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Abstract

Parallelization of a constraint logie progravmng (CLFP)
language can be considered at two major levels: the ex-
erulion of an inference engine and a solver in pal‘a]h‘].
and the execution of a solver i paraliel. GDOC is a
parallel CLP language that satisfies this two level paral-
lelism. It is implemented in kL1 and is currently running
on the Multi-PSL a looselv coupled distributed memory
parallel machine, GDCC has multiple solvers and a block
mechanism that enables meta-operation to a constraint
set, Currently there are three solvers: an algebraic solver
for nenlinear algebraic eguations using the Buchberger
algorithm. a boolean solver for boolean equations using
the Boolean Buchberger algorithm. and a linear integer
solver for mixed integer programming. The Buchberger
algorithm is a basic technology for symbolic algebra. and
several attempls at its parallelization have appeared in
the recent literature. with some good vesulis for shared
memory machines, The algorithm we present is designed
for the distributed memory machine, bul nevertheless
shows consistently good performance and speedups for
a number of standard benchmarks [rom the literature,

1 Introduction

Constraint logic programming {CLP) is an extension of
logic programming that introduces a facility Lo write and
gzolve consiraints in a certain domain. where constraints
are relations among objects. The CLP paradigm was
proposed by Colmeraure|Colmerauer 87]. and Jaffar and
Lassez|Jaffar and Lassez 87]. A similar paradigm {or lan-
guages) was proposed by the ECRC group [Dinchas f al,
885 A sequential CLP language UCAL [ Contruinte avec
Logigue) was also developed at ICOT[Aiba ef al. 88],
The CLP paradigm is a powerful programming
methodology that allows users to specify what | declar-
ative knowledge) without specifving how (procedural
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knowledge ). This abstiraction allows programs 1o be more
voncise and more expressive. Unlortunately. the general
ity of constraint programs brings with it a higher compu-
tational cost. Parallelization is an effective way of mak-
ing ULP svstems efficient. There are two major levels of
parallelizing C'LP svstems. One is the execution of an
inference engine and constraint selvers in parallel. The
other is the execution of a constraint solver in parallel.

Several works have been published on extending this
work from the seguential to the concurrent frame, Among
them are a proposal of ALPS[Maher 87] that introduces
constraints into committed-choice language. a report on
some preliminary experiments in imtegrating constraints
into Lhe PEPSys parallel logic system[Hentenrvek 89].
and a framework for a concorrent constrantt {e<) lan-
guage Lo inlegrate constraint programming with concur-
rent logic progranuning languages{Saraswat 34].

GDOCU[Hawley 91b). Guarded Definite Clauses with
Constraints. that satisfies two level parallelism. is a
parallel ('LP language that introduces the framework
of ee into a committed-choice language KL1|Uedz and
hikayama 90]. and is currently running on the Multi-
P51 a loosely coupled distributed memory paraliel logic
machine. GDC'C has multiple solvers to enable a user
to casily specily a proper solver for a domain: they are
an algebraic solver. & boolean solver and a linear integer
solver. The incremental evaluation facility is wery im-
portant to CLP language solvers. That is, a solver must
consider cases where constraints are dynamically added
to it during execution, not only those cases where all are
given statically prior to execution,

The algebraic solver is used to solve non-linear alge-
braic equations. and can be applied to fields such as com-
putational geometries and handling robot design prob-
lems(S. Sato and Aiba 90]. The solver uses the Buch-
berger algorithm [Buchberger 83. Buchberger 85] that
is a method of solving multi-variate polynomial equa-
tions. This algerithm is widelv used in computer alge-
bra. and also fits reasonably well into the CLP scheme
simce it is incremental and [almost) satisfaction-complete
as shown in [Aiba ¢f ol 88. Sakai and Aiba 89]. Re



cently, there have been several allempls made to par-
allelize the Buchberger algorithm. with generally dis-
appeinting results|Ponder 90. Senechaud 90]. excepi for
shared-memory machines|Vidal 90. Clarke «f al. 30]. An
interesting parallel logic programming approach imple-
mented in Strand®8' on Transputers was reported by
Siegl[Siegl 90], with good speedups on the small examples
shown, but absalute performance was only fair. We paral-
lelize the Buchberger algorithm. emphasizing on absalue
performance and incrementability rather than deceptive
parallel speedups.

The boolean sclver is used to solve hoolean equations
and can be applied to a wide range of applications such
ag logic circuit design. [t uses the Boolean Buchberger
algorithm [Y. Sato and Sakai 38]. It is different from the
original Buchberger algorithm in load-balanee al the in-
ternal processes. although thev are basically similar. We
implemented the parallel version of this algorithm. based
on behavior analyses, using some example problems.

The target problems for the linear integer solver are
combinatorial eptimization problems such as scheduling
problems, that obtain the minimum (or maximum) value
with respect to an objective function in a discrete value
domain wnder a certain constraint set. There are many
kinde of fopialization ta solve thie optiniization’ froblem.
among them an integer programming that can be widely
used for various problems. Integer programming siill of-
fers many methods of increasing search speed depend-
ing on the structures of problems. cven if we focus on
solving strictly optimized solutions cnly, The Branch-
and-Bound method can apply to wide extent of prolilenns
independently to problem structures. We develuped a
parallel Branch-and-Bound algorithm. aiming 1o imple
ment a high-speed constraint solver for large problens,
and to perform expeniments for describing parallel seareh
problem in KL1.

The rest of this paper is organized as follows. We fira
mention the GDC'C language and its systenn, aned deserilae
its paralle]l constraint solvers. Then. program exanples
in G are shown using simple problems.

2 Parallel CLP Language

We will present a brief summare of the basic con
cepts of ce[Saraswal 8Y], The cc programming language
|Jm‘adig,u| mrdels computation as the interaction of -
tiple rooperating agents hrough the exchange of infor-
matian via querving and asserting the informaticn into
a {consistent} global database ol constraints called e
store, Uonstraints vccurring in program text are olass-
fied Ly whether thev are querving or asseriing inforinas-
tioae. 1o fhe dsk and Tell constraints as shown in Figure

L.

iSerandfi is sumilar 10 KL, although sonwwhat less powernl
in thar it does net support full wnification.
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Figure |+ The ec language seliema

This paradigm is embedded in a guarded [conditional)
reduction svslent, where guards contain the Ask amd Tl
Control is achieved by requiring that the sk constraims
m a guard are true (emailed). and that the Tvlf con-
gtraints are comsistent [satisfiable), with respect e the
current state of the store. Thus. this paradigin las a
high affinity with KL1.

2.1 GDCC Language

GDOC 15 8 member of the ee language Tailv. althongh
it does not support Tel i a guard part, The GIOC lan-
guage inciudes mwst of kL1 as & sulset; BT ol pred-
icates and unification can be regarded as 1he constraings
of distinguished domain HERBRAND [Saraswal =59,
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(U8, N eonsimm! sigede dp 5 i |I:|p|1' a8 oy, whee
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Definition 2.1.1 ¢ entails o — F (¥z,)e = o)
Definition 2.1.2 ¢ accepts o = A = (Jile )
Definition 2.1.3 e rejects & = A k= (Yz,)(e = —¢)

Note that the property eafails is strictly stronger than
accepis, and that eccepts and refects are complementary.

Definition 2.1.4 ¢ suspends ¢
o aceepts op A = (o enfails o ).

A GDCC program is comprised of clauses that are de-
fined as tuples {head, ask, tell, body), where “head” is a
term having unique variables as arguments, *body™ is &
set of terms, “ask™ iz said to be Ask constrainf, and “te]]”
is said to be Tell constraint, The “head” is the head part
of the KL1 clavse, “ask™ correaponds ta the guard ]_'.u.m't.z1
and “tell” and “body” are the body part.

