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The Program Committee, in inviting
me to give this lecture, asked me to look
ahead a little bit at the prospects over the
next decade for cognitive science and
artificial intelligence. It's somewhat easier
to predict a decade in a science than it is to
predict the next day on the stock market,
or maybe even tomorrow’s weather,

It took about twenty-six vears, more
than a quarter of a century, for physics to
move from Planck’s discovery of the black
body law to the discoverv of the basic laws
of quantum mechanics. So, a ten-year look
ahead doesn’t seem to be very formidable,
as long as I am not supposed to predict
exactly what is going to come out of the
research, but rather to talk about the
directions which that research might take—
what might be some of the exciting and
profitable directions of research. And if we
do that, we might be able to look ahead not
only ten years, but a bit longer than that.
We might even glimpse into the next

century, which after all is only a dozen
years away.

In my remarks, I am going to use the
terms “‘cognitive science” and ““artificial
intelligence” more or less interchangeably.
Both of those domains are concerned with
producing intelligence-intelligent behav-
iour in computers. Cognitive science wishes
to do so in order to gain a deeper under-
standing of our own human intelligence,
while artificial intelligence is primarily in-
terested in augmenting human intelligence,
and therefore, is not concerned that the
processes that are used in artificial intel-
ligence programs should look very much
like the processes that human beings use in
their intelligent activities.

Al can use nano-second or pico-second
speeds, but we know that speeds like that
are unavailable to the human brain, which
operates at best at milli-second rates.

So, I am going to be talking both about
cognitive science and artificial intelligence,



but 1 am going to be talking especially
about the ideas that have come out of
cognitive science, out of our research on
human thinking, and the implications these
may have for the future of artificial
intelligence. In the past, of course, these
two fields have borrowed back and forth,
each one giving strength to the other over
the last thirty years,

Programming Languages

Let me start with the topic of “‘Pro-
gramming Languages”’ and see what we
have accomplished up to the present time.
The very existence of cognitive science and
Al depended om having programming
languages that would allow complex and
irregular structures to be stored in memory.
We first had the invention of list processing
languages more than 30 years ago, followed
a few decades later with production system
lanpuages like OPSS, and more recently, by
logic programming as cxemplified, for
instance, in PROLOG.

The cwrrent interest in connectionism
and parallel networks is sure to spawn, and
is already spawning another class of pro-
gramming languages. Early examples of
that can already be seen in some of the
programmes being talked about at this
meeting.

So, today, we have these collections of
list processing languages, of production
systems, of logic programming languages,
and of connectionist or neural network
languages.,

Hardware Limits

On the hardware side, of course, we
can’t have cognitive science or artificial
intelligence at all without having powerful
computers. What’s less obvious is whether

the availability of hardware has really been
a major determinant of the speed at which
the research has advanced. Has hardware
been the bottleneck or, has it always or
usually been available when needed, with
the required memory capacity and
operation speeds? '

I think we have to give a mixed answer
to that question. Current systems for visual
or auditory pattern recognilion, chess
programs and some other expert systems
couldn’t operate at tolerable speeds with
the computers available as recently as five
vears ago, In this sense, the remarkable and
continuing advance of the speed and
memory capacities of hardware has been
absolutely essential to the development of
Al and cognitive science,

But we can ask a different question.
Has hardware development been the bot-
tleneck that has imited the production of
ideas in cognitive science? And here, |
think, the answer is largely negative, The
rate at which machine intelligence has been
pushed into new domains has depended
mainly not on hardware but on the
ingenuity of researchers. Basic research,
after all, seldom requires programs that
have to perform in real time. We can get
our ideas about how those programs
should be organized, and wait to the time
when computers will be able to execute
them as rapidly as we need.

Now, there are exceptions. In designing
programs to play chess under tournament
conditions, machine speed is of the essence.
some of us have long believed that
computer chess research should put more
emphasis on incorporating chess knowledge
in the programs, and less on speeding up
brute-force search. After all, the strongest
chess players in the world today are still
very slow human beings who seldom look
at more than a hundred branches in the



game tree, while computers are looking at
3 million or 5 million branches. However,
the history of progress with computer chess
does not really support my argument. The
history of progress has been that chess
machines  have gotien stronger as Lhe;r
equipment has gotten faster.

A few years ago, the idea was popular
that Al programming would be greatly
facilitated by the availability of special
LISP machines or PROLOG machines.
Those machines now exist, and they do
achieve a speed-up, but only that. They
allow us to execute important primitive
operations more rapidly, but they still
compete with powerful, general-purpose
hardware, And the verdict is by no means
clear as to whether special purpose
machines will continue to be cost-effective.
At any rate, they represent not so much a
breakthrough, as just another source, one
source of very many, of speed-up in
hardware,

In the case both of PROLOG and of
languages for connectionist programming,
it"s widely believed—and 1 see many
expressions of that belief in the papers
being given at this conference—it’s widely
believed that major problems of execution
speed would be solved if we had massively
parallel hardware, and much effort, of
course, is now being devoted to producing
such hardware.

