 5 and 7 {Over-
beek 90] on Mulii-PS] with 64 PEs. We did not use
heuristics such as sorting, but merely limited term size
and eliminated tautologies. MNote that the average run-
ning rate per PE for 64 PEs is actually a little higher
than that for 16 PEs. With this and other results, we
were able to obtain almost linear speedup.

Recently we obtained a proof of Theorem 5 on
PIM/m [Nakashima ef. ol 92] with 127 PEs in
2870.62 sec and nearly 44 billion reductions® (thus
120 KRP5/PE). Taking into account the fact that the
PIM/m CPU is about twice as fast as the Multi-PSI
CPU, we found that near-linear speedup can be achieved,
at least up to 138 PEs,

SThe exact figure was 43,938,240,529 reductions

73

6 Conclusion

We have presented two versicns of the model-generation
theorem prover MGTP implemented in KL1: MGTP/G
for ground models and MGTP/N for non-ground mod-
els. We evaluated their performance on the distributed
memory multi-processors Multi-PSI and PIM.

When dealing with range-restricted problems in model-
generation theorem provers, we omly need matching
rather than full unification, and can make full use of the
language features of KL1, thereby achieving good effi-
ciency.

The key technigues for implementing MGTP/G in KL1
are as follows:

(1) A given set of input clauses of implicational form are
compiled into a corresponding set of KL1 clauses,

(2} Generated models are held by the prover program
instead of being asserted.

(3) Conjunctive matching of the antecedent literals of an
input clause against a model element is performed

by very fast KL1 head unification.

(4} Searching for a model element that matches the an-
tecedent is performed by computing a repeated eom-
hination of model elements by means of loop execu-
tions instead of backtracking.

(5) Fresh variables for a different instance of the an-
tecedent literal are obtained automatically just by
calling a KL1 clause.

These techniques are very simple and straightforward yet
effective.

For solving non-range-restricted problems, however, we
cannot use the above techniques developed for MGTP/G.
If the given problem is Horm, it can be solved by the
MGTP prover extended by incorporating unification with
pecurrence check, without changing the basic structure of
the prover. For non-Horn problems, however, substantial
changes in the structure of the prover would be required
in order to manage shared variables appearing in the con-
sequent literals of a clause. Accordingly, we restricted
MGTP/N to Hern problems, and developed a set of KL1
meta-programming tools called the Meta-Library to sup-
port full wnification and the other functions for variable
management,

To improve the efficiency of the MGTP provers, we
developed RAMS, MERC, and A-M methods that en-
able us to avoid redundant computations in conjunctive
matching. We have obtained good performance results
by using these methods on the PSI.

Moreover, it is important to avoid very great increases
in the amount of time and space consumed when proving
hard theorems which require deep inferences. For this
we proposed the lazy model generation method, which

374

can decrease the time and space complexity of the basic
algorithm by orders of magnitude. Experimental results
show that significant amounts of computation and mem-
ory can be saved by using the lazy algorithm.

he parallelization of MGTPF iz one of the most im-
portant issues in our research project.

For non-Horn ground problems, & lot of OR parallelism
caused by case splitting can be expected. This kind of
problem is well-suited to a local memeory multi-processar
such as Multi-FSI, en which it is necessary to make the
granuality as large as possible so that communication
coste can be minimized. We obtained an almost linear
spesdup for the n-queens, pigeon hele, and other prob-
lems on Multi-P3[, using a simple allocation scheme for
task distribution.

For Hern problems, on the other hand, we had to ex-
ploit the AND parallelism inkerent in eenjunctive maftch-
ing and subsumplion. Though the parallelism is large
enough, it seemed rather harder fo exploit than OR par-
allelism, since the Multi-P5I is not suited to this kind
of fine-grained parallelism. Nevertheless, we found that
we could obtain good performanee and scalability by us-
g the AND parallelization methods mentioned in this
paper,

In particular, the recent results obtained by running
the MGTP/N prover on PIM/m shawed that we could
achieve linear spesdup for condensed detachment prob-
lems, at least up to 128 PEs. The key technique is the
lazy model generation method, that aveids the unneces-
sary computetion and use of memory space while main-
taining & high running rate.

For MGTP/N, full unification is writien in KLI, which
is thirty to one hundred times slower than that written in
C on SUN/3= and SPARCs. To further improve the per-
formance of MGTP/N, we need to incorporate built-in
firmware functions for supporting full unification, or to
develop KL eampiling techniques for non-ground mod-
els,

Through the development of MGTP provers, we con-
firmed that KLI is a powerful tool for the rapid prototyp-
ing of concurrent syetems, and that parallel automated
reasoning systems can be easily and effectively built on
the parallel inference machine, PIM. -

Acknowledgment

We would like to thank Dr. Kasuhiro Fuchi, the directer
of ICOT, and Dr. Koichi Furukawa, the deputy directer
of ICOT, for giving us the opportunity to do this research
and for their helpful comments. Many fruitful discussions
toak place at the PTP Weorking Group meeting, Thanks
are also due to Prof. Fumic Mizoguchi of the Science
University of Tolkyo, whe chaired PTP-WG, and many
people at the cooperating manufacturers in charge of the
joint research,

References

[Bibel 86} W. Bibel, Automaied Theorem Proving,
Wieweg, 1986,

[Bose et. al. B3] 5. Bose, E. M. Clarke, D. E. Long and
3. Michaylev, PARTHENON: A Parallel Theorem
Prover for Non-Horn Clauses in Proe. of §th Annual
Symp. on Logic tn Computer Sceience, 1989,

[Chikayama ef. ol 88] T. Chikayama, H. Sato and
T. Miyazaki, Overview of the -Parallel Inference
Machine Operating System (PIMOS), in Proc. of
FGCS 88, 1988,

[Fuchi 90] K. Fuchi, Impression on KL1 programming -
from my experience with writing parallel provers — in
Proc. of KL1 Programming Workshop ‘90, pp.131-
139, 19%0 (in Japapese).