A clavse (A, a,e, b) is a candidate for goal g in the pres-
ence of stere 5 il s A g = & entoils a. A goal g commils Lo
candidate clause (h, a,c, b}, by adding t U ¢ to the store
s, and replacing ¢ with 6. A goal fails if the all candidate
clanses are rejected, The determination of entailment for
rnu].t.iplc: clanses and commitment for multip]e—r S{:a.ls can
be done in parallel.

Below is a program of pony_and_man written in GDCC.

pony_and_man(Heads ,Legs,Ponies Men) :- true |
alg# Heads= Ponies + Men,
alg# Legs= 4+Ponies + 2+Men.

Where, peny_and_pan{Heads,Legs,Ponies,Men) is
the head of the elause, 1" is the commit aperater, true
is an Ask constraint, equations that begin with alg# are
Tell constrainis, alg# indicates that the constraints are
solved by the algebraic solver. In a body part. not anly
Tell constraints, but normal KL1 methods can alse be
written. In a guard part, we can onlv write read-only
constrainis that never change the content of the sfore, in
the same way as the KL]1 guard where active wmification
that binds a new value/structure to an undefined variable
is inhibited,

But, bi-directionality in the evaluation of constraints.
Lhe important characteristic of CLE. is not spoiled by this
limitation. For example, the guery

?- pony.and_man(S,14,Ponies Men) .
will return Ponies=2, Men=3, Thus, we can evaluate a
constraint bi-directionally as Tell constraints have no lim-
itations like Ask.

2.2 GDCC System

The GDCC system supports multiple plug-in constraimt
solvers with & standard stream-based interface, so thas
users can add new domains and solvers.

Figure 2: System Construction

The system is shown in Figure 2. The components are
concurrent processes.

Specifically, a GDCC program and the constraint
solvers may execute in parallel, “synchronizing” only and
to the extent necessary, at the program'’s guard con-
straints,

The GIDNC system consists of:

(i) Compiler
Translates a- GDCC source program into KL1 code

{it]) Shell

Translates queries and provides rudimentary debugging
facilities. The debugging facilities comprise the stan-
dard KL trace and spy functions, together with solver-
level event logging. The shell also provides limited sup-
port for incremental querying, in the form of inter-guery
variable and consiraint persistence.

(1ii) Interface

Interacts with a GDOCC program (object code), sends
body constraints to a solver and checks guard con-
straints using the results from a solver.

{iv]) Constraint Solvers
Interact with the mterface module and evaluate body
constraints.

The decision of entailment using a constraint solver is
described in each solver's section, as it differs from each
algorithm adopted by a solver.

2.3 Block

A handling robot design support svastem [5. Sato and
Aiba 90] has been used as an experimental application
of our CLP svstems for a few years. In applying GDCC
to this problem, two problems arose. These were the
handling of multiple contexts and the synchronization be-
tween an inference engine and solvers.

*gsk” containg constraints in the HERBRAND domain. that is,
it includes the normal guards in KLE.



To clarify the backgrounds to these problems, we ex-
plain the handling of multiple contexts in sequential CLP
language CAL. CAL has a function to compute approxi-
mated real roots in univariate non-linear equations. For
insiance, it can obtain values X = £4/% from X? = 2,
Using this facility, the handling robot design sapport sys-
tem can solve a given problem in detall. In this ex-
ample, there are two copstraint sets, one that includes
X = +/2, and another that includes ¥ = —2 . CAL
selects one constraint set from these two and solves it
Then the other is computed by backtracking {i.e.. the
system forees a failure). In other words, CAL handles
these two contexts one-by-one, not simultaneously. In
committed-choice language GDOC, however, we cannot
use backtracking to handle multiple contexts, There are
BAITLE pml:-lcrns in implcm:nl.ing hierarchical CLP lan-
guage[K. Satoh and Aiba 90, K. Satch 90b] in GDCC.

The other problem is the synchronization between an
inference engine and solvers. It is necessary to describe to
the timing and the target constraints to execute a func-
tion to find approximated real roots. In a sequential CLF,
it is possible to control where this description is written
in & program. While in GDOC, we need another kind of
mechanism to specify a synchronization point, as a clause
sequence in a- program-does not relate to-the execution
sequence. A similar situation occurs when a meta oper-
ation to constraint sets is required., such as computing a
maximum value with respect to & given objective func-
tion.

Constraint sets in GDOCC are basically treated as
;glubai. ].ﬂl,ruﬂu.cing local constraint sels, however, -
dependence of the global ones, can eliminate these prob-
lems. Multiple contexis are realized by considering each
local constraint as one context. An inference engine and
golvers can be synchronized at the end point of the eval-
nation of a local constraint set.

Therefore, we introduced a mechianism, called bock, Lo
deseribe the scope of a constraint set. We can solve a
certain goal sequence with respect to a local constraint
set. The block is represented in a program by a bailtin
predicate call, as follows.

call( Geals ) using Solver-Package for Domain
initial npui-Cen giving Ouiput-Con

Constraints in goal sequence Goals are computed in
a local constraint set. “using Solver-Package for Do-
main" denotes the use of Selver-Package for Demain i
this black. "initdial faput-Con” specifies the initial con.
straint set, “giving Ouiput-Con” indicates that the re-
sult of computing in the block is Quiput-Con.

Both local variables and global variables can be used
mn & block where the local variables are only valid within
the block and the global ones are valid even outside the
bloek. Local variables are specified by the builtin predi-
cate allec/2 that assigns variables to & block. Variables
that are not allocated in a block are assumed to be global.
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Figure 3: Implementation of dock in GDCC

A block is executed by evaluating Gloals with respect to
fnput-Con. The result of Outpul-Con is a local constraint
set, that is, it iz never merged with the global enes unless
specified explicitly by a user.

Eet us consider the next program.

test:- true |
alloc(200,4),
alghh=-1,
call( alg#i=1 ) initial nil giwving CO,
calll alpgd=0 J imitial =mil giving C1.

This program returns the constraint set {4 = |} as CO
and the constraint set {A = 0} as C1.

The block mechanism is implemented by the three
madules shown in Figure 3; an inference engine(block ).
a block handler and constraint salvers, To encapsu-
late failure in a bleck. the sheen mechanism of PI-
MOS[Chikayama et al. 88] is used. The block handler
creates & block process, sends constraints from a block Lo
a constraint solver, and goals Lo other processoars. Each
GDCC goal has a stream connecting to the hlock handler
to which the goal belongs.

3 Parallel Constraint Solvers

3.1 Algebraic Solver
3.1.1 Domain of Constraint

A constraint system that is the target domain of the al-
gebraic solver is generally called a nonlinear algebraic
polynomial equation. According to the definitions in Sec-
tion 2.1, this can be formalized as the constraint system
Y= FUuC U R A V.C) where:

5

F

{A)
{=:AA — A +: AA — A} U {fraction :— A}
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= {=}
{atring starting with a lowercase letter}

{string starting with an uppercase letter}
= awioms of complex numbers

[ = = O
]

with the structure

IDHA) = setof all algebraic numbers
M=) = multiplication
Di(+) = addition

Difraction) = rational number it denotes

4.1.2 Grébper Basis and Buchberger Algorithm

Below is a brief introduction to some notation and def-
initions needed to explain Gribner bases and the Buch-
berger algorithm. Then, the sequential version of the
Buchberger algorithm, on which the parallel version is
based, is presented,

Definition 3.1.1 {(Power product, monomial)
Power product s a product comprized of nonzere and fi-
nile number u‘f variahles, that is,

Bqxg ...z o (m =0, each x; are variable).
Monomial iz 2 product of o coefficient (Eralional number]
and o power product.