I am skeptical of this belief on two
scores. First, 1 am skeptical that parallel
hardware is the answer to exponential
explosion of search, which is a problem
that plagues PROLOG  among many
languages. T am skeptical that it is feasible
even in principle to design parallel
hardware that has genuine general purpose
capabilities. So, in my remarks, I am going
to make some strong distinctions between
parallel hardware that is adapted to special

purposes or- special classes of problems,
and parailel hardware that is alleged to be
useful for quite general purposes. 1 will
have more to say later on those points.

I would simply observe at- the moment
that some very impressive special purpose
parallel hardware has-already been pro-
duced, for example, array-processors; and
second, that I am not aware of any con-
vincing demonstrations of massively paral-
lel—that is, with many many parallel
components—general purpose hardware.
The newer super-computers, with only a
little parallel capacity but offering the
fastest computation that’s now available—
those super-computers are used mainly for
numerical analysis. And except for connec-
tionist research, they have found relatively
little wuwse in artificial intelligence or
cognitive science today.

The significance of this observation is
that we certainly can achieve major specd-
ups with paraliel hardware adapted to
special uses, but we don’t, at the present
time, know how to bring about any speed-
up of several orders of magnitude with
general purpose parallel hardware. And it
is not at all clear that parallel systems are
the key to progress in cognitive science.

Now, it is clear that on this point I am
challenging one of the main assumptions in
many papers in this conference, and I am
going to have to say more about that
before 1 close.

Intelligent Programs

But for the moment, let me turn to
computer programs. For this audience, 1
don’t really have to list the many domains
in which computer programs already exist
that reach or surpass human levels of
imtelligent behavior in those domains. Nor
do I have to list the many answers we have



gained to our questions about how the
human mind manipulates symbols in
thinking and problem-solving, and the like.

I would only like to summarize some of
the common characteristics of programs
that seem important to defining the very
nature of intelligence.

First of all, we do achieve speeds in
computer programs that are simply unat-
tainable for people—speed in arithmetic
being the most obvious example.
Nevertheless, we have found that speed and
brute force, unless combined with
heuristics, with rules of thumb borrowed
from our understanding of human cunning,
doesn’t go very far toward achieving
intelligence.

Very early in research on artificial
intelligence, some of the rules of thumb,
some of the heuristics, were discovered that
permit people to search very selectively in
problem spaces, that would otherwise be
far too Jlarge for human computational
capabilities. Even rather simple hill-
climbing techniques, which select the next
step with the aim of increasing an
evaluation function, have proved successful
and powerful in reducing exhaustive
search. More sophisticated, and very
widely used in expert systems, is means-
ends analysis; which guides search by
comparing where the system is at a given
time with the goal, with where the system
is trying to go.

These and other search heuristics were
largely found through research on simple
problem solving systems. But on problems
that nevertheless can be quite difficult for
human beings.

The intelligence of experts, on the other
hand, is wsually applied to domains that
have a large information content. We know
today that a world-class expert, in every
one of the dozen or more domains that has

been studied carefully, bases his or her
expertise on possessing vast knowledge, as
well as on the ability to do means-ends
analysis or other forms of heuristic search.

Typically, a human expert knows 50
thousand or more things;—we call them
“chunks’®, usually;—in the domain of his
expertise. This human knowledge is stored
in production-like form, in an indexed
encyclopedia. I think we have excellent
evidence now of this form of memory
storage in the human expert——an indexed
encyclopedia with about 50,000 or maybe
100,000 entries.

For example, each one of us is an
expert in his own native language. In our
native languages, we can all recognize
50,000 to a 100,000 words (words, not
KANIT):; and can immediately retrieve
from memory our knowledge of the
meanings of those words. Doctors do the
same thing with medical symptoms. Chess
masters recognize features on the chess
board in the same way. And we know,
because we have done it, that we can build
expert systems that are capable of perfor-
ming at the level of human expertise by
constructing such encyclopedias in  the
form of production systems, and endowing
them with a little capability to do means-
ends reasoning or some other form - of
inference.

" Today, we also know that the responses
of human experts that we call “intuitive’
or “judgemental”’—where we say someone
solves the problem by intuition—that these
responses are simply acts of recognition
based on seeing one of the 50,000 chunks
or cues in the situation before the expert,
and responding to that with iﬂfﬂl‘m&ﬁﬂl‘l
gathered from memory.

