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Abstract

cu—PrnlnE is a constraint ]og,ic prng,ta.rmning (CLP) lan-
puage appropriate for natural language processing such
as a Japanese parser based on JPSG. Compared to
other CLP languages, eu-Prolog has several unique
features. Most CLP languages take algebraic equa-
tions or inequations as constraints. cu-Prolog, on the
other hand, takes the Prolog atomic formulas of user-
defined predicates. cu-Prolog, thus, can describe svm-
bolic and combinatorial constraints that are required
for constraint-based natural language grammar descrip-

tion, A5 @ constrainl solver. ci-Prolog uses anfold/fold

transformation dynamically with some heuristics,

JPSG (Japanese Phrase Strveture Grammar) is s
constraint-based and unification-hased Japanese gram-
mar formalism beging developed by the PSCG-working
group at ICOT. Like HPSG (Head-driven Plrase
Structure Grammar), JPSG is a phrase structure whose
nodes are feature structures. lts grammar description is
mainly formalized by local constraints in phrase strue-
tures.

This paper outlines cu-Prolog and its application to
the disjunctive feature structure and JPSG parser.

1 Introduction

Two aspects are considered to classify contemporary
natural language grammatical theories|Carpenter ef al,
91). Firstly, They must be classified according Lo
whether they have transformation operations among
different structure levels.

One current version of transfermational grommae 15
GB (Government and Binding) theory[Chomsky 31]. S0
called unification-based grammars|Shieber 86 such as
GPSG [Generalized Phrase Structure Grammar). LFG
[Lexical Funmctional Grammar). HPSG [Head-driven
Phrase Structure Grammar)[Pollard and Sag &7]. and
JPSG (Japanese Phrase Structure GrammarH{Guunji
86] are categorized as non-transformational graminars,
Unification-based grammar is a phrase structure gram-
mar whese nodes are feature structures. It uses uni-
fication as its basic operation. In this respect. it is

congenial to logie programming,

Secondly. classification must be made as to whether
a language’s grammar description is rule-based or
constraini-based!. GPSG and LFG fall into the for-
mer category. The latter includes GB theory. HPSG.
and JP5G. From the viewpoint of procedural compu-
tation. rule-based approaches are betler. However. by
constraint-based approaches. more general and richer
grammar formalisms are possible because morphology.
svitax. semantics. and pragmatics are all uniformly
treated as constraints. Alse. the mest important fea-
ture of constraints, the declarative Eraimmar dederip-
tion. "alloiy vaviois information flows during priveess:
ng.

Consider the programming languages used to iniple-
ment these grammatical theories, For rule-based gram-
mara. many Hlj]_rl."l:.l\ﬂ.{"n!_"a ]'Ih'ﬂ"‘ |‘.IFF‘IL H.'l-lF‘I'III}lFI:I. :\'.Il'h s
FUG[Ray #3] and PATR-1[Shieber 86]. As vet. how-
avery, no IEdel]E WDI'I': |I.E-|H 1)11.“]1 (lL'lI'l{"' (431 EUI'IHLJ'EUILI."
based granwnars.

Our constraint  logie  programming  language  cu-
Prolog [Tsuda ¢f ol 89b. Tsuda ef al. 39a) aims 1o
provide an implementation framework for constrainl-
hased grammars. Unlike mest CLP languages. cu-
Prolog takes the Prolog atomic formulas of user-defined
FJ.'-EdiEELI‘_E as constraints,

cu-Prolog originated from the technique of econ-
strained wnification {or conditioned wnification [Hasida
and Sirai 86]) - a unification between two constrained
Prolog patterns, The basic component of cu-Prelog is a
Canstraiwed Hors Tause {(-H{-Jl that adds constraints
in terms of user-defined Prolog predicates to Horo
clauses, Their domain is suitable for svmbalic and com-
binatorial linguistie constraints, The constraint solver
of cu-Prolog uses the unfold/fold [Tamaki ane Saro 73]
travsformation dvnamically with certain heuristies,

This papeer illust rates

o the outline of co-Prolog.

o treatment of disjunctive feature strociures witl
P5T{Partially Specified Term)[Mukai #8] in cu-
Prolog. and

'Constraint-based approaches are also called  ioformefion-
based or privciple-bosed approaches.
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e the JPSG parser as its most suceessful application.