A power product that contains no variable is written
as “1".

Definition 3.1.2 {Admissible order) An ordering <
5 adimissible when it satisfics the nezt properties. For all
power products p, g, T,

fi] 1 < p, and
(i) p < q = pr < qr.

Examples of admissible ordering that are often used in
the Buchberger algorithm are totel degree lericographic
ordering and total degree reverse lezicographic ordering,
Let us represent the power product 7" z3* - x5 by the
veetor (d, g, .., a,), Where the variables are arranged
in lexicographic order. We define the tofal degree lerico-

graphie order <y as follows.
-.Q.;]I =gt {,151. ﬁg,.. . .d',t:l-

{Cl].-f.'lz, 500
" H

‘::‘-Er::.-f: Z..?. or.

=1 =1
@y o= 5 Hea<dhe=3(3<i)

=1 =1
That is, the order <y determines a greater monomial
by comparing the vector elements in lexicographic order.
when the total degree is the same between the two mono-
mizals. On the other hand, the fofal degree reverse lecico-
graphic order <4 is defined by:

++0n) <drt (Bry By oo 2 )

{ﬂ'11 gy o n

&= En, < En:,ﬁ'“ o,
=1

=1
F=S (Z @y =y, .-, =03 < {Eﬁ.‘. =, ---r—.l'jﬁ}
i=1 i=1

When the total degree of two monomials is equal. this
order compares the subtotal degree by removing the last
elements from both vectors,

Let Li(f) denote the maximal menomial of a poly-
nomial f with respect to a certain admissible ordering,
and Ffest| f) mean the remaining monomials of f. Let
the power product and coefficient of Lt(f] be Lp{f) and
Lel f) respectively.

For each polynomial f (= Le( f)Lp(f) 4+ Rest(f]), we
define & rewriting rule =+; over polynomials as follows,

Definition 3.1.3 (Rewriting} g =; &, if ¢ monomiul
af a pelynomial p is @ multiple of Lp{f) then the mone-
mmiad is r::pfu:tmcf with =fiert . and the resuli n_f coleulalion
by the replacement s b, For o fintte set of polynomials 7,
g=ch f3f € G and g = k.

Definition 3.1.4 (Irreducible) The irreducible form
of a polynomial g wri. =5 is the polynomial which
cannot be rewritten by =5 any more after applying the
rewriting rule sct _finitely many, (or zero)] times, The
irreducible form of g is denoted by g |o-

Let fx,. .., o] be a polynomial ring in » variable of
Eqye s, &y over Lhe rational number Geld, and f;,..., i
be elements of it. A polynomial ideal T genera;ed by
Fiv-ooy fa is & polynomial set defined by the following.

Definition 3.1.5 {Polynomial ideal)
fil) T#d¢, f.geTl= f—geI (property of modules)
fit) feI=h-feI foranyhe€ Rlz,...,2u]

With no loss of generality, we can assume that all poly-
nomial equations are in the form f=0. Let E =0 be a
systemn of polynomial equations {f1= 0,...,fa=0}. The
following close relation between the solutions of E =10
and the elements of I E) of the ideal generated by E is
well known.

Theorem 3.1.1 {Hilbert zero point theorem}

Let f be a polynomial. Every solution of E =10 is also
o solulion aff =1, lﬂ' there exisls o nolurel number s
such that f* € T(E).

Corolla.ry 3.1.1 E has no solulion {{fl e T E).

Thus, the problem of solving given polynomial equa-
tions is reduced to that of deciding whether a polynomial
belongs to the ideal. Buchberger introduced the notion
of Gribner bases. and devised an algorithm to determine
the membership relations of a polynomial and to the ideal
[Buchberger 83, Buchberger 25].

Let there be an admissible ordering among monomials
and let & system of polynomial equations £=0 be given,



A rough sketch of the algorithm is as follows. In the
system of E, each equation can be considered as being a
rewriting rule as defined in Definition 3.1.3. When the left
hand sides Lp(f;) and Lp( f) of two rewrite rules f; and
[z are not mutually prime, the least common multiple of
their left hand sides can be rewritten in two different ways
according to these two rules. The pair resulting from this
rewriting is called a critical pair. If further rewriting does
not succeed in converging a critical pair, the pair is said
to be divergent. To get a comfluent rewriting system,
equations made from such critical pairs, S-polynomials,
are added to the system of equations. By repeating this
procedure, we can eventually obtain a confluent rewrit-
ing rule set. This confluent rewriting rule set is called a
Grobner basis of E.

Definition 3.1.6 (Griébner basis [Buchberger 83])
The Grobner basiz G{E) is u finite sel thet satisfies the
following properiies.

(i) I(E) = I(G(E))

(%} Forall f.g, f—g€ T(E}iff flo=9lc.
:spcniaﬁy, f 13 I{E} iff fig=10, and,

{4} & iz reduced if every element of the basis iz frre-
ducible w.or.t. all the others.

From Theorem 3.1.1, the reduced G(E) can be re-
garded as being the canonical form of the solution of
E =10, because the reduced Grobner basis with respect
to a given admissible ordering is unique. Moreover, when
E =0 does not have a solution, {1} € G{£) is deduced
from Corollary 3.1.1.

Definition 8.1.7 {Critical pair, S-poiynomial})

If two rewriting rules fy, f2 are not mutually prime. that
is Lp(fi) and Lp(fy) hove o greatesi common divisor
other than 1, the pair fy, fa is called the critical pair, and
the polynomial made from this eritical pair in the follow-
ing way:

Lcuﬂfm{f:,fe} . lerm fi, fa) |

Lp(f1) Lp(f3)

is called S-polynomial and deneted by Spoly(fi, f2).
where, lem(fy, fi) is the least pommon multiple of Lp(f1)

and Lpl f3).

Figure 4 shows the sequential version of the Buchberger
algorithm. E denotes the input polynomial equation set,
and R is the output Grobner basis. Line (4) indicates the
rewriting process using H. Lines (7), (8) and (9] are the
subsumption test in which the old rule set is updated by
the newly generated rule. If the left hand side of an old
rule is rewritten by the new rule, the rewritten rule goes
back to equation set F. Line (12} is the S-polynomial
generation.

fi = Le(fi) f
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(1) input F:=FE, R:=8

(2} while F#@

(3} choose fe I

4) F=F-{f}, ['=Fflr
(5) if f'#0 then

(6) for every pE K

{7) if Ldp) =y it(p')

(B} then F:= Fu {it{p') 4 Rest{p)}, R:= R~ {p}
(9) else R:={R- {p}) U {Li{p}+ Restip}| mugr }
{10} endif

{11} endfor

(12) Fi= FusSpelylf R, R:=Ru{/}

(13)  endif

{14) endwhile

(15} output & (R is G(E))

f: Spolyl f'. K] is to be generated by 5-polynomials between
potynomial f' and all elements in rule set &,

Figure 4: Sequential Buchberger algorithm

3.1.3 Satisfiability, Entailment

Bazed on the above results, we could determine satisfia-
bility by using the Buchberger algotithm to incorporate
the polynomial into the Grobner bases as per Corollary
3.1.1. But the method of Definition 3.1.6{ii} i3 incom-
plete in terms of deciding entailment. since the relation
between the solutions and the ideal described in Theo-
rem 3.1.1 is incomplete. For example, the Grobner ba-
sis of {X* = 0} is {X? — 0}, and rewriting using this
(Gribner basis cannot show that X = () is entailed. There
are several approaches solving the entailment problem:

{a] Use the Grobner basis of the radical of the gener-
ated ideal, T, e {pjp" € T}. Although it is the-
oretically computable, efficient implementation is
not possible.