Knowing that—knowing that human
expert knowledge is structured in this way,
we have been able to push our computer



explorations into the domain even of ill-
structured  problems and  creativity.
Programs have been constructed—Ilike
EURISKQ, by Douglas Lenat, BACON
and KEKADA, of our group at Carnegic-
Mellon—that can discover laws and data
and can create new concepts out of old
concepts, and that can plan sequences of
experiments aimed at achieving some
research goal.

Most of the achievements of cognitive
science, however, up to the present time
relate to the programming of relatively well
structured tasks,  where the goals and
operators are fairly well defined. More
recent successes like those with the
programs on scientific discovery, and even
programs that compose music and pro-
grams that make creative drawings (I am
thinking particularly of the English artist,
Harold Cohen) raise our aspirations for
research. on ill-structured problems. The
tasks performed by such programs involve
vaguely defined goals and no clear
boundaries for the legality of what we
would call “moves.” So, there are no
longer, if there ever were, clear limits to the
kinds of human thinking that can be
analyzed by the methods of :cognitive
science, and that can be automated by
artificial intelligence.

Thinking versus Perception

- When cognitive science and Al began,
most of us thought that it would be easiest
to write programs to do the every-day
things that every-day people do, simpie
things, and that it 'would be very hard to
simulate the higher flights of the human
mind, the kind of things that professors or
engineers or doctors do. But in fact, it has
turned out to be exactly the opposite.

- Writing computer programs to imitate

what the human eyes do, the human ears
do, the human hands do, such programs
have been much more difficult to write
than programs to do the things that deep
thinkers do, or that engineers do, when
they are solving mental problems. :

Now, we really should have predicted
that; it shouldn’t have come as a surprise as
it did. We should have predicted it, because
the sensory and motor systems, which we
have and share with the mammals, have
been evolving for hundreds of millions of
vears. In the course of evolution they have
become- highly sophisticated, highly tuned
devices. And it should not be surprising
that it is hard to simulate them.

The new human brain, the part that
does language, the part that does abstract
thinking, is in fact a very newly evolved
device—hardly a million years old. And we
should expect it to be, as it has twned out
to be, far simpler than the sensory and
motor systems. ’

Léaming

Let me say a word about learning.
From the very beginning, cognitive science
has been fascinated with learning, ‘but in
the early years—the first twenty or thirty
years—had very little success in it. We al-
ways mention Samuels’ checker program,
because it’s about the only example of
successful learning in the early history of Al

In the past decade, learning has taken
off again, and much has been accomplished.
One of the most significant accomplish-
ments is the understanding we have gained
about how human beings can learn to solve
problems by examining  worked-out
examples, and then re-programming them-
selves to retain the skills in those examples.

The computer counterparts of schemes
for learning from examples are what we



call today adaptive production systems,
which are simply production systerns that
can themselves form new productions and

store them in memory where they become.

a part of an augmenied program. Beginning
with the work of Neves a decade ago, it has
been demonstrated convincingly that such
systems can be built for learning subjects
like algebra or geometry at the high school
level. In fact, an experimental program is
going on foday in  the Beijing public
schools, where children are being taught
algebra and geometry in the standard high
school course with the use of the technique
of learning from examples, without lectures
from a teacher. And that experiment is
going very successfully,

Applications

A little later I am going to talk about
quite a different approach to learning,
that’s very popular today, namely, conne-
ctionist learning schemes. But let me say
one more thing about where we are today
before I get on to the research fmntlers
something about applications.

I have already mentioned some of the
main areas of applications of cognitive
science and Al today, including the whole
set of things we call “expert systems.”
Among other real world applications,
which really are just at the edge of
application even today, robotics has had a
great deal of visibility. But I think most of
us realize that the bulk of the robots
actually working in factories today are
based on quite traditional control theory
technigues, and that artificial intelligence is
just beginning to have an impact on
robotics. That impact depends on the
progress, very slow to date, that we are
making in developing sophisticated sensory
and motor devices.

We now understand a great deal about
how. humans process natural language and
are - beginning to bring more and more
systems into application that make use of
various, still limited but genuine, natural
language capabilities.

The real problem that stands in the face
of our progress on natural language is that
a language translator-—a system that could
go from one language to another, or from
non-linguistic objects to language, or from
language to non-linguistic representations-—
must have a great deal of semantic
knowledge about the subject matter on
which it is translating. We have had ample
evidence from the experiments of the last
thirty years that syntax is not enough, that
systems that have sophisticated syntax get
us only a very short way, and to go the next
step into systems that have much broader
application, we are going to have to take
seriously bringing in huge amounts of
semantics.

The Future

This wery brief sketch of where we are
today. in cognitive science forms the basis
for the forward view I would like to present
now from these frontiers, and 1 think, will
enable me to be rather brief in describing
the prospects in the years ahead.