2 Linguistic Constructions

As an introduction, this section explains the various
types of linguistic constraints in constraint-based gram-
mar formalisms.

2.1 Disjwnactive Feature Structure

Unification-based grammars utilize feature sfructures as
basic information structures. A feature structure con-
sists of a set of pairs of labels and their values, In (1),
pos and sc are called fealures and their values are n
and a Binslulm sel < [po.s = .FJ] =,

e lesy]

Morphological, syntactic, semantic, and pragmatic in-
formation are all unifermly stored in a feature struc-
ture.

Moreover, natural langunage descriptions essentially
require some framework to handle ambiguities such as
polysemnic words, homonyms, and so on. - Disjunciive
feature structures are widely used to handle disjunc-
tions in feature structures(Kay 85]. Disjunctive feature
structures consist of the following two types,

Value disjunction A wvalue disjunction specifies the
alternative values of a single feature, The following
example states that the value of the pos feature
ig n or v, and the value of the sc feature is <>
(empty set) or < [pos = p] >.

pos = {n,v}

w={{[pos=s]) |

General disjunction A general digjunction specifies
alternative groups of multiple features. In the fol-
lowing structure, sem = love(X ¥} is common,
and the rest is ambiguous.

(2)

pa.s:n]
pos =u
wform = vs

] (3)
se=( [pos=p])

sem = love X, Y)

One serious problem in treating disjunctive fea-
ture structures is the computational complexity of
their unification problem because it is essentially NP-
complete[Kasper and Rounds 88). Some practically ef-
ficient algorithms to deal with disjunctions have been
studied by [Kasper 87] and [Eisele and Dérre 88],

2.2 Structural Principles

Unification-hased prammars are phrase structures
whose nodes are feature structures. Their grammar de-
scriptions consist of both phrase structure rules and
local comstraints in a phrase structure, In current
unification-based grammars, such as HPSG and JPSG,
phrase structure rules become very general and gram-
mars are mainly deseribed with a set of local con-
straunts called strucfural principles.
JPSG has only one phrase structure rule, as follows.

M .
D H -

M, D and H are the mother, the dependeni dauvghter,
and the head daughter respectively. This phrase stiuec-
ture is applicable to both the complementation séruc-
ture and adjunction structure of Japanese’. In com-
plementation structures, £} acts as a complement. In
adjunction structures, 7 works as a modifier.

Structural principles are relations between the fea-
tures of three nodes (M, D and H) in & local tree:

In the following, - we -explain - some features and their
constraints.

mod: The mod feature Epeciﬁes the function of O in a
phrase structure. When the value is +,. .0 works as
a modifier. and when =, it works as a complement.

head features: Features such as pes, gr, case, and
infl are called heod features. These conform to the
foliowing fead feature principle.

The value of & head feature of M unifies
with that of H.

subcat features: Features subeat and adjacent are
called subcat feetures. They take a set of feature
structures that specify adjacent calegories such as
complements. and nouns. The subeaf feature prin-
ciple iz
In the complementation structure, the
value of a subcat feature of M unifies
with that of # minus 2, In the ad-

junction structure, the value of a subcat
feature of M unifies with that of H.

germ: The sem [eature specifies semantic information.

In the complementation structure, the
sem value of M unifies with that of
H. In the adjunction structure, the sem
value of A unifies with that of D

IFor example, “Ken-ga aisuru (Ken loves)” is the comple-
mentation structure, and “ocki-na yama {big mountain]” is the
adjunction strocture.