(k] As a negation of p= 0, add po to the Grobner
basis and use the Buchberger algorithm. where
o is & new variable. Iff 1 15 included in the new
Grobner basis, p=0is held in the old Grbner ba-
sis. This has the unfortunate side-effect of chang-
ing the Grobner basis,

{¢) Find n such that p" is rewntten to 0 by the
Grobner basis of the generated ideal. Since n is
bounded|{Cangilia et al. 88|, this is a complete de-
cision procedure. The bound. however, is very

large.

When there are a lot of rescurces to compute. and no
more computation can be done, according to the method
described in {c) we may adopt the incremental solution of
repeatedly raising p from a small positive integer power
and rewriting it by the Grébner basis. On the other hand.
the total efficiency of the system is greatly affected by the
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computation time in deciding entailment. Therefore, we
determine the entailment by rewriting using & Grobner
basis from the view point of efficiency, even though this
method is incomplete. This decision procedure runs on
the interface module parallel with the solver execution,
as shown in Figure 2. Whenever & new rule is generated,
Lhe solver sends Lhe new rule to the interface module viaa
communication stream. The interface determines entail-
ment while storing (intermediate) rules to a self database,
The interface updates the database by itself whenever a
new rule from the solver arrives. It can also handle con-
straints such as inequalities in the guard parts, if they
can be solved by passive evaluation.

5.1.4 Parallel Algebraic Solver

There are two main sources of parallelism in the Buch-
berger algorithm, the parallel rewriting of a set of paly-
nomials, and the parallel testing for subsumption of a
new tule against the other rules. Since the latter is
inexpensive, we should concentrate on parallelizing the
coarse-grained reduction component for the distributed
memory machine. Iowever, since the convergence rate of
the Buchberger algorithm is very sensitive to the order
i which polynomials are converted mto rules. an imples
mentation must be careful to select “small” polynomials
early.

Three different architectures have been implemented:
namely, a pipeline, a distributed, and a master-slave ar-
chitecture. The distributed architecture was already re-
ported in [Hawley 91a, Hawley 91h], however, it has been
greatly refined since then. The master-slave architecture
also offers comparatively good performance. Thus., we
touch on the distributed and master-slave architectures
in the following sections.

Distributed architecture

The key idea underlying the distributed architecture is
that of sorting a distributed set of polymomials. Each
processor contains a complete set of rewnting rules and
polynemials. and a load-distribution funetion w that logi-
cally partitions the polynomiais by specifving which pro-
cessor “owns” which polynomials. The position in the
cutput rule sequence of each polynomial is calenlated by
its owning processor, based on an associated key (the
leading power product ), identical in every processor, and
which does not change during reduetion. A polvnomial
is outpul once it becomes the smallest remaining. The
S-polynomials and subsumptions are caleulated indepen-
dently by each processor, so that the processors’ sets of
polynomials stay syochromized. As a background task.
each processor rewrites the polynomials it owns, starting
with those lowest in the sorted order. Termination of the
algorithm is detected independently by each engine, when
the input equation stream i= closed. and when there are
no polynomials remaining to be rewritten.

=mewe= Mulli-writer stream
[ Mok owned
] wmed

Figure 3: Architecture of distributed type solver

Figure 5 shows the architecture. The central data
structures in the implementation are two work item lists:
the global list and the local list. The global list, that
contains all pelvnomials including both owned and not
owned polvnomials, is used to decide the order in which
a processor can cutput & new role based on the keys of
polynomials, On the other hand, the local list consists
of owned polynomials cnly. Items in the local list are
rearranged by each processor Lo maintain increasing key
order, whenever an owned polynomial is rewritten.

There will be a situation where, when & processor is
husy rewriling pelynomials, ancther processor oulpuls a
new rule. In such a case, any processor that receives
& new role must guit the corrent task as soom as pos-
sible to check subsumption and to update the old rule
set. Continuing tasks while using the old rule set with-
out interruption increases the number of useless tasks.
To manage such interruplion and resumption of rewrit-
ing, the complete execution of one piece of work is bro-
ken down into a three-stage pipeline; first polynomials
are rewritten until the leading power products can be re-
duced no further, they are fully reduced, and thirdly the
coefficients are reduced by taking the greatest common
divisor among all coefficients of a polynomial. Based on
this breakdown, we pipeline the execulion of the entire
list, giving us maximum overlap between comimunicalion
and local computation.

Table 1 shows the results of benchmark problems to
show the performance of this parallel algorithm, the
benchmark problems are adopted from [Boege efal
86, Backelin and Fréberg 91]. The monomial ordering is
degres reverse lexicographic, and low level bignum (mul-



Table 1: Timing (sec) and speedup obtained with dis-
tributed architecture

Nurmber of processors

Problems 1 2 d a 16

Fatsura-d .86 T.48 ha4 | 482 504

1 1.32 185 205 LE6

Fatsura-5 94.00 | G243 | 48.20 | adga| 40462

. L 152 187 | 238 .34
Cyco-roots | 91.24 | 9333 | 2002 | 2252 | 2949 |

1 1.12 1.86 1.85 125

Cyclrools || 1008 06 | 1396.37 | 166558 | B17.07 | 126868

1| 0968 | 0EI6 156 | 0.388

tiple precision integer] support on PIMOS is vsed for co-
efficient caleulation. The method of detecting unneces-
sary S-polynomials proposed by |Gebauer and Malier 88
is implemented. Examples and their variable ordering are
shown below.

Katsura-4: (U < Uy < Uy < Uy < Uy)
Uf —Up+ 207 + 203 + 205 + 20} =0
2l + 20010 + 2050, + 2L, - Uy = 0
Bglis + 2UF + 200 Uy + HWally = = 0
Pl 4+ 2000 4 215 =T =10
Uu+2U|+9Ua+w:!+2”{_1=u

Katsura-5: (U < U < Uy < Uy < Uy < Uig)
Ui — Up +BUF 4203 4 203 + 20 %208 =0
w.:[-h + ZULU! + ZU-EUQ + EUJU+ + E'U-}U.!- = Ui =0
iglly + 20F + 2 Uy 4 Waldy + Wills = Uz = 0
Mn[-rg +2U|_Ug -+ ED',U. + EUEUS -Ua =0
Higlfy + T U + 200 + U;' —Uy=0
Dy + 200 + 20 + 2+ 2y + 25 -1 =0

Cyclic frroota: [X) < X3 < Xg < Xa< Xs)
Xy +Xs+Xa+Xa+ =10
Ay Xat XaXg+ Aglg+ A + Mg Xy =0
KiXaXa + XXXy 4+ X XaXe + XX N, + XXy e =0
Xy XNaXaXy + XaXaXaXs
+ X3 XX X1 + XXX Xy + Xs X1 XeXa= 0
X XaXNgXn=1
Cyelic B-roots: (X < Xp < Xa < X < X5 < Xs)
My Xy+ Kat Xg+ Xp+ Xe=10
Xy X4 XaXa+ XXy + Xg Xy + X Xg + NeXy =10
XiXaXa+ XaXaXy+ XsXaXs
+ X X5 Xy + X XeX) + Xe X1 X2 =0
Ky XoXaXy 4+ XNaXaXgXs + XXy XsXs
) FXa X XX 4 XaXog X1 Xo + XX Xe X3 =0
Xy XaXaXgXg + NaXaW o Ne M + XaXaNg Mg )
X X X e X Xg + X Mg A + Ve X XN Xg Wy =0
XiXaXaXaXeMp =1

Sometimes parallel execution is slower than sequential
execution. Moreover a serious drawback occurs in the
case of “cyclic G-roots”. The reasons are; first, redun-
dant tasks increase in pasallel since updating a rule sét,
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generating S-polynomials and detecting unnecessary 5-
p:}l}rnnmih]s are overlapped with every processor, second,
the selection criteria of the next new rule is enlv a rough
approximation as the keys of not owned polvnomials are
never updated during rewriting.

