PROCEEDRINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1043,
adited by ICOT. © ICOT, 1988

. COMPILE-TIME GRANULARITY ANALYSIS
FOR PARALLEL LOGIC PROGRAMMING LANGUAGES

E. Tick*
Stanford University
Institute for New Generation Computer Technology

ABSTRACT

The paper describes a simple compiler analysis method
for determining the “weight” of procedures in paral-
lel logic programming languages. Using Flat Guarded
Horn Clauses {FGHC) as an example, the analysis alge-
rithm is described. Consideration of weights has been
incorporated in the scheduler of a real-parallel FGHC
emulator running on the Sequent Symmetry multipro-
cessor, Allernative demand-distribution methods are
discussed, including oldest-first and heaviest-first dis-
tributions. Performance measurements, collected from
a group of non-irivial benchmarks on eight processors,
show that the new schemes do not perform significantly
faster than conventional disiribution methods. This re-
sult is attributed to a combination of factors overshad-
owing the benefits of the new method: high system over-
heads, the low cost of spawning a goal on a shared mem-
ory multiprocessor, and the increase in synchronization
caused by the new methods. Directions of further re-
search are discussed, indicating where further speedup
can be attained.

1 Introduction

The problem of granularity in parallel architectures is
the tradeoff between abundancy of parallel tasks vs. the
overhead of managing the tasks. In parallel logic pro-
gramming architectures based on conventional multipro-
cessor organizations (c.f., dataflow), it is besl to create
tasks of large granularity because this reduces commu-
nication, locking and management requirements, which
are the weak points of conventional machines.

This paper describes and evaluates a methed of static
{compile-time) analysis to estimate the granularity of
procedures in parallel logic programs. The idea iz sim-
ple: a procedure’s granularity is the zum of the granular-
ities of the procedures its calls, and the granularity of a
self-recursive clause (a= in append) is one by definition.
This estimate is called the procedure’s weight, Compiled
procedure calls of the program can then be annotated

*Supportad by NSF Graot No, TRI-BT04576,

with the weights and a runtime execution mechanism
can make scheduling decisions based on the weights.

To concretize the ideas, an implementation is done
for the Flat Guarded Horn Clauses (FGHC, a di-
alect of which is called KL1) architecture called KL1-B
{8]. FGHC is a stream-AND-parallel committed-chaice
language[11]. A static FGHC granularity-analyzer was
written to estimate the granularity of each goal. These
weights were attached fo each procedure call. A real-
parallel emulator for KL1-B, written by M. Sato [7, 8],
was modified to store this weight with other procedure
information_during a procedure call. Warions schedul-
ing algorithms were then analyzed, each utilizing the
weight information in an attempl to distribute only high-
granularity goals. Although a dependent AND-parallel
systern is used to described these ideas, the concept of
compile-time granularily analysis is general enough to
be used for other parallel logie programming langnages.

An FGHC clause is of the form:

H:=G1,..Gu|Bi, Beyny Ba.

where H is the head of the clause, G; are guards, “|"
ia the commit, and B; are the body goals. Procedures
are composed of sets of clauses with the same name and
arity. Execution proceeds by attempting unification be-
tween a goal (the caller) and a clause head (the calles). If
unification succeeds, execution of the guard goals are at-
tempied. These goals can only be system-defined builtin
procedures, e.g., arithmetic comparison. II the guard
succeads, the procedure call “commmits” to that clause,
i.e., any other possibly pood candidate clauses are dis-
missed. If the head or guard fails, another candidate
clause in the procedure is attempted (if all clauses fail,
the program fails). In FGHC there is a third possibility
also: that the call suspends. This is described in detail
below.

FGHC restricts unification in the head and guard {the
"passive part” of the clause) to be input unification only,
i.e., bindings are not made, Ouiput unification can be
performed only in the body part (the “active pari™).
These restrictions allow AND-parallel execution of body
goals and even OR-parallel execution of passive parts'

'The implemantation discussed hersin sxecutes passive parts
sequantially.

during a procedure call. Synchronization between pre-
cesses 15 inherently performed by the requirement that
no output bindings can be made in the passive part. If
a binding iz attempted, the call suspends. When the
variable to which the binding was attempted is in fact
bound (by another process), the suwspended call 15 re-
sumed. These semantics permit stream AND-parallel
execution of the program, ie. incomplete lists of data
can be streamed from one parallel process to another in
a producer/consumer relationship. For example, when
a stream runs dry, the consumer receives the unbound
Lail of a lst and suspends. When the producer gener-
ates more data, the consumer is resumed and continues
processing the transmitted data. In the implementa-
tion discussed herein, these data structures all reside n
shared memory.