Below is the analysis for “Ken-ga hashiru (Ken
runs).”

pos =u
sc=<>

sem = runiken}

pos = u
pos = p
pos = p sc=< gr = ga >
gr=gae sem = X
sem = ken sem = run(X)
I'{_e-n-ga. hashiru
3 cu-Prolog

3.1 Conventional Approaches

Prolog i3 ofien used as an implementation langoage
for unification-based grammars, However, its execution
strategy iz fixed and procedural, i.e.. always from left
to right for AN} processes, and from top te bottom for
OR processes, Prolog programmers have to align goals
such that they are solved efficiently. Prolog. therefore.
is not well-suited for constraint-based grammars be-
cause it 35 impossible to stipulate in advance which
type of linguistic constraints are to be processed in
what order.

Some Prolog-like systems such as Prologll and
CIL[Mukai 88] have bind-hook mechanisms that can
deley some goals [constraints} until certain variables
bind. As the mechanism, howevet, can only check con-
straints by executing them. it is not always efficient.

Tost CLP languages, such as CLP(R)[Jaffar and
Lassez 87, Prologlll, and CAL. take the constraints of
algebraic domain with equations or ineguations. Their
constraint solvers are based on algebraic algorithms
such as Grobner bases, and solving equations. How-
ever, for Al applications and especially natural lan-
guage prnn:ﬂaing systerns, H_'!."]TII.‘IG]:i{.‘ and combinatorial
constraints. are far more desirable than algebraic ones,
cu-Prolog, on the other hand, can use symbolic and
combinatorial constraints because its constraint domain
is the Herbrand universe.

3.2 Constrained Horn Clause (CHC)

The basic component of cu-Prolog is the Constrained
Horn Clause (CHCP,

[Def] 1 (CHC) The Constrained Horn Clause (CHC) is
*Or Constremi Added Forn Clowse (CAFC).
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Hewd Bady Cansdrainl

HEAD: - By.Bg.... B C1.Coer . O

HEAD. called head, iz an atemic formula., and
By..... B,. called body, is a sequence of atomic for
mulfns. Oy, .. ... called constraint, s @ fequence
af atomic formulas ov equal constraints of the form:
Vartable = Term. Body or constraint con be empiy. O

From the wviewpoint of declarative semantics. the
above clause is equivalent to the following Horn Clause.

HEAD :—Bhﬂi ..... En.Ch{-l-z-----(‘.u-

3.3 Derivation Rule

cu-Prolog cxpands the dervation rule of Prolog by
adding a constraint ransformation operation.

gual BEOgEaR
—e p———
AK:C. 4":-L:D.

subatitudion consfraint tr:‘ma Formudien
B = mgu(d ') C =mf(Ch+ D8}
La. K&
—_ —
A goal
A and A" are heads, K and L are bodies. C, T¥, and C°
are constraints, mgul 4. 4') is the mosi general unifier
between A and A" mf({'str) s a canonical form of a
constraint thatl is equivalent 1o Csfr.
As a computational rule. when the wansformation of
C# + D# fails. the above derivation rule 1s not applied.

3.4 PST

cu-Prolog  adopts PST (Partially  Specified  Term)
[Mukai 23] as a date structure that corresponds 1o the
feature structure in unification-based grammars.
[Def] 2 (Partially Specified Term (PST)) PST i
a term of the following form

(Lt Daftae . 1)
l;, called label. is an alom and I & Ll # 7100, called
value, iz & ferm. O
A recursive PST structure is not allowed.
[Def] 8 {constrained PST) fn  cu-Prolag. P51 s
stored oz ar equal consiraint with ofher relepant con-
shraints :

X = PST. ¢4(X). ¢a(X). ... . cnlX)
We call the above fype of consfraints constrained PST
A=P5T covresponds to [Kuosper 875 wncondilional con-
Junet. and cy(X).calX).. ... cul¥} corresponds lo EHe
conditional conjunct. o
In the pext subsection. we give its canonieal form meod-

ular. The constrained PST can naturally deseribe dis-
junctive feature structures of unification based gram-

[Tars.
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3.5 Canenical form of a constraint

The canonical form of a constraint in CHC i3 called
modular, First, we give an intuitive definition of modu-
lar without PST.