First, I want to say something about the
areas that 1 have already identified as
critical. Then, [ want to say something
about our needs for software and hardware
supporting systems, and our prospects for
meeting these needs. You have already seen
that my views on parallel computing may
be rather different from some of the views
presented at this conference. You will also
see, as I proceed, that my views on logic
programming are rather different from the
views that are being presented by most



people at this conference.
So, please, before you condemn me as
a hopeless reactionary, I hope you will

listen carefully to the reasons for my.

position, and then we can have an
intelligent discussion about it.

Important Domains for Progress

Let me first say something about a few
task domains and the directions I see us
moving, and I will refer again to robotics,
to language, expert systems, learning, and
representation, 1 will only have to say a few
words about the first of these, because I
have already made my main points.

Robotics

With respect to robotics, the main point.

for the near future, the next decades, is that

we are going to have to focus our efforts on:

the development of adeguate sensors and
adequate effectors for our robotic systems,
and adequate feedback from those
sensors——adeguate feedback from: the
robot to the planning system, so that the
planning system can readjust its thoughts

to where it is really standing in the world.

It can readjust to reality periodically.
This calls for a great deal of very hard

and detailed work. 1 see no magical
breakthrough. All of us will be happy if it

comes; I don’t see what direction it is likely
to come from. My crystal ball does not
have any robotics breakthrough in it.

Now, connectionism may play an

important role in this, it’s clearly in the
sensory domain that we can most likely
make immediate or near-future use of
parallel capabilities of a connectionist sort
or of any sort. The evidence from
psychology is extremely strong that most
human = higher mental functions—the

thinking that takes place in the central
nervous system in the new brain—are
carried out in a serial, one-at-a-time
fashion; with all of them passing through
the narrow bottleneck of attention.

If you still have any doubts about that,
you can very cautiously perform an
experiment by going out with a friend in a
car, in Tokyo traffic, starting a conversation
with the friend and watching what happens
to the conversation as the traffic gets
denser. And I hope your friend will give
first priority to the traffic, second priority
to the conversation. Human beings simply
do not perform multiple tasks that require
attention in real time. We are serial
SVstems.

Now, it is just as clear, from the
psychological evidence, the evidence of the
laboratory, that the eve and the ear, and to
a lesser extent, the motor svstem-—I am
distinguishing them now from the so-called
“higher mental processes’ —that these
peripheral devices are in fact parallel
devices.” And it is here that the main
connectionist research effort, it seems to
me, needs to be focused. Some connection-
ists think that all cognitive problems can be
handled with' their models, without the
need for a separate symbolic level. That
may turn out to be true, but for the short
run, [ think, they can perform much more
useful work by simulating effective sensory
organs, and to some extent, motor organs.

There is more to robotics than sensory
and motor systems. There has to be a
thinking and planning system to connect
them. Much of the basic equipment -and
organization for that is in place in systems
as old as STRIPS, which was derived from
the work on problem-solving. But the
problem that needs more attention and is
just beginning to receive it is how a
planning system using a very gross and



inexact model of the world outside guides a
robot that has to survive and operate in
that real world. So, we need to solve the
problems of correction and feedback of the
planning models.

Language

With respect to language, 1 have
already spoken about the need for pushing
forward on the subject of semantics.
Douglas Lenat and his colleagues in Texas
are engaged in building an information
base of encyclopedic dimensions that can
be emploved to test the use of semantic
knowledge in informing and guiding
language understanding and translation
systems. I would expect and hope to see
more enterprises of this kind, guided by
what we already know about large expert
systems, about production systems, and
about data base architectures.

If there are any fundamentally new
ideas that have to be invented to push that
particular part of the work forward, they
are not visible to me. Undoubtedly, new
ideas will emerge as the work advances.
Intelligent empirical work always produces
new ideas. But what’s needed right now,
and in the near future, is large-scale—I
mean, really large scale, I'm talking of
millions of items—Ilarge-scale experimenta-
tion with data bases.

And for this particular appmach to
language processing, we probably need
effective big memories more than we need
fast computing, The real parallel capabilities

in the central part of the human nervous

system are memory capabilities, not parallel
processing capabilities. -

Expert Systems

I have nothing special to say about the

needed emphases in expert svstems. [ think
the development of expert systems will
follow as a byproduct of the work in these
more fundamental areas that I am talking
about.

Leaming

With respect to learning, there are two
or three main foci of learning research
today. I have already mentioned the two
that seemn to me most promising. One is
connectionist research for the learning of
visual and auditory patierns. The other is
research . on adaptive production syvsiems
that learn from examples. 1 am sure that
those don’t cover the whole waterfront of
learning programs, the whole range of
mechanisms that the human brain uses to
improve its performance. But they do seem
to be among the most important. And we
understand enough about them today, so
that 1 think the research on thun will move
ahead quite rapidly.