The FGHC abstract execution model is a reduckion
mechanizsm wherein the initial user query (a aet of poels)
is reduced to the empty set. A single goal is reduced by
unifying it successfully with a clause and then replac-
ing the goal with the body goals of the matching clause.
Reductions of goals can proceed in any order. Super-
imposed on this model is a suspension mechanism that
causes goals to suspend and resume.

The redl-parallel KL1 system[7] at [COT consists of a
compiler, assembler and instruction-set emulator for the
Sequent Symmetry multiprocessor. This system is being
used as a tool for designing the Parallel Inference Ma-
chine (FIM)[2]. One of the problems faced by this and

other stream- AND-parallel architectures is the overhead

of erploiting small granularity parallelism, Becaunse all
goals in the source language are parallel, no distinction
it made in the architecture between goals.? In contrast is
an OR-parallel system, such as Aurora [13], where goals
are situated in an OR-trec. As Warren notes, heuristi-
cally, high-granularity goals are near the root of the OR-
tree. In the AND-reduction model, however, no AND-
tree exisls Lo retain the information about granularity.
Instead, for instance in the KL1-B system, & goal pool
(implemented as a set of lists] holds the goals. We note
however, that & goal list, which is pushed in a depth-first
manner, is naturaily ordered by the age of goals (this cor-
responds to the granularity information inherent in the
OR-tree). We further note that given a weight for each
goal, we can merge-sort each goal into the goal list in an
attempt to gain a more accurate granularity order.

Hermenegildo[3] and Sato[8] discuss the advantages of

an "on-demand” scheduling method wherein once a PE

Uger-defined pragma are describad and measured in Toki[#). In
this scheme, goals are distinguished by user annotations apecifying
the PE they should exscute on. Such pragma are nmol essy Lo
fermmislate and lessen the declaretivity of the program. For the
Queens benchmark, Taki gives two pragma annoteted wersions
of 30 and 49 lines, based on a pure FGHC program of 14 lines.
Furthermeore, Taki's measurements were made on the Multi-Psi
multiprocessor, which has no on-demand distribution mechanism,
50 the overheads of caleulating pragma are not kaowa.

5935

becomes idle, it either polls or sends a message to a busy
PE, requesting a goal. The measirements presented by
Sato were made by issuing the most recently pushed goal
to the idle PE (we call this youngest-first distribution).
This scheme has many advantages:

¢ simplicity— the goal list is implemented as a
forward-linked chain of goal records. A procedure
call (enquene_goal) simply adds & new goal to the
front of the list. Issuing a goal to an idle PE
simply removes the current-most goal from the list

(dequeue_goal).

* low suspension—pure depth-first scheduling effee-
tively reduces the occurrence of suspensions because
it utilizes the information inherent in the goal cr-
dering given by the user.

The alternative of oldest-first distribution requires a
backward-link for each goal record, and- requires their
runtime maintenance. In addition fo this overhead,
oldest-first distribution is not pure depth-first in the
sense that although each PE is executing locally depth-
first, all PEs are not cooperating to execute the pro-
gram in a combined depth-first manner. Furthermnore,

heaviest-first distribution requires a weight value for

each gaal reu::urd and requlres their runtime compari-
son during procedure call, in order to merge-sort the
record within the goal list. In addition te this overhead,
heaviest-first distribution may cause undo suspensions
because the user goal order may be subverted,

The pros and cons of these schemes are discussed in
full detail within thiz paper. The first section of the
paper describes how the compiler generates the goal
weights, The second section describes how the goals
are managed and distributed. In the final section per-
formance measurements of these methods are presented
and conclusions drawn.

2 Generating Weights

The first step in mmp]]&t]me granularity analysis is to
convert the program source into a cyclic call graph. For
example consider the following minimal representation
of a logic program, where letters represent goals.