[Def] 4 (modular {(without PST)) 4  sequence  of
alomic formulas Oy, .., Cglm > 1) iz modular when
all itz arguments are different variables.

Faor :xa.:np-].t:,

member{X, ¥), menber(U, V) is modular,
member{X, ¥}, menber(Y, Z) is not modular, and
append(X,Y,[a,b, c,d]} is not modular.

We expand the definition of medular for constrained
PST.

[Def] 5 (component) The component of an argument
of o predicate is a sel of labels fo which the arguiment
may dind. Here, an atom or a complex ferm 5 regarded
ag @ PST of the label []. a

Cmp(p,n) stands for the component of the nth argu-
ment of & predicate p. Cmp(T) represents a set of labels
of @ PST T.'In & constramnt of the form X=t. vanable X
15 regarded as taking Cap(t).

Components can be computed by static analv-
sis of the program [Tsuda 81). Vacwous argument
places|Tsuda and Hasida 90] are arguments whose com-
ponents are .

Consider the following example.

cOC{E /) L, ¥) 1=l (Y,X).
c0(X,b, _J:=X={g/c},c2(X).
c1(X,%).

el (X, [x1_3).

c2({hfall.

c2{{f/c}).

The components are computed as follows.

Cmp(cO,1)={f,g,h}
Cmp(cl, 2)=Cup{ci,2)={[1}
Cmplcd,3)=Cmp(ct,1}={}
Cmple2, 1)={f h}

[Dref] 6 (dependency) A constrain! fias dependency
when

!. a variable occurs in twe disfinct places where their
components have common labelz,

2 g variable ocours in fwe distined ploces where ane
component iz {[1} and another componeni dors
not contain []. or

. the binding of an argument whose componen? s ol

. o

[Def] T (modular {with PST)) A constraind is mod-
ular when if confaing no dependency. 4 Horn clavse is
modular when ifs bady has no dependency. O

User-defined predicates in a constraint must be de-
fined with modular Horn clavses 4,

3.6 Constraint Transformation

The constraint solver (mf{C'sfr}) transforms non-
modular constraints into modular ones by deriving new
predicates, In the following, we refer to this solver
as the constmint transformer. The constraint trans—
former uses the unfold/fold transformation dynamically.
[Temaki and Sato 83]

3.6.1 Unfold/fold transformation

Let T be a set of program Horn clauses, & be
initial constraints {Ch..... Crn} that contain variables
Elgeenai vy. and p be a new m-ary predicate,

Let P, and T be sequences of sets of clauses that are
initially defined as follows.

Dy = {plag..... B TP &y
Fo = TUTD,
mf{E) returns plag,. .- g} i and only if there

(‘jl.'i‘.ﬂlﬁ a sequence Dr [JI[JH'THITI HD‘.I'E] ﬂ]ausﬁi

and every clause in Py is meadular.
Piyy end Ty, are derived from P; and T, by one of
the following three types of transformations (0 < ¢ < {}.

L. unfolding
Pi={H:-ARJUP
Aj: B, € P, Al = Ad; __[LEJ = m)

Py = UL, HO; : —B;6;.Ré; UP]
'IjH.:l = 'D.'

Here. A 4; are atomic formulas and R.B; are
sequences of atomic formulas (1 < j < m).

2. folding
P, ={H:-C.R}UP
4:=-BeD,. B#=C
Pau=H -A0.R UP
D=1

Here. © and R have no common variahbles,

For example, member/2, append/3, and finite predicates are
defined with modular Horn clauses.



3. definition
Let B be a sequence of atomic formulas, z,,....%,
be variables in B, and p be a new predicate.

Dis1 =D U {p(zy,....2,): —~B.}
Pia=F
3.6.2 Example of Constraint Transformation

The lollowing example shows a transformation of
member{4,Z) ,append (X,¥,Z).
T={T1,T2,T3,T4 }, where

T1 = member(X, [X|¥]).

T2 = member{X, [Y|Z]) : ~member (X 2} .

T3 = append{[] ,X,X).