A very intriguing guestion, on wh:ch
one can find many opinions and not much
evidence, is when one. should  choose
learning and when one should choose
programming as the preferred method for
giving new knowledge to an expert system.
Of course, we humans - gain all of our
knowledge by learning, but that’s maybe
just by default. Nobody knows how to
open up the box and put a program in it.
That might be far more efficient than going
even to a good university. We don’t knaw
how to do it.

. In the case of compuze:rs, we have the
option. We can try to program computers,
or we can try to get computers to learn, 1
think an interesting question we could ask
as an exercise, if we are interested in
learning programs- for = computers, is
whether in fact we would program people:



instead of  teaching them if we could.
Maybe we should be very selective in our
goals for learning by computers. Maybe we
already have a better way available to us in
programming.

[ am sure that's only part of the story,
but it's a question worth asking before we
plunge into large research projects on
applications of learning to computers.

Representations

Then there is the important and difficult
topic of representations. Information, if we
are to process it, has to be taken out of the
abstract world of ideas. It has to be given
some concrete form of representation
before it can be processed either by
computers or brains—some pattern of
electromagnetism in a computer, some
pattern of neural activity in a brain.

Today, the typical represcntations we
use in computing are list structures, schemas
or whatever you like to call them;—scripts,
frames, whatever;—I prefer. to call them
“schemas.” ‘All of those forms are good
for stating propositions, or can be made to
look as though they were stating proposi-
tions. But there is a great deal of evidence
from the psychological laboratory that we
human beings use pictures or diagram like
structures as preferred representations in
much of our thinking. We don’t think in
words. Einstein always claimed that  his
serious thinking was not done in words, but
in some kind of picture-like, fairly abstract
but picture-like structures. We are just
beginning to ask what these non-proposi-
tional representations might be, ways of
representing information other than by
stating  propositions, and how these
representations can- be implemented. in
computer systems and simulated for
cognitive research. . o

I will refer to one early effort along
those lines which still hasn’t really been
surpassed, MNowvak’s ISAAC program,
which was announced, | believe, at the
[JCAI Meeting in 1977, a program which
understands physics problems stated in
words, then writes the eguations for the
problems and solves them. But ISAAC did
that not by translating syntactically directly
from words to equations: ISAAC does that
by translating from words to diagram-like
structures stored in the computer, We know
they are diagram-like, because the diagrams
can be drawn by ISAAC on a CRT-—the
structures can be interpreted and exhibited
as diagrams of the scene. Then, those
diagrams are wused to construct the
equations. The process that ISAAC uses,
however primitive it is, looks very much
more like the processes that we human
beings use in solving problems that are
presented to us in words, or problems we
encounter in the real world, than systems
that make use only of abstract propositions
or equations. :

It is sometimes said that a problem well
represented is a problem half solved. That
may be an exaggeration. There are lots of
problems that vou can represent well and
still not solve, Fermat’s last theorem being
a good example. The mutilated checker-
board problem, which was introduced into
Al by John McCarthy (the problem of
covering a checkerboard with dominoes,
each domino covering two squares, after
you have removed two diagonally opposite
squares of the checkerboard) is an exce-
edingly hard problem for human beings. A
computer could solve it exhaustively. in a
very short time by trying all possible
coverings, only a few tens of thousands.
Human beings don’t solve it that way at
all. A human being solves it by changing
the representation, by ignoring after a



while the checkerboard itself and replacing
it with an abstract representation of the
numbers of black squares, the numbers of
white squares, and the numbers of
dominoes, And then, the problem becomes
VEry casy. '

So, there are problems whose solution
depends on finding the right representation.
And that representation is not by any
means always a propositional representa-
tion, although in that particular case, it is.

I will come back to the representation
issue in my final remarks, but first let me
say something about the supporting
systems, both software and hardware, that
we need in order to build the sort of

structures that I have been talking about.

And T would like to do this in terms of four
basic issues,

Serial and Parallel Systems

First; 1 would like to say more about
the serial and parallel-architecture issue. [
would also like to sav something that's
connected to that, about connectionism. I
would like to say something about logic
programming, and about the non-verbal
representations that I just introduced.

- Let me then take a broader look than 1
have in my previous remarks, at the serial
versus parallel issue. Clearly, the human
brain is a vast network of neurons. Some
people think there are about 10** neurons,
The number doesn’t matter; it’s very large.
Since those neurons are all there, it's very
natural to think that intelligence must
require paraliel computation. Why else
would nature have built this tremendous
processor that looks so parallel?