:= perpetual m.

a. R - W c - e,8,m,8,c.
a:=- b,a,c. m - m. c = &,c.

a :- a,m,f. m. c.

a. n.

e - &, b = &,a. f = e

€. b. =4

The "perpetual” declaration is included specifically for
procedures (in languages such as FGHC) which act as

996

objects, suspending until they receive an input message,
and then waking-up, acling on the message, and sus-
pending once again. These procedires are given zero
weight, The simplified program and its graph are shown
below,

]
]
Lee
Lo
4]

b:- e, a

C @, @, m, &, ¢
€ - 8; C

8 i— a

f i=- a.

£ := 1.

A node in the graph corresponds to a procedure. An
arc represents a (potential) procedure call Each arc is
labeled corresponding to its clause. The unit of weight is
one tail-recursive procedure, eg., wie) = 1. The prob-
ability of execuling any non-unit clause is considered
equal. Thus w{f) = (1 -+ 1)/2 = 1. The weight on any
perpetual process (so declared because this cannot be
determined syntactically) is 0, e.g, wim) = 0. Thus first
clanse of ¢ has weight 1 +14+ 04141 =4, and the sec-
ond clause has weight 2, therefore w{c) = (14 2)/2 = 3.
Caleulation of w(a) and w(b) is difficult bechuse they
are mutually recursive. Here we chose one of the pro-
cedures to calculate first, marking it so. Assume this is
a. When we need to recursively find the weight of b, as
w(b) = w(e) + w(a), we find that a has been marked.
The weight of any marked procedure is defined to be 1,
Thus w(b) = 1 +1 = 2, and w(a) = ((2+1+3) + (1+
D+1))/2=(6+42)/2 = 4. Thus we assign the weights:
wia) =4, w(b) = 2,wic) =3, we) = 1,w(f) =L
The kernel of this algorithm, implemented in Prolog, is
shown below,

% Nede is node(ProcName, Calllist, Marker, Weight}
¥ Calllist is [Clawseilist,Clausellist,...]

% Clauseilist is [NedePtri, NodePtr2,...]

% HodePtr is a ptr to ancther Node

% Marker is a flag used to cut recursion

plil).

p([Noda|Taill) :- pProc(Node), p(Tail).

pProc(node{_,Clanselist,locked Weight}) :-
nonvar{Weight}, !.

pProcinedel_, [1,locked, 00} :-

pPreoc(nodel_,Clavselist,locked ,Weight)) :-
pClausa(Clauselist, Weight, 0, 0).

pClaueal[], Weight, N, PW) :-
Waight is PW / N.

pClansa([Nodelist |Taill, Waight, N, PW) :-
ploda(WodeList, 0, ClauseWaight),
Nt i= H+1,
HeowPW is PW + ClauseWeight,
pClanse(Tail, Welght, W1, NewPW).

pWodal[J. Weight, Weight).
pHodel (node(_, ,Mark,W)1Taill, PW, FinalW) :-
Mark==locked, !,
(var(W)} -> NeawPW is PW + 1
. HewPW is PW + W},
pludal:Tul NewPW, FinalW}.
plioda((node{P, L, Mark, 'ﬂlml:l PW, Final®) :-
var{Mark) , vu{HJ, .
pProc{noda(P,L,Hark, W],
NowFW iz PH + W,
plode(Tail, WewPW, FinalW).

% cut recursion

?'. child*s weight

% other siblings

This algorithm has the advantage of requiring only
one-pass. However, becavse there are cycles in the
call graph, the weights produces are somewhal incon-
sistent. For instance in the above example, w(a) = 4
and w(b) = 2. Yet b calls a! This difficulty arises be-
canse we cub a cycle in the graph at an arbitrary poiant
{in this case, when inifiating the calculation of w(a) be-
Jore w(b)). A possible improvement to this algorithm
is a relazalion phase wherein a small number of passes,
the weights are relaved to make them more “consistent.”
Precise mathematical relaxation is not always possible,
as illustrated most clearly by the following example[4],
In this program, there is no consistent assclg,n.meut of
weights to @ and b, given w(e) # 0.

a:-b, a.
b - a2, 8.
a i- a.

In practice, minor inconsistencies in the weaights do
not affect performance. However, major inconsistencies,
wherein a given goal is much heavier than surrounding
goals that actually have larger granularity, can under-
mine goal distribution. The false heavy goal may be
distributed ahead of an older, lighter goal. In this case,
age is & much more accurate estimator of granularity.