T4 = append{[A[X],Y, [A|Z]) :-append(X,Y,Z).

and

% = {member({4, Z), append (X, Y.Z)}
With a new prcdica.tc pij"4 derived as D1,

D1 =pi(4,X,¥,2): -menber (4,2}  append(X,¥Y,Z}.

we get

T De= {pi) Py = TU D)

Step 1: By unfolding of the fivet formula of D1's hody
(member (A,Z) ), we get

T5 = p1(A,X, Y, [AIZ]) :~append (X,¥, [A1Z]) .

T6 = p1(A,X,¥, [BIZ]) :-member (A,Z) ,append(X,Y, [BIZ]).

P, = T U {T5.T6)

Step 2: By defining new predicates p2/4 and p3/5 as
D2,D3,

T6' = Plcl?xp?: [MZ]}:"pﬂ‘(I.‘I’..LZ}
T&! = pi(A, X, Y, [BIZ]) :-p3(A,Z,%,Y,B).
D2 =p2(X.¥Y,A,2) :-append(X,Y,[AIZ]}.

D3 =p3(4,Z,X,Y,B) :-member(A,Z),append(X,Y, [BIZ]).

we gel
T, = {D1,02,D03} P; = T U {T8".T6".D2.D3}
Step 3: By unfolding 2.
T7 = p2([1,[4121,4,2).
T8 = p2([BIX],Y,A,Z) : -append (X,¥,2) .
Py = Ty {15'. T6". T7. T8.D3}

Step 4: lnfolding the second formula of D3's body
{append(X,Y, [BIZ])} gives

T9 =p3(a,Z,[1,[BIZ],B):-member(A,Z).
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Py =T U{T6'".T6'.T7,78,T9.T10}.
Step 5: Folding T10 by D1 generates
T10' = p3(4,Z,[BIX],Y,B):-p1(A.X,Y,.2).
Accordingly.

P;=TU{Ts . T6'. T7.T8. T9. T10'}.

Ew:r_l.' clause in ’P\:, is  maodular. As oa resultl.
member{4, Z) append(X,¥,Z} has been transformed
mte pl(A,X,Y,Z). preserving equivalence. and new
predicates p1/e.p2/4. and p3/6 have been defined with
T T6'.TT.TA.TY. and T10'.

3.6.3 Example of constrained PST unification

Unification between constrained PSTs is done with
PST unification fallowed by the transformation of rele-
vant constraints.

The following example from [Eisele and Dorre
88] shiows unification’ between two disjunctive featurs
structures:

b=+ )

a= €= and a=[h=1f‘]
b= = gd=V 1
C =+

These  disjunctive  feature  structures  are  encoded
in the two constraimed PSTs. ¥={a/U},s(U) and
Ye{af{b/V}, 4] where

s({b/+,c/-}). ¥ definition of s/1
s({b/-,c/+}).

PST unification between X and ¥ gives
R=y={a/U,d/V}, U={b/V}, s (U).

There is & dependency in terms of a label b becanse
Cop{s,1)={b,c}.

By definiug a new predicate cif2. U={b/V}, a(ll}
hecomes equivalenl 1o U={b/V},c1{U,V). Here c1/2 is
defined as Tollows. *

ci{{c/=},+).
et({e/f+},-J.

Note that X=Y={a/U,d/V},Us{b/V},c1(U,V} coes
ot have any dependency because Cmplel, 1)={c}.

S Precigely. abstrmcfion operation in [Tsada 917 is used inothis
weansformation. In absimetion. P51 unifications aee wade in

T16 = p3(A,Z, [BIX],Y,B) : -member (4 ,Z) ,append (X, Y, Z} . terms of relevam labels alone for eficiency.
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4 JPSG parser in cu-Prolog

JPSG (Japanese Phrase Structure Grammar)[Gunji 86]
is a constraint-based and unification-based grammar
designed specifically for Japanese. It iz being developed
by the PSG working group at ICOT.

To implement unification-based gramenars, we have
to consider how to describe and process feature struc-
tures for the first time. In cu-Prolog, PST enables
the natural implementation of non-disjunctive feature
structures. The labels of PST correspond to the fea-
tures of a feature structure. As mentioned earlier.
disjunctive feature structures correspond to constained
PSTs.