But the matter isn’t quite so. simple.
First, our computers also have always been
parallel devices. Von Neumann computers
are very parallel devices, if you include as

parallel the enormous memories that they
have, all holding information- in parallel.
True, memory is a static .component, or
relatively static component, of the compuier.
But perhaps, those parallel components in
our brain are also largely static. There
simply is no neurological evidence, for
most of them, as to what role they are
playing.

Second, 1 pointed out earlier that the
human thinking process contains a narrow
bottleneck of attention, which severely
limits the number of ideas that can be
entertained at once. The human nervous
system is also an extremely slow system by
computer standards. A simple act of
recognition, recognizing wyour very best
friend as he comes walking down the street,
takes the better part of a second;

The slowness and seriality of the brain
have made it possible to simulate such
activities as problem-solving and language
understanding in’ considerable detail using
general -purpose serial | computers.  And
there is no doubt that where we have done
it, modern computers can run much more
rapidly than human beings in tasks that do
not require the operation of basic senso
recognition capabilities. '

On the other hand, we have seen that,
if conscious thought is demonstrably serial,
seeing ‘and ‘hearing are demonstrably
parallel. So, we don’t have to take an
cither-or attitude on this serial-parallel
debate, .

It seems to me that there is lots of room
in the future of artificial intelligence for the
kinds of serial devices, including the von
Neumann architecture that we have had to
date. They will continue to do a very
important part of our computing, and we
should ask what the special mission is of
the parallelism, I have already indicated
what I think that is. What I haven't



indicated is what the right kind of parallel
hardware is. And of course, if I knew the
answer to that, I would be designing a
parallel machine somewhere, and I think
many of you are working very hard to find
the right answer.

- Anyone who has a:tempted it will
testify that achieving massive parallelism in
computation is extremely difficult, except
where the hardware is custom designed to
handle - certain special kinds of precisely
defined tasks. If you have arrays to deal
with—very homogeneous arrays, then,
array  processors. will operate in parallel
very rapidly and very efficiently. .

- But general purpose parallel processors, '

going back to ILLIAC IV and its ancestors
and - descendants, have proved to be
enormously hard to program, except for
tasks = whose precedence requirements

match closely the hardware design. And we

know, ~for  hardware being  produced
nowadays, emploved on tasks that are not
closely matched to the hardware, a typical
expectation is -that you may achieve a

speedup of a factor of three to five, with:

the use of 30 processors.
~There is no reason (o, heheve that

someone will invent a clever idea that will,

suddenly make general purpose parallelism.
feasible. The difficulties aren’t superficial;
they are fundamental. Parallelism is con-

strained by the precedence requirements of

the tasks that we expect to compute. When
there is little connection among the tasks,
then, we can have a lot of parallelism, We
can get a parallelism, if there is no
connection among the tasks, by putting 500
computers in the room and giving each one
a different task. That's parallelism, too
We know how to solve that problem.

But the minute you get dense and rigid
connections among the tasks and difficult
precedence relations, then a large part of

the potential capacity of the parallel
machine goes unused unless the parallel
machine is adapted to just that kind of
task.

There is a very mterﬁtmg description,
some of you have probably seen, or will
hear about. later this week, of Felton and
Otto’s highly parallel chess program, using
512 processors in-NQ. That program, very
ingenious, is no exception to what 1 have
been saying. 1f you read their article care-
fully, you will see what pains had to be
taken to take account of the special re-
quirements of the chess task to get even 40
percent efficiency out of the 512 processor
machines, a very high level of efficiency.
That only is attainable if each of the
subtasks requircs a considerable number of
seconds for their execution. If each of the
subtasks takes several minutes for execu-
tion, you can get a very high utilization of
that machine. The utilization drops off
rapidly if you are dealing with very short.
tasks and very rapid interchange of tasks.
This is: typical of the problems of paral-
lelism - even . when attacked with very
sophisticated software, :

Elsewhere 1 have speculated as to why
natural structures, the kind of structures we
see in nature, complex structures, have
evolved mainly into hierarchies:—Atoms
forming - molecules, - molecules- - forming
macromolecules, macromolecules forming
cells, and 50 on. Why do we have these
hierarchies? This evolutionary lesson, that
hierarchies seem to be the fittest form of
complex systems, is one that designers or
computer architects might examine closely
and consider imitating,

Of course, we already have had
considerable experience for the hierarchical
organization of memories, but very much
less experienced with hierarchies of active
Processors.



The conclusion 1 would draw is that we
will continue to make progress toward
parallelism, but probably without a sudden
burst of success for a general purpose
parallel machine. In fact, parallel architec-
tures designed with particular applications
in mind, like vision, are likely to advance
maore rapidly and to reach more satisfactory
levels than attempts at general purpose,
massive parallelism.

And meanwhile, until we learn more
about how the brain really operates, and
what part of it is really parallel, the design
of hierarchical systems deserves more
attention than it has received.