[Fujita and Hasegawa 90] H. Fujita and R. Hasegawa,
Implementing A Parallel Theorem Prover in KL1, in
Proc. of KL! Programming Workshop ‘00, pp.140-
149, 1990 (in Japanese).

[Fujita et. al. 90] H. Fujita, M. Koshimura, T. Kawa-
mura, M. Fujita and R. Hasegawa, A Model-
Generation Theorem Prover in KL1, Joint US-Japan
Workshop, 1990,

[Fujita and Hasegawa 91] H. Fujita and R. Hasegawa,
A Model-Generation Theorem Prover in KL1 Using
Ramified Stack Algorithm, In Proe. of the Eighth In-
ternational Conference on Logic Programming, The
MIT Press, 1991.

|Hasegawa et. al. 90a] R. Hasegawa, H. Fujita and
M. Fujita, A Parallel Theorem Prover in KL1 and
Its Application to Program Synthesis, [faly-Japan-
Sweden Workshop, ICOT-TR-588, 1990.

[Hasegawa et, al. 90b] R. Hasegawa, T. Kawamura,
M. Fujita, H. Fujita and M. Koshimura, MGTP: A
Hyper-Matching Model-Generation Theorem Prowver
with Ramified Stacks, Joint UK-Japan Workshop,
1980,

[Hasegawa 91a] R. Hasegawa, A Parallel Model Genera-
tion Theorem Prover: MGTF and Further Research
Plan, In Proc. of the Joint American-Japanese Work-
shop on Theorem Proviag, Argonne, Mlinois, 1991,

[Hazegawa 31b]
B. Hasegaws, A Parallel Model-Generation Theorem
Prover in KL1, Workshop on Parallel Processing for
ALITCATS1,1991.

[Hasegawa 31c] R. Hasegawa, A Parallel Model Genera-
tion Theorem Prover with Ramified Term-Indexing,
Joint France-Japan Workshop, Rennes, 1991,

asegawa 91d] B. Haserawa, A Lazy Model-Generation
[Haseg egawa, ¥
Theorem Prover and [Its Parallelization, Joint

Germany-Japan Workshop on Theorem Proving,
GMD, Bonn,1991.

[Hasegawa et ol 92a] R. Hasegawa, M. Koshimura and
. Fujita, Lazy Model Generation for Improving the
Efficiency of Forward Reasoning Theorem Prowvers,
ICOT-TR-T51, 1992

[Hasegawa ei. al 92b] R. Hasegawa, M. Koshimura and
H. Fujita, MGTP: A Parellel Theorem Prover Based
an La.zy Maodel Generation, To appear in Proc. e;!f
CADE 98 (System Abstract}, 1992.

[Koshimura et. of 90] M. Koshimura, H. Fujile and
H. Hasegawa, Meta Programming in KLI, ICOT-TR-
623, 1920 (in Japanese).

[Loveland 78] D. W. Loveland, Automated Theorem
FProving: A Logical Basis, North-Holland, 1978,

[Manthey and Bry 88) L. Manthey &and F. Bry,
SATCHMO: a theorem prover implemenied in Pro-
log, In Proc. of CADE 88, Argonne, Mlinois, 1088,

[McCune 90] W. W, McCune, OTTER 2.0 Users Guide,
Argonne National Laboratory, 1930,

[McCune and Wos 91) W, W. McCune and L. Wos, Ex-
periments in Automated Deduction with Condensed
Detachment, Argonne Naticnal Laboratory, 1991.

[Nakajima et. ol 89] K. Nalka-
jima, Y. Inamura, N. Ichivoshi, K. Rokusawa and
T. Chikayama, Distributed Implementation of L1
on the Multi-PS1/V2, in Proe. of 6th ICLP, 1989,

[Nakashima and Nakajima §7] H. MNakashima
and K. Nakajima, Hardware architecture of the se-
quential inference machine PSI-II, In Proc. of 1987
Symposium on Logic Programming, Computer Soci-
ety Press of the [EEE, 1987.

[Makashima ef. al. 82] H. Nakashima, K. Nakajime,
3. Kondeh, ¥. Takeda and K. Masuda, Architecture
and Implementation of PIM/m, In Proc, of FGC5'92,
1993,

[Overbeek 90] B. Overbeek, Challenge Problems, (pri-
vate communication) 1990,

[Slaney and Lusk 91] J. K. Slaney and E. L. Lusk, Paral-
lelizing the Closure Computation in Automated De-
duction, In Prec. of CADE 59, 1990,

[Schumann 88 J. Schumann, SETHEQ: User's Manual,
Technische Universitat Miinchen, 1989.

375

[Stickel 88] M. E. Stickel, A Prolog Technology Theo-
rem Prover: Implementation by an Extended Prolog
Compiler, In Journal of Aulomaled Reasoning, 4:353-
380, 1988.

[Stickel 89] M. E. Stickel, The Path-indexing method for
mdexing terms, Technical Note 473, Artificial Intel-
igence Center, SRI International, Menlo Park, Cali-
fornia, Qctober 1980,

[Wos et. al. 84] L. Wos, R. Overbeek, E. Lusk and
J. Boyle, Aulomaled Regsoning: Introduction and
Applications, Prentice-Hall, 1984.

[Wos 88] L. Wos, Auternated Reasoning — 33 Basic He-
search Problems -, Prentice-Hall, 1988,