In cu-Prolog, both disjunctive feature structures and
structural principles are treated as constarints in CHC.

4.1 Enceding Lexical Ambiguity

As an example of the disjunctive feature structures,
this subsection explains lexical ambiguities in this sub-
section. Consider the lexicons of homonyms or poly-
semic words. [f the lexicon of an ambiguous word is
divided into plural entries in terms of its ambiguity. the
‘parsing process may-be inefficient in that it sometimes
backiracks te consult the lexicon. In constraint-based
natural language processing, such ambiguity is packed
as a constraint in a lexicon.

Below is a sample lexicon of Japanese auxiliary verb
reru.” “reru” follows a verb whose inflection type is
vs or vel. H the adjacent verh is transitive. "reru” in-
dicates plain passive. If the verb is intransitive. “rern”
indicates affective passive ®. These combinations are
represented by adding constraints of reruform/1 and
reru_sen/4 in one lexical entry.

=

%% lexical eatry of '‘reru'’
lex{reru,{sc/5C, sem/Sem,
adjacent/{pos/v,infl/I ,8c/V5C, san/Sem]}}) ;
raru_form{I), % inflection {comstraint)
rari_sem(VSC,Vaem,5C,Sem) .
W combination of subcat and sem {constraint)

BEEYEY dafinition of constraints WHLNNEY
rery_form(vs). ¥ inflection type of the adjacent verb
refu_form(vsl).

% constraint for intransitive (affactive) passive
reru_sem{ [{form/ga,sen/5b1}] ,Sem,
[{form/ga,sem/A} , {form/ni ,sem/5bi1] ,
affected (A, Sem)) .
% constraint for transitive (normal) passive
reru_sem( [{form/ga,sem/5bi}, {Torm/wo ,sem/0bj}],
Sam,
[{form/ga,sem/0bj}, {form/ni ,sen/Sbil],
Sam) .

“For example, “Hen ga mme ni fo-ra-reru” (Ken is affecred
by the rais.)

This lexicon is a representation of the following dis-
junctive feature structure,

[ -nﬁc= ,E={ -!E'L;s';] ] } | ]
sem = Sael ; _
- form = ga ) orm = ni
L :m jnff::;i&:rlll = -IS! ] ) !
wdic = ::Ssmi:t‘-:j;'z 'i_ :::q.==w52 ] } :|
e={ [ ] [1%])
L dam = Sem
| adje = [ .IP:;'I'==F§|-JI..|.-;2} ]

Although the lexicon is ambiguous, however. many
kinds of constraints are avtomatically accumulated for
solving during parsing. The disambiguation process in
parsing is naturally realized by the constraint trans-
formation of cu-Prolog. It has no need to write any
special procedure for disambiguation,

4.2 Encoding Structural Principle

As mentioned in Section 2, the structural principles of
JPSG are relations among features of three catepories
in a local iree. Intoitively, structure principles are en-
coded as constraints to a phrase structure rule:

psr{M.D.HY);spy(M.D. H),... spo(M, D, H).

Here, psrja s a phrase structure rule and each sp;/3 is
a structure principle.

In cu-Prolog. these structural principles are evalu-
ated flexibly with heuristics. In Prolog. however. above
phrase structure rule is represented as

perlM. D H) : —sp (M. D HY. .. .. spei M. D H).

Each principle is always evaluated sequentiallv. Proleg,
therefore. is not well-suited for constraint based gram-
mars herause il is impaossible to stipulate in advance
which kind of linguistic constraints must be processed
in what order.

As the first example. the principle of the sem feature
in Section 2 is encoded as a constraint s£p(M,D,H).
where

sfp({zem/HS}, {med/+}, {sem/HS}).
sfp{{sen/H8}  {mod/+}, {sem/HS}) .

As the second example. the Foot Feature Principle is
defined as follows[Gunji 86).