Master-slave architecture

In the distributed architecture, if the kevs of other poly-
nomials are updated according to their rewriting such
that the global smallest polynomial can be found, then
much communication between the processors is required.
One simple way of avoiding such communication overhead
is to have each processor output the local minimum poly-
nomial and another processor decide the global minimum
among them. Our third trial, therefore, is the master-
slave architecture shown in Figure &.

Mew rule
{plobal minimum)

Figure 6: Architecture of master-slave tvpe solver

The set of polynomials £ is physically partitioned and
each slave has a different part of them. The initial rule
set af [ E) is duplicated and assigned to all slaves, New
input polynomials are distributed to the slaves by the
master. The reduction cvele procesds as follows.

Each slave rewrites its own polynomials by the & ).
gelects the local minimum polynormal from them. and
sends its leading power product to the master. The mas-
ter processor awaits reports from all the slaves. and se-
lects the global minimum power product. The mininuem
polynomial can be decided only after all the slaves have
reparted Lo the master. Those that are nol nunimuams
can be decided quickly. however. Thus, the not-minimum
message ic sent to the slaves as soon as possible, and the
processors receive the not-minimum message reduce poly-
nomial by the old rule set while waiting for a new rule,
On cne hand, the slave that receives the minmmum mes-
sage converts the polynomial into a new rule and sends
it to the master. the master sends the new rule Lo all the
slaves except the owner. If several candidates are equal
power products, all candidates are converted to rules by
owner slaves and they go to final selection by the master.

To make load balance during rewriting, each slave re-
ports the number of polynomials it owns, piggyhacked
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onto leading power product information. The master
sorts these numbers into increasing order and decides the
order in which to distribute S-polynomials.  After ap-
plying the unnecessary S-polynomial criterion, each slave
generates the S-polvnomials it should own corresponding
to the order decided by the master. Subsumption test
and rule update are done independently by sach shave,
Talle 2 lists the vesults of the benchmark problems.
The monemial ordering, bignum sapport and varable or-
dering are same as for the distributed architeciure, Both
absolute performance and speedup are improved com-
pared with the dissnbuted architecture. E]:mlup Appears
to become saturated at 3 or 8 processors excepl for “cvelic
f-roots”. However, these problems arve too amall 1o oh-
tain a good speedup because it takes about half a minute
until all the processors become fully operational as the
unnecessary 5-polynomial criterion works well.

Table 2: liming and speedup of the master-slave archi-
Lecture

Number of processors

Problems 1 2 4 ] 16
Katsura-4 (s 840 700 5483 .53 .26
. — e I T A S (186
katsura-3 {ze) 5,74 3781 d9.88 J1.80 3600
1 1.50 118 172 241

Tye forooks (anc) || 2108 | CLUB | 1927 | 1016 | 25.20 |
1 1.31 1.43 1.44 110
Cye fi-roots ey || 63008 | 86362 | 433,73 | 333.25 | 32148
i 16 330 43| 44

3.2 Boolean Constraint Solver

Analgorithm calbed the Boolean Hucliberger algoeit lns
(Y. Saw and Sakai 58] has been proposed for boolean
vcenstrails, Boolean constrains are bandbed dilferen |y
[rom algebraic constraints in the following points,

(i} Multiplication and addition are logicsl-and  and
eaelusive-or, respectiveldy, i boolean const raints,

(1) Coeflicients are boolean values. that s, | aod 0.

b L I]I.Dll{il]lliid i.$ il |J]'LH:‘|.|.II." U‘I '\'-H.l'lll'l.l'JIt‘.".

(i e power of & variable s equal o the variable
el {4 = X1 S, a nwmonial 15 actoally a prosda
wl distioet varialles,

From 1 he propern v [iii). the theormm of & boolean puly-
podiial that corresponds o Theorenn 30000 s an fullows,

Theorem 2.2.1 (Zero point theorem) /L«f F & «
baclenun polynominl.  Every solubion of I =0 s olso o

selulion of =10, iff & (£

Therefore. the relation between an ideal and solution
and the relation betweean a solution and a Groboer basis is
complete in a boolean polynomial. Thus. entoidment can
ke decided by rewriting a guard constraint by a Grobner
basis. ’

The Boolean Buchberger algorithm differs from the (al-
gebraic) Buchberger algorithm in the following points.
That is. we hawe to consider sel-critical pairs as well as
critical pairs. wheve a selfeeritical pair polynomind (5C-
polvnomial} of hoolean polvnomial [ is defined as ¥ f+
for everv vanable X of Lplf). As shown (i) abowve,
the coefficient calculatiion wm the baolean salver is much
cheaper than 1he algebraic solver. while self-erilical puivs
have 1o be considered. Thus. the load-balance of this al-
gorithm is completely different from that of the algebraic
solver.

3.2.1  Analysis of Sequential Algorithm and Par-

allel Architecture

The sequential Boolean Buchberger algorithm is shown
in Figure 7. Here EQMist is a list of input boolean con-
straints and G is a Boolean Gribner basis. Numbers
i1} to (6} indicate the step number of the algorithm.

From Figure 7 we can see that-the following-are possible
for parallel execution:

{1 polwmomial rewriting in step &,

(i) monemial sewriting (lower granularity of {i)).
(iii] subsomyption test in step 4,

(ivi 50C-polvnomisl generalion in step 3. and

() Sepolviondal geoeration in step 5.

Sinee there s o cotmmunication everhead o the dis-
tribmted memory machine, we have to exploit the most
caarse-grained parallelism. To design a paraliel execution
neelel, we measured The execution time o each step
Figure T using two kinds of example program. One is
a logic circuil problen for a counter cirenit that counts
the pmber of 175 inoa three-bit input and outputs the
results as a himary code, The other is the n-gueens prob-
letn wliere | guerns have 80 equations with 16 variables, 5
queens have |69 eguations with 29 variables, and 6 queens
have 296 equations with 36 variables. The tinw ratio for

varli sl is shown in Tablie 3.

Tabide & Fine ratio of each step (%)

Stiep numher
Frob e 1| @ 1 1] 5 || Tovabisee)
Jyuirens T [N] 173 | 25 140 [
U ol | S0 2205 4T | Lk | ald a4
Bgueelis 10| 15| 15.0 b I 22404
cirruit LN N H.2 G4 b B0 | a4l .Y




input EFiai. GH
EQ‘HJ‘I’ — {P E .EQ“-&? |l|'.l ;GH# l,]]-

while EQieaf £ 8
g += min{Lp{p) | p € EQlist}
{1)4 choosee & {pc EQlist | Lpip) = q}
EQlisi == EQlist - {e}
(2] r=¢ lgg. BWliat =1
for every pe G B
if Lp(p) = p'
then &= GH - {p}
RWlist = RWlist U {p + Rest(p}}
[3)¢ else GB := (GE - {p})
U {Lplp) + Restip) lapuq
endif
endfor
GB:=GRU{r}
[ for every p & EQlist

if Lp(p) = p'
(4) then EQlist = EQlist = {p}
REWliat := BWlist U {p' + Restipl}
endif
| endfor

(5) RWiist := RWlist U SCpoly(r)t U Spoly(r. G B}
 while BWlist #
choosepe T st
BWlist := RWlist — {p}
ifo0
then if Lp(p) =cp ¢
then BWlist := RWlist U {p' + Rest(p]]
else EQlist := EQlist U {p}
endif
endif
. endwhile
endwhile
autput G F

[6) 4

t : SCpaly(r) indicates the set of all self-crirical pair
polynomials for r.