The definition of weight as presented in the algorithm
does not account for the number and type of procedure
arguments, or their unification “strength,” i.e., what
work is reguired to commit the procedure. Instead, a
heuristic is used wherein goals higher in the call hierar-
chy comprise more work than those lower in the hierar-
chy. For committed-choice languages this simple model
of granularity appears to be as accurate as any other be-
cause stream communication has the effect of breaking
up execution flow. For non-committed-choice languages
without streams, such as independent AND-parallel Pro-
log, procedure input arguments are always complete at
the time of procedure call. Therefore it may be possible
to calculate {at compile time) the wnification strength
of the procedure invocation, and incorporate this into
the granularity estimator [1]. Research is currently un-
derway to develop such an abstract interpretation-based
granularity analysis based on the domain of unification
strength.

3 Goal Management

Important attributes of & good goal management policy
are:

1. to reduce suspensions.

2. to make insertion {in the goal-list) of a body goal
tast.

3. to favor spawning” of high-granularity body goals.

4. to make spawning of a goal fast.

To keep single PE execution fast, insertion of body goals
in the goal-list must be efficient. To retain load balanc-
ing, high-granularity goals must be favored to be stolen
by idle PEs. Finally, to keep spawning goals efficient,
accessing goals by an idle PE must be fast. If the sat-
isfaction of these constraints inereases suspensions, per-
formance gain may be lost. Note that Sato’s scheme
successfully meete points (1), (2) and (4), but not {3).
Note also that as (3) improves, less emphasis is placed
on (4) because as we retain betier load balancing, less
goals are spawned,

Pure depth-first scheduling with .yau.ngesbﬁrst-éﬁl-

distribution is illustrated below (a different example
from the previous). The right-hand side represents a
goal list, where the goals are represented by letters. The
head of the goal list iz leftmost, On the left-hand side,
reduction transforme 2 goal into a body goal list, the
goals of which (from right to left) are pushed ento the
goal list.

goal-list = {abck
reduce a to {d e £} => {d a f b c}
reduce 4 to {F => {e fbc}
reduce & to {a e} = {aefbc}
Spavn a =» {afbchH
b c}

reduce o to {} = {f

In the KL1-B emulater, the enqueve_geal instruction
adds a goal to the goal list. Note that in a depth-first
evaluation, the goal is added to the top of the goal-list.
This naturally sorts the goals by "age,” which is similar
to the heuristic in the OR-Parallel Prolog Aurora system
of searching for a goal near the root of the OR-parallel
tree. An oldest-first distribution scheme is illustrated
below.

goal-list = {abec} -
reduce a to {d e £} =» {dafhbec}
reduce d to {} => {efbc}
reduce & to {a e} = {a e fb c}h
spawn ¢ s> {a a f b}
afafb}

roduce a to {d @ £ =» {d

3We use the term “spawn” o mean issuing a goal to another
FPE. We call local execution of goals, “reduction.”

097

Now consider a scheme wherein each goal has a
weight., We use a different abstract instruction,
enquene_goal with prierity, to insert a weighted
goal onlo the goal list. We discuss here a few meth-
ods of insertion, trading time of insertion for accuracy
of the sort, and trading age vs. weight. The discussion
here represents only a sample of the many possibilities.

We first consider the simplest, and most expensive
scheme: a perfect merge-sort. Here, the new goal weight
is compared to each goal record in the geal list and al-
ways inserted in the correct position. This is illustrated
helow, where each goal is denoted by an integer repre-
senting its weight. '

goal-list = {001 2 8}
Teduce 0 to {5 6 7} =» {0 126587 8}
Taduce 0 to {7? 8} =» {1268 7' T 8" &}
spawn 8 => {12567 78}

DR

This method has the advantage of guarantesing order,
but suffers from high insertion overhead. We now discuss

schemes that reduce this overhead,

Consider a scheme wherein the new goal is compared
only to the last goal of the goal list. If the body goal is
lighter, it is added to the front of the list. If the body
goal is heavier, it is added to the end of the list. If the
body goal is equal, it is inserted in the goal list before all
other goals of equal weight, thus preserving age order in
this instance. This method attempts to keep the heaviest
goal at the end of the list. When the end goal iz spawned
on an idle PE, the new end- goal may not be heaviest;
however, the end poal will soon be replenished with a
heavy goal. Unfortunately this scheme, because it is
only an approximate sort, often spawns younger rather
than older goals. This scheme is iHlustrated below.