The value of FOOT feature of the mother uni-
fies with the union of those of her daughters,

It is represented as constraint ££p(M,D,H). where

ffp({foot/WF}, {foot/DF},{foot /HF}) :-
union(DF ,HF ,MF).



5 Implementation

cu-Prolog has been implemented in the O language of
UNIX4.2/3BSD and the Apple Macintosh[Sirai 91]. co-
Prologlll [Tsuda et al. 92] ie the latest implementation.
This section presents some implementation issues
that relate particularly to the constraint transformer.

5.1 Censtraint Transformer
5.1.1 Constraint Transformation Strategy

cu-Prolog uses the following three clause pools during
.constraint transformation.

DEFINITION: derivation clauses of new predicates
NON-MODULAR: non-modular clauses
MODULAR: modular clauses

The following is the transformation procedure of cu-
Pralog.

1. If DEFINITION is nobt emply, remove one clause
from DEFINITION and unfold it.

2. If DEFINITION s emply bul NOR-MODULAR 18 nol
empty, remove one clause N from NON-MODULAR. If
N's head is modular, unfold N. If not, fold N or
derive new predicates to N's bedy.

3. Hepeat the above operations until DEFINITION and
NON-MODULAR are both empty. }
5.1.2 Heuristics

One of the outstanding features of cu-Prolog is the
heuristics used in the constraint transformation.
The following three choices are available.

¢ selection of a clause from DEFINITION
» selection of a clause from NON-MODULAR
» selection of a formula to unfold

DEFINITION and NON-MODULAR are implemented by
stacks, that is, the constraint transformer sclects the
latest. In unfolding, the activation value of each atemie
formula is computed from the following formuolas and
the atomic formula of the highest value is enfelded.

Arily = arity of the formula
Const = number of arguments that bind to constants
Vaum = total number of oceurrence of variables
in the formula
Funet = number of arguments that bind to
complex terms
RHee = If the predicate is recursively defined
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then 1. atherwise 0

Defs = number of definition clavses of the predicate

['nits = number of unit clauses in the
predicate definition

Facts = If Defs = ("nils then 1. otherwise

The activation value 4 of an atemic formula is com-
puted wsing the following formula.

A = 3«Comst + 2% Funct + Vioum = Defs + {nits
—2 = Hee + 3+ Facts

We define eaxch factor of the activation value as in-
cluding some empirical heuristics of [Tsuda ef 2l 30a).
There may, however, be more effective heuristics with
more factors or with a non-linear formulaHasida 91].

5.2 Example of cu-PrologIII

Figure 1 is an example of disjunctive feature unification
in [Kasper 87].

Figure 2 iz an example of the JPSG parser in cu-
Prulﬂgﬂl. For mnhiguouai sentences. the parser returns
the corresponding feature structure with-constraints:

6 Concluding Remarks

This paper cutlined cu-Prolog. then covered the dis-
junctive feature structure and parsing JPSG.

We would like to stress that every featurs men-
tioned in this paper was equally processed in the same
framework as a consiraint transformation. In coms
parison with many conventional approaches. our ap-
proaches. inclucing Hasida's DP {Dependency Propa-
gation) [Hasida 51]. are far more general and fexible
frameworks for constraint-based natural language pro-
cessing.
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cci({voice/passive, trans/trans,subj/X,geal/X}). ¥ definition of the unconditional conjuncts
cel{{voice/active, subifL,actor/X}).

ee2({trans/intrans, actor/{person/third}}).

cc2({trans/trans, goal/{person/third}}}.

cc3{{numb/sing, subj/{numb/sing}}}.

ce3{{numb/pl, subj/{oumb/pl}l}).

Y% disjunctive feature unification (user input)
@ U={rank/clause, subj/{case/nom}}, ccl(U),cc2{U),cc3(U), U={subj f{lex/you,person/second , numb,/pl}r} .

% answer: equivalent constraint
solution = cO(U_0, {subj/{case/non}, rank/clause}, {subj/{person/second, numb/pl, lex/youl})

Y% definitions of a new predicate (c0)
c0{_pl, _pl, _pl) = cc2{_p1), ccl(_pi};
_pi={subj/{perscn/second, nuab/pl, case/nom, lex/you}, numb/pl, rank/clausa}.