Figure 7: Booelan Buchberger algorithm

We can consider another parallel execution model by
modifying the algorithm. Although Figure 7 shows all
the reducible polynomials lamped together and rewritten
in step 6, this reduction may be distributed to steps 3.
4 and 5. Moreover, reduction mayv be done in each step
independently. Let steps 3", 4" and 5' denote the modified
stepa 3, 4 and 5. If execution times of steps 37, 4 and 3’
are balanced after applying the modification to the algo-
rithm, this model is also a good parallel execution model.
However, as shown in Table 4, the times are not balanced.
So, we can discard this possibility of parallelization.

From the above analysis, it becomes clear that step
i is the largest part of the execution. the other parts
being small. Therefore, we can determine the master-
slave parallel execution model to make the best use of
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Table 4; Time ratio in modified algorithm {9

E Step number

Problem 3 & 5
| dgueens || 1211235 ] 364

Jgueens || 2.7 | 112 340
Goueens | 135 | 399 | 419
circuit 821335 | 507

Controller

GB
E¢Hist
Reduesble £Qe Reducibie £Qs
Heduesd ?{3;\“‘:\“&

Figure & Parallel execution model

parallelism in step 6. as shown in Figure 8.

The. contreller (master).is in-charge of step ! to step
5 in the algorithm and the other reducers {slaves) reduce
poelynemials by G'H. The message from the controlier to
the reducers consists of update information for GH and
the polynomials to be rewritten. After receiving the mes-
sage, the reducer first updates its current & B according
to the update information. rewrites the polynomials from
the controller. and finally sends the results of the reduc-
tion Lo the contreller, As the controller becomes idle after
sending the message. the contreller also acts as a reducer
during the reduction process, The number of pelynomi-
als sent o each reducer is kept as equal as possible to
balance the loads for each processor,

3.2.2 Implementation and Evaluation

Having implemented the above parallel execution model
in KLY, the following improvement was made,

Improvement 1 We can remove redundant eguations
fromm EQiist. produced by deleting rules in step 3.
prior to their distribution. Although this removal
ean be done in each reducer, the distributed tasks
mav uot be well balanced since the vemoval of 1 asks
is much less involved than reduction,

Improvement 2 We can distinguish rules of the form
=y = A" { "A” is variable) from other rules since
these rules express assignments only and we need not
consider SC-polynomials nor 5-polynomials for these
rules. These rules are stored differently in the con-
troller and. if a new equation is input. we first apply
these assignments in the controller to the equation.
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By this application, reducers do not have to store
such rules and the time needed to generate an 5C-
polynomial and S-polynomial can be saved,

Improvement 3 If the right hand side {RHS) of a rule
is 0, then ne 5C-polynomual can be produced. If
both RHSs of two rules are 0, then an 5-polynomial
cannot be produced. Therefore, the RHS of a rule is
checked first. This technique is also effective for the
sequential version,

Table 3 lists the execution times and the improvement
ratio for the 6 queens problem.

Table 5: Timing and improvement ratio

Number of PEs 1 2 i | E I
Oiriginal verston (sec) || 3785 | 2400 | 1745 | 1599 | 1262
Tmproved version (sec) || 2460 | 1706 | 1228 | 1143 | 1042

Tmprovement ratiol 7o) || 666 | 700 | 70k | 74.2 | 86.5

Let a purely sequential part in the parallel execution
model be a and its parallel executable part be b Then,
we _can approximate the execution time for n PEs as
{a+b)/n. By calculeting a and & from the data, we obtain
a = 1130, b= 2530 for the original version, and a = 930,
b= 1540 for the improved version. This meana that the
parallel execatable part constitutes T0% to the entire ex-
ecution for the original version and 62% for the improved
vergion, Since we parallelized the sequential algorithm
to obtain the original version, 70% is a satisfactory ratio
for parallel execution since this ratio is very near to the
upper bound value caleulated from the analysis of the se-
quential algorithm. The difference is caused by the task
distribution overhead. In the improved version, the ra-
tio of the parallel executable part is decreased because of
the increase in the number of controller tasks. However,
this result is encouraging since the overall performance is
improved.

3.3 Integer Linear Constraint Selver

The constraint solver for the integer linear domain checks
the consistency of the given equalities and inequalities of
rational coefficients, and gives the maximum or minimum
values of the objective linear function under these con-
straint conditions. The integer linear solver utilizes the
rational linear solver for the optimization procedure to
oblain the evaluation of relaxed linear problems created
as part of the sohution. A rational inear solver is realized
by the simplex algorithm. The purpose of this constraint
solver is to provide a fasi solver for the integer optimiza-
tion domain by achieving a computation speedup by in-
corporating the search process into & parallel program.
These solvers can determine satisfiability and entail-
ment. Satisfiability can be easily checked by the simplex

algorithm. Entailment is equivalent to negation failure
with respect to a constraint set,

In the following we discuss the parallel search method
employed in this integer linear constraint solver. The
problem we are addressing is & mixed integer program-
ming problem, to find a maximum er minimum value of
a given linear function under integer linear constraints.
The method we use is the Branch-and-Bound algerithm.

The Branch-and-Bound algorithms proceed by dividing
the criginal problem into two child problems successively,
producing a tree-structured search space. If a certain
node gives an actual integer solution (that is not neces-
sarilv optimal). and if other search nodes are guaranteed
to have lower objective function values than that solution,
then the latter nodes need not be searched. In this way,
this method prunes sub-nodes through the search space
to effectively cut down computation costs, but those costs
still become quite high for large-scale problems, since the,
costs increase in an exponentially with the size of the
problem.

As a parallelization of the Branch-and-Bound algo-
rithm, we distribute the search nodes created through the
branching process to different processors, and let these
processors work on their own sub-problems sequentially.
Each sequential search process communicates with other
processes to prune the search nodes. Maay search al-
gorithms utilize heuristics to control the schedule of the
order of the sub-nodes to be searched, thus reducing the
number of nodes needed to obtain the final resuit. There-
fore it is important, in parallel search algorithms, to bal-
ance the distributed load among processors, and to com-
municate information for pruning as quickly as possible
between these processors. We adopted one of the best
search heuristics used in sequential algorithms.

3.3.1 Formulation of Problems

We consider the following mixed-integer lincar optimiza-
tion problems,

Problem — ILP
Minimize the following objective function of real variables
r; and integer variables y;,
r=3 mrit ) i
=1 i=1

under the linear constraint conditions:

> agzi+ 3 by 2 € for 155 <
i=1 4=

1
EE.'J:-TJ +Zd.-;yj = f; for lsj<k

1

=1
th‘TE }
nER and x>0 for 1<1<n
yieZ where i <y<uw and §i,wi€Z for 1=i=m
@ij+ biju €ijs dij. &5 Ji are real constants.



In practical situations integer variables y; often take only
0,1, bat here we consider the general case.

3.3.2 Sequential Branch-and-Bound Algorithm

As a preparation to solve the above mixed-integer lin-
2ar pmbl&mﬂ I'LP, we consider the mntinunusly—relaxed
problem LP.

Problem - LP
Minimize the following objective function of real variables

1'_1'1- 5';1' 1

El

m
p=3 pri+ 3Gl
1

i i=1

under the linear constraint conditions:

Fogz +3 by ze for 155 <
i=1 =1
n m
Y cigxs + Yy digy; = f; for 155 <k
i=1 =l

where

;eR and x>0 for 1<1<n

wER Where [<yi<w and "l weZ for 1<i<m
Tigy bij. Cijs rf,',', .18 f.' are real constants.