I have already stated reasons for
thinking thalt connectionist systems as a
form of parallelism might play a large role
in modeling sensory and motor systems.
Again, 1 would ‘ask at what point those
connectionist systems need to be built into
more hierarchical form instead of trying to
operate at a single level?

The observation of hierarchy ﬂlruughnut
nature is a reason for thinking that the
mind is arranged in levels, that there is a
level of neuronal organization, and that
these neuronal systems, in turn, implement
the primitive structures and operators -of
the - symbolic systems  at the next level
above.

- Research, after all, is an exploration
inte the unknown, not into the known. As
far as research programs are concerned, a
good philosophy is to let a hundred flowers
bloom. Both connectionist and symbolic
directions of research hold out great
promise, and there is no urgency today to
draw exact boundaries between their
respective spheres of applicability. But in
particular, connectionists should be
encouraged to give high priority to:the
problemis of processing sensory stimuli.

Logic Programming

Now, let me say something about logic
programming. The analogy between
computing and logical inference has a long
and an interesting history. Of course, it
really started the other way around.
Aristotle  modeled logic on  human
reasoning, and Turing modeled 1t on a
computing machine.

. Now, let me take up the specific topic
of PROLOG as an example, but only as an
example, of a logic programming language.
Simply put, the idea behind logic program-
ming is that reasoning should be logical;—
who could deny that? Well, 1 am going to
deny it in the moment. The ideais that
programming languages should incorporate
from logic the principles and the insights
that make logic a powerful and rigorous
form of reasoning. Underlying any
inferential system are principles, some of
which are expressed ‘in declarative form,
others in procedural form. The declarative
ones are called axioms; the procedural ones
are called inference rules.

Formal logic, as it comes to us; has
always had the ideal that both axioms and
inference rules -should be independent of
subject matter—they should be analytic or
tautological. They should give valid results.
for all possible worlds. Then, when the
logic is applied to a particular domain of
thought, - additional axioms—domain-
specific axioms—are supplied to specify
what’s known about that domain. :

Moreover, formal logic has always been
closely connected with questions of rigour
in reasoning. Systems of logic are usually
designed to ailow you to verify that things
are correct. This is accomplished, first, by
separating the logic axioms, as I said, from
the domain-specific axioms and second, by
limiting the inference rules that are to be



used. By using axioms rather - than
inference rules, Whitechead and Russell
have got along simply with modus ponens
and substitution, and no other inference
rules.

A very heavy price is paid for adhering
to these principles. The reasoning proceeds
by tiny steps, huge numbers of which are
needed for even the simplest proofs. We
certainly found that out in computer
theorem proving. Why does that field
moves so slowly? Because we have insisted
of putting all the power into axioms, and
have used a very limited range of inference
rules, usually, resolution principles of one
gort or another. _

The slow, and to some of us disap-
pointing, progress in automatic theorem
proving by computer provides evidence of
the cost of adhering to the principles of
logic: at the expense of aliernative
possibilities. Only grudgingly did the
authors of carly theorem proving programs
admit such obvious inference procedures as
equality, commutativity, transitivity. The
earliest theorem proving. schemes actually
axiomatized those things, and spent all of
their time proving equality or proving
commutativity, instead of doing the real
work that they set oul to do. Today, single
rules of inference like resolution and its
derivatives, as in Horn Clause resolution in
PROLOG, are still generally preferred over
systems with multiple rules,

Now, when we examine human
reasoning, in the psychological laboratory
or in real life, we see that it proceeds in
quite a different way than the way of the
logician. It uses not just a few inference
procedures; but many, and these are not all
logic rules, but generally incorporate
important domain-specific knowledge. If
we watch a good student solving a problem
in ‘kinematics, we find the-law of uniform

acceleration is being used not as an axiom
but as a computational procedure for
inferring, say, distance from time and
acceleration, The human processes in
situations like these are readily modeled by
production systems with relatively little use
of declarative knowledge—almost the
opposite of the principles that guide logic
programming. _

Human reasoning is a mixed bag which
serves many purposes. It’s used to a much
greater extent to discover than to verify.
And we know that discovery often requires
heuristic search: taking long jumps often at
the expense of guarantees of completeness,
at the expense of guarantees of validity.
Now, the lack of those puarantees is not a
virtue. It would be nice if we could do our
problem solving at the same time we were
sure that our system was complete, or that
every step was guaranteed to be valid.

But this is the price we pay for living in
a world where completeness and guaranteed
correctness are almost always computa-
tionally infeasible—unreachable, It is better
to find an answer sometimes, than to be
sure that vou will eventually find it, if
“eventually’” is long after your death.
Better to check after vou've found a
candidate than to refuse to hazard possibly
false steps.