CPU tima = 0,150 sec (Comnstrainte Handling = 0.000 sac)

rimcO(X,_,.). % sclve the new comstraint

SUCCEES. % X is the final answer of the unification.
% = {voice/active, trans/trans, subj/{person/second, numb/pl, case/nom, lex/youl,
goal/{person/third}, actor/{person/second, numb/pl, case/nom, lex/you}, nusb/pl, rank/clause};

Lines beginning with “@" are user inputs. To this input, cu-Prolog returns equivalent medular constraint and definition clauses of
newly defined predicates.

Figure 1: Disjunctive feature unification
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~i-pllken, ga,ai,surul). % user input of ‘ 'Ken ga ai-suru.®’

WY parse tree

{=em/[Llove,V7_2030,v6_2029] , coref{form/Form_1381, pos/v}, sc/V1_2024,
refl/[], slash/V3_2026, psi/[], aja/[], ajc/ [(1}---[suff_p]

i

I-~{sen/[love,V7_2030,V6_2029], core/{pos/v}, sc/V0_2023, refl/[],

slash/V2_2025, psl/[1, ajn/ (1, ajc/[1}--- [subcat_p]

I

' I--{sen/ken, core/{form/ga, pos/p}, sc/[1, refl/([], slash/(],
psl/[], ajn/[, ajc/[1}---[adjacent_p]

|

I | I--{sem/ken, core/{form/n, pes/n}, se/[], refl/[], slash/[],
psl/[1, ajn/[], ajc/[]}---[ken]
R
|| |__{sen/ken, core/{form/ga, pos/p}, sc/[], ref1/[], slash/[] pel/[], ajn/[1,
ajc/[{sem/ken, core/{peos/n}, sc/[], retl/ReflAC_T0}] }-—- [gal

I 1 .

I | __{sem/[Love,V7_2030,V6_2029] » core/{form/ve2, pos/v}l--=[ai]

| .

I _{sem/[love,V7_2030,V6_2025], core/{forn/Form_1381, pos/v}, sc/(], refl/[],
slash/[1, psd/[1, ajn/[], ajc/[{sem/[love,V7_2030,V6_2029]
core/{form/vs2, pos/v}, sc/[], refl/Ref1AC_1493}]1}—-- [suru]

category= {sem/[love,V¥7_2030,V6_2020] » core/{form/Form_1381, pos/v},
8c/V1_2024, refl/[], slash/V3_2026, psl/[], ajn/[1, aje/[1} ¥%category

censtraint= c40(V0_2023, V1_2024, V2_2025, V3_2026, V4_2027, V5_2028,
{sem/ken, core/{form/ga, pos/p}, sc/[], refl/[], slash/[], psl/[1,
ajo/l1, ajc/[1}, V6_2029, {sem/V6_2020, core/{form/wo, poa/p}}, V7_2030,
{2em/V7_2030, core/{form/ga, pos/p}}),
syu_ren(Form_1381) Yconstraint about the category
true.
CPU time = 2,217 sec (Constraints Handling = 1.950 sec)

-t=c40(V1, _, _, V3, _, _,_,VE,_, V7, ). ¥solve constraint

Vi=[] V3= [{sem/VO_4)}] V6 =VO_4 V7 = kan ; ¥ solution 1

Vi = [{sen/V0_4, core/{form/we, pos/p}}] Vi=[] V6= VO 4" V7 = ken; ¥ solutiom 2
no,
CPU time = 0.017 sec (Constraints Handling = 0.000 sec)

The parsing of “Hen ga aisuru” that has two meanings: “Ken loves (someane)” or “(someone) whom Ken loves.” The parser
draws a corresponding parse tree and retums the category of the top nede with constraints. In this example, the ambiguity of the
sentence is shown in the two solutions of the constraint c40.

Figure 2: JPSG parser: disambiguation