LP can be solved by the simplex algorithm. If the
values of original integer variables are exact integers. then
it also gives the solution of ILP. Otherwise, we tale a
non-integer value §, for the solution of LP, and impose
two new interval constraints §,, [, <y, <[§] and (7] +1-<
Us = 1y, where y, i an integer variable, and obtain two
child problems (Figure 9). Continuing this procedure,
called branching, we continue to divide the search space
to produce more constrained sub-problems as we proceed
deeper into the tree structured search space. Eventually
this process leads to a sub-problem having a continucus
solution that is also an integer solution to the problem.
Also we can select the best integer solution from those
found in the process.

QO =

@ [#+1<y,<ul
¥ = []+1

Figure 9: Branching of nodes
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While the above branching process can only enumer-
ate integer solutions, if we have & means of guarantesing
that a sub-problem cannot have a better solution than
the already obtained integer solutions in terms of the op-
timum value of the objective function. then we can skip
these sub-problems and need only search for the remain-
ing nodes. For mixed-integer linear problems we can use
the solutions for continwously relaxed problems as a crite-
rion for pruning. Continuously relaxed problems always
have a betler optimum value for the objective funetion
than the original integer problems. Sub-problems whose
contimuously relaxed problems have no better optimum
than the already obtained integer solution cannot give a
better optimum value, hence it becomes unnecessary to
search further {bounding procedure).

Branch-and-Bound methods repeat branching and
bounding in this way to obtain the final optimum. These
suly-problems obtained through the branching process de-

note search nodes.

Sequential algorithm

Step 0 Initial setting
Let . ILP, mean the original problem JLP. and A
mean the set of search nodes. Set A to {ILF,},
and solve a continuously relaxed problem LP,. If an
integer solution is obtained go to Stepd. Otherwise
set the incumbent solution 2 to oo and go to Stepl.

Step 1 Selecting branching node
If A" =i then go to Stepd.

If N = @, then select the next branching node ILFP;
out of A following the heurstics, and go to Step2.

Step 2 Selecting branching variable and branch
Select the infteger variable y, to be used for the
branching process to work on 'L F; according to the
heuristics, and branch with respect to it. Let the re-
sulting two nodes be TLP., ILP.
Go to Stepd.

Step 3 Continuously relax two nodes
Solve two continuously relaxed problems L P and
L Py by the simplex algorithm. Go to Stepd.

Step 4 Fathom two children nodes
If relaxed problem LP. does not have & solution.
or gives a solution 7 that is no better than the in-
cumbent solution. in other words 5 = 2. then stop
searching {bounding operation).

If the point [#*, %) to achieve a solution %+ has inte-
ger value § and moreover gives & better solution than
the incumbent solution obtained so far. in other words
S < 2, then let 3 = 5, # = ' and j= 7 (revision
of the incumbent].
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If (¥, §*) is not an integer solution and gives a bet-
ter optimum value than the incumbent, then add this
node, A 1= A U {ILPu} {Addition of a node).

Do the same thing to TLP, and go to Stepl.

Step 5 End step
If # # oo, then let the incumbent (Z,§) be the opti-
mum solution.

If # = oo, then problem FELP has no solution.

3.3.3 Heuristics for Branching

The following two factors determine the schedule of the
arder in which the sequential search process goes through
the nodes in the search space:

1. The priorities of sub-problems(nodes) to decide the
next node on which the branching process operates.

2, Selection of a variable out of the integer variables
with which the scarch space is divided.

It is preferable that the above selections are done in such a
way that the actual nodes, searched in the process of find-
ing the optimal, forar as small & part as possible within
the total search space. We adopted one of the best heuris-
ties of this type from operations research as & basis of our
parallel algorithm([Benichouw et al. T1]).

Selection of sub-problems

We use a combination of depth-first strategy and hest-
first strategy(w.r.t. hearistic function}. In each branch-
ing process, what is called the pscudo-costs pu(i)
Paownlj) of integer variables y; are computed, These are
the increase ratios of the optimum value of the continu-
ously relaxed problem with regard to those integer vasi-
ables. In the next heuristic function &{TLF,) of the node
15 caleulated:

WILP) = & + T3, min{puy (7)1 = ;) Paournl )5}

fi =5 — &,

Suppese the node JTLP, is divided into TLPp and
ILP...

p-i. When at least one of these two nodes is not yet ter-
minated, select the one having a better(i.e., smalier]
heuristic value h{{LF) as the next branching node
{depth-first).

n-ii. When both have terminated,

a. if no incumbent solution has yet been found,
select the latest node to which branching has
been done (depth-first),

b. if an incumbent solution has already been
found, setect the node having the best heuristic
function value {best-first),

Selection of the branching variable
To select the branching variable when trying to branch
at the node FLE;,

v-i. lf no incumbent solution is found, select the vam-
able y¥ from those integer variables that do not take
exact integer values in (3, §%), and which gives the
greatest difference between the two increases in the
heuristic value, namely the cne to attain
max;{[Pupli (1= f;) — Paown(7 ) f); fnon-integer}

veii. If an incumbent solution is found, select the variable
yf out of those integer variables that do not take
exact integer values in (2%, §#*), and which gives the
maximum of the minimum value of the left and right
side heunstic values, namely that to attain

max; {min{pupl i W1 — f5): Paown(7) fi: fnon-integer}

3.2.4 Parallel Branch-and-Bound Method

The parallel algorithm derived from the above sequential
algorithm is implemented on Multi-PSI. Our parallel al-
gorithm exploits the independence of many sub-processes
created through branching in the sequential algorithm,
distributing these processes to different processors. What
is necessary here is that the search space is divided as
evenly as possible among processors to achieve good load
balance, and that the pruning operation is performed by
all the processors simultaneously. Also, incumbent solu-
tions found in each processor need to be communicated
between processors, The details of the parallel algorithm
is described in the following,

Load balancing
One parent processor worke on the sequential algorithm
up to a cerlain depth d of the search tree. It then creates
29 child nodes and distributes them to other processors as
shown in Figure 10. These search nodes are allocated to
differeni processors cyclically, where each of the proces-
sors works on these sub-problems sequentially. Therefore,
load balancing is static in this case, '

Disiribution is done only at a certain depth of the
search tres, to prevent the granularity of a node from
being too small and to decrease the communication costs.

Heuristics for pruning

Each processor has a share of & certain number of sub-
problems assigned, and works on these nodes with the
same heuristics of branching node selection and branch-
ing variable selection as these of the sequential case. For
the node selection heuristics, we use the priority control
facility of KL1, to assign priorities to the search nodes
on which the best-first strategy with the heuristic func-
tion can depend. (See [Oki eial. 89] for details of this
technigque. )
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Figure 10: CGeneration of parallel processes

Trensfer of global data

While the search space is distributed among different pro.
ceasors, if the information to prune nodes is not communi-
cated well among them, then the processor has to work on
unnecessary nodes, and the overall work becomes larger
compared with the sequential version. This causes & re-
duction in the computation speed.

Therefore, incumbent solutions are transferred between
processors to be shared so that each processor can update
the current incumbent solution as soon as posaible (Fig-
ure 11). This is realized by assigning a higher priority to
the goal responsible for data transfer in the program.