* Now, the principles I have just
announced are not laws of logic. They are
empirical generalizations from human
gxperience. In most real life situations,
human reasoning is, and must be, heuristic
search, using rules of thumb. If powerful
inference. rules, even vulnerable ones that
are not always correct, can be incorporated
in the search, it will be more likely to reach
its goal in a tolerable time.

Now, of course, there is no reason in
principle why logic programming cannot be
carried on in exactly this spirit, just as there



is no reason why a language like PROLOG
can’t be extended to equivalence with a
Turing machine. By giving up all of its
formal properties, making liberal use of the
cut, adding all sorts of auxiliary functions
to PROLOG—you can get PROLOG or
any other programming language to do
anything. But if you program a logic

programming language in the spirit in

which it was designed, if the principles of
logic ' programming -are followed, then,
logic - programming loses its - special
rationale and claim to preference,

" Contrary to the underlying justification
for logic programming, effective computing
procedures have to be substituted for
declarative staterments and flexible first-best
search has- to replace depth-first, back-
track search,

My problem isn’t with a’programming
language, but with a misconception of the
central principles that underlie intelligence,
and that should - guide the - design’ of
intelligent programs for AL> Among those
central principles is the idea that pmhlem—
solving is after all heuristic search,

One of the oldest issues in cognitive
science is whether knowledge should be
represented  declaratively or procedurally.
As in the serial-parallel case, the answer
undoubtedly is “‘both.”” There is probably
good regson to believe that much of our
knowledge of the world is stored in
declarative form, but that much of it i
stored procedurally. We need to be
suspicious of proposals to place the whole
of intelligence, or nearly the wheole, in one
or the other - of these forms of
representation, or, I should add, evm in
both of them.

Because in my plea for a balance
between these kinds of knowledge, 1
haven't said what I mean exactly by
‘‘declarative representation.”” And I would

not want to identify that with *‘proposi-
tional.” [ would want to include the kinds
of diagrammatic and pictorial representa-
tions that I mentioned earlier. Because list -
structure memories can be used not only to
represent propositions, but to build repre-
sentations that are computationally equiva-
lent to diagrams. [ refer again to Novak, or
to the article that Larkin'and I publishéd in
Cognitive Science in 1986 on why a
diagram is sometimes worth ten thousand
words,

If it is true, as seems probable,: that
much human reasoning uses picture-like
and diagram-like mental and external
representations, then research on computer
hardware and software for implementing
such representations will be of great value,
1 think it is being relatively neglected in the
research going forward nowadays. There
has, of course, been substantial research
activity of ‘this' kind in connection with
computer-aided design, CAD. But to- the
best of my knowledge, it has not been
closely ' linked ' with research in artificial
intelligence or cognitive science. A closer
linkage could lead to very interesting and
useful - ideas - about how to represent
knowledge that is declarative, but not
explicitly: propositional..

Conclusion

From the very beginning of research in
Al and cognitive science, researchers' have
been accused of excessive optimism—the
nay-sayers, those who are sure, a priori of
its impossibility, have accused researchers
in artificial intelligence of being - too
enthusiastic. T hope we have been guilty of
some optimism. No field goes forward
without optimism.

In a field that has moved as far and as
fast as cognitive science and artificial



intelligence have in the past thirty-five
years, I think we have lots of grounds for
the optimism that we express. Our under-
standing of both human intelligence and
machine intelligence is large today; it
continues to widen and deepen at a rapid
pace. If there are any limits to the kinds of
intelligence that can be represented by
computer programs, those limits have not
yel made themselves evident.

If I have been skepiical this morning
that we need anything that’s properly
described as a breakthrough before we can
proceed further, I am not skeptical about
the research possibilities for important new
ideas and important advances.

We human beings, over the centuries,
have been fascinated by four great ques-
tions: The question of the nature of
matter—what is matier all about, how do
we create a world out of matter, the things
that high energy physicists study; the
origins of the universe which we are
probing today through astro-physics—the

big bang, and what was there before the big
bang; the nature of life, which has been so
much advanced by molecular biology in
our lifetime. And the fourth question, the
emergence of mind from matter; the mind-
body problem. How does anything like a
brain, a meat machine as Marvin Minsky
has called it; how does a brain accomplish
thought; how does anything as material as
a computer, made of metal and glass,
accomplish thought?

Until the computer was recognized as
the general physical symbol system that it
is, we had almost no tools for investigating
the nature of intelligence and mind. We in
this room, our generation, are the fortunate
ones, who have been alive just at the time
this powerful tool has become available to
aid us in our research.

Combining its intelligence, the intel-
ligence of the computer with our own, we
will continue to move rapidly toward a
fuller and clearer conception of the minds
of both computers and people.