Parent node

o
Dn-wnlr[,'p
Mewde TLPy

mwn}éﬁp \;\Upi

Child node
Figure 11: Heport stream between nodes

3.3.5 Experimental Results

We implemented the above parallel algorithm in KLI,
and experimented with job-shop scheduling problem. Ta-
ble 6 shows a result of compuiation speedups for a 4job-
Imachine problem and the total number of searched
nodes to get to the solulion,

The situation often oceurs where a processor visits an
unnecessary node before the processor receives pruning
information. This is because communication takes a time,
and certainly cannot be instantaneous, in a distributed
memory machine, Table & shows a case where this actu-

ner ha.pplms.
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Tahle f: Speedup
Processors 1 2 q F
Speedup 10) 1.6 1.9 23
Mumber of nodes || 242 | 248 | 395 | 490

One of the problems in parallel search algorithms is
how to decrease the growth of the size of the total search
space compared with the sequential search algorithms.

4 GDCC Program Examples

Example 1 : integer programming

The following program is a simplified version of the in-
teger programming used to find the integer solution that
gives the minimum (or maximum) value of an ohjective
function under given constraints. This program shows
the basic structure of the Branch-and-Bound method.

i= module pseudo_integer_programming.
1= publie integer_pro/f3.

integer_pro(X,Y,Z):- true |
call{{aimplez#X>=5,
simplax®i+2eYrm=-3,
simplex#X+Y-Z<=5)}) initial nil giving Co,
take_min{Co) .

tako_mini(Ce) := truae |
call (gimplex#min (X+Y,Ane)) initial Co giving Col,
(ins={mimisinfinita,_} -» error;
otherviss;
hna={_, [I=ValX|_1} =» check(ValX,Co}}.
chack (ValX,Co}:- klil!integer{ValX} |
solve_ancther_varishles(Col.
ctherwise.
check{Valk,Co}:- true |
floor (ValX,SupX, InfX),
call (zimplax#X=<InfX) initial Co giving Coi,
take_min(Coll,
call{simplex#f>=SupX) initial Co giving Ce2,
take_min{Col2).

The block in the clause integer_pro solves a set of
constraints, The block in the clause take min finds the
minimum value of the given objective funetion. If the
minimum value exists [not —oo), check is called. In
clause check, if the value of X, that gives the minimum
value of the objective function is not an integer, two new
constraints are added in order to the X become mleger
(for instance, if X = 3.4 then X >=4 and X <= 3), and
the minimum values with respect to the new constraints
are solved again. Method k11 integer decides whether
the value X is an integer. Where, k11! indicates KLI1
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method calling, a KL1 method is called from the GDOC
program using this notation,

Synchronization between the inference engine and the
salver Lo get the minimom value is achieved by the blocks
in integer pro and takemin. Multiple contexts are
shown by the two blocks of check.

Example 2 : geometric problem

Mext, we show how to use a function to find the approx-
imated roots of uni-variate eguations and how to handle
multiple contexts using an example which is alse used in
[Aiba et al. 88].

1= module heron.
1= public tri/f4, testl/4, test2/&.

tri{A,B,C,5) :- true |
allec(10,C4,CH,H)},
alg#C=CA+CB,
Al gHCA**Z+Hen =g ow3
alg@CEw+2+Hew2=Ben,
alghHe =il

tastl(i,B,C,5) :- true |
call( tri(d,B,C,5) } initial nil giving GB,
cutput1({GB). ) ocutput to a window screen

test2(h,B,C,5) - true |
call{ tri{a,B,C,5) )} ipitial nil E;iving GE,
Err= 1/100000000,
kli'find:find (GB,Err,1,5ubGB,Unikqgs,Unisole),
kli'find:scl (SubCB,UniScls,Err,1i,FGR),
chack (FGB, 5).

chack([1, .} - trua | trua.

check ([FGB|FGBa], 8) :- true |
call( check_ask(S,Ans) ) initial FGB giving Sel,
check_pub(fns, Scl, FGBs, 3).

check _sub(true, Sol, FGBs, 5) :- trua |
output(Sal), % output to a window screen
chack (FGBs, 5).

check_sob(false, _, FGBs, 5) :~ check(FGBs, 3).

check _ask(S, Ana) := alg#S > O | Ans = trua.
check_aak(S, Ana) :- alg#s =< 0 | Ane = falsa.

Figure 12 shows the meaning of the constraints set con-
tained in clause tri, where ** in equations indicales a
power operalion. CA,CB.H are local varables, A, B, ©
represents the three edges of o triangle, and 2 is its area.
allec{Pre, Varl,. .., VarN) is a declaration to give prece-
dence Fre to variables Varl,. .., VarN. A monomial in:
eluding a variable that has the highest Pre is the highest
monomial, that is the precedence of variables is stromger
than the degree in comparison.

If the goal,

CA CB

Figure 12: A triangle and its parameters

7= alloc{0,A,B,C),alloc(E,5),
heron:testi(A,B.C,8).
is given, in which all parameters are free, this program
outputs a Groboer basis consisting of seven rules. Among
them is the following rule that contains only 4, B, ©and
=,

Sekd= -1 16*Ced ] OeCee2eBakle ]/ BhChkDELER]D
=1/162Beed+] /BeBenlnlnnl=1 160l red,

This is equivalent to Heron’s formula. Of course, this
program can be executed by a goal with concrele param-
eters, For exampie, when the goal,

7- alloc(5,5), heron:test1(3,4,5,5).
18 given, the program produces S++2= 36,

However, the Buchberger algorithm cannot extract dis-
crete values from this equation, as shown in section
3.1.2, Method test2 approximates the real roots from
a Grébner basis, if the basis contains uni-variate equa-
tions. If the goal

7- allec(5,5), heron:test2(3,4,5,3)

is given, first the constraint set is solved to obtain
Grobner basis GB using the call predicate. then uni-
variate equations are extracted from 4B using the method
find:
kl1!find:find(GB,Err,1,5ubGB,Unikgs,UniSols).

Where, UniSols contains the all combinations of solu-
tions with precision Exr, UniEqs is a s=t of the uni-varate
equations extracted from Grobner basis GB, and SubGE is
the basis remaining after removing the uni-variate equa-
tions. The next method sol obtains a new Grobner ba-
sis FGB by asserting the combinations of approximated
solutions UnifSels into SubSE. [t is necessary to modify
the Buchberger algorithm to handle approximated solu-
tions, as explained in [Aiba ef al. 91]. FGB contains plural
Gribner bases in list format, and these bases are filtered
by the method check, which checks whether 5§ = 0 is
satisfied at the guard of the sub-block check ask.



5 Conclusion

GDCC is an instance of the cc langnage and satisfies two
levels of parallelism: the execution of an inference engine
and solvers in parallel, and the execution of a solver in
parallel. A characteristic of a ce language is that it is
more declarative than sequential CLP langunages, since
the guard part is the only synchronization point between
an inference engine and solvers, GDCC inherits this char-
acteristic and, moreover, it has a block mechanism to
synchronize meta-operations with constraints.

In the latest (master-slave) version of the parallel al-
gebraic solver, the parallel execution of “cyclic 6-roots”
with 16 processors is 4.42 times faster than execution with
a single processor. With the boolean solver, paralle] exe-
cution of the § queens problem with 16 processer is 2.28
times faster than with a single processor. We also show
the realization of fasi parallel search for mixed integer
programming using the Branch-and-Bound algorithm.

The following items are yet to be studied. As shown
in the program examples, current users must describe ev-
erything explicitly to handle multiple contexts. Thus,
support faculties and utilities to bandle multiple contexts
are required. We will also improve the parallel constraint
solvers to obtain both good absolute performance and
better parallel speedup. The algebraic solver requires
parallel speedup. The boolean solver needs Lo increase
the parallel executable parts of its algorithm. The lin-
ear integer solver has to improve the ratio of pruning in
parallel execution, Through these refinements and ex-
periments using the handling robot design system, we
can realize a parallel CLP langunage system that has high
functionality in both its languege facilities and perfor-
mance,
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