goal-list = {001 2 &}
Tedece 0 to {5 67} => {867 01287}
radoce 5 to {4 8'F =» {46870 128'a}
spaRn 3 = {4670128'}
raduce 4 to {} => {70128}
spawn &' => {67012}
roduce & to {F =5 {{‘;u:}z}
spawn 2 =x]

{r o1 a}

raduce T to {7 8} =3

We can extend this by limiting the number of com-
parisons permitted when attempting to insert the new
goal. If the goal is still lighter than the nth goal from
the end of the goal list, it iz simply placed at the front
of the list. For example, if n=3:

goal-list = {001 2 8}
raduce O to {5 6 7} = {E 01267 B}
reduce 5 to {7* 8"} =+ {7T' 0126 7T 8 B}

1267Ta8%

gpawn 8 = {7¢ 5

998

In this case, the goals with weights 5 and 7' could not
be merged in three comparisons, so they were added to
the front of the goal list, We can optimize this methad
with a state variable pointing within the goal list, to the
goal last compaved. I the goals are pushed in erder of
decreasing weight, we can use this insertion peinter to
aveid recomparisons. The disadvantage of this method
is thai additionzl overhead is needed to reset the inser-
tion pointer between every reduction and geal spawning.
The method is illustrated below with a limit of two com-
parisons. Note that now the goals of weights 5 and 7'

can be correctly placed. ’

geal-1ist = {001 2 8}
reduce 0 to {8 B 7} =» {01 2587 &
reduce O to {7’ &'} =» {1266 7' T 8" &}
spawn & 1268T7"T 8%

=) {

The scheduling methods discussed above stress effi-
ciency of procedure call, as well as ensuring that the
last goal of the goal queue always has large granular-
ity. Three important issues have not been properly ad-
dressed.

s suspension— Such methods, because they deviate
from depth-first scheduling, cause how much addi-
tional suspension, and does this overhead outweigh
any performance gains? We note that in the pro-
grams analyzed to date, the user-defined goal or-
der closely corresponds to the weight order, i.e., the
goals are pushed in order of decreasing weight, [f
we guarantee this correspondence, by artificially ze-
roing body goal weights that disobey, then we can
gnarantes the goals are executed in & depth-first-like
manner, This means that the goals are executed one
after the other, but possibly with different goals in-
terspersed, and possibly the last goals are spawned
to another PE and executed out of order.

» space—Dleviation from pure depth-firsi evaluation
can catse large goal lists to build up. This impacts
performance by reducing cache locality and decreas-
ing garbage collection efficiency.

¢ age—Age-order is a betler estimator of granularity
than weight. Although we always guarantee plac-
ing equal weight goals in age precedence, we fa-
vor young, heavy goals over old, light goals. One
problem is that age is not explicitly represented in
these schemes, therefore a metric combining age and
weight cannot be formulated.

4 Measurements

We have discussed youngest-first, oldest-first and
heaviest-first goal distribution methods for KL1. These
ideas were tested on a group of benchmark programs,

Unfortunately, because the KL] real-paralle]l system is
under-development, only a few benchmarks could consis-
tently run to completion. One requirement was to exe-
cute long-running, non-trivial programs that did not fall
into any stereotypes. Puzzle is a solid-packing prohlem
written in an object-oriented style. Semigroup caleu-
lates the members of a mathematical semigroup by using
data streams and filters. Waltz is a line-drawing anal-
ysis problem using layered-streamns [6). Triangle is a
board game playing program (generate & test) automat-
ically translated from Prolog into FGHC using Ueda’s
continuation method [12].. For more details of these pro-
grams see Tick[10]. These programs all attain significant
speedups on multiple PEs using the real-parallel KL1
system. Therefore measurements are presented here for
eight PEs anly. -

Weights for these programs were calcnlated and at-
tached to each procedure call in the assembly code, using
enqueue_goal_with_prierity instructions. The user
defined goal order was not changed, except in the case
of zero-weight goals which were always executed first.
In almost all procedures, the user defined order corre-
sponded to goals being pushed in order of decreasing
weight, which is what is desired for these experiments,
In the few instances where user-defined order contra-
dicted weight order, we locally modified the weights to
follew the user. The experiments measured are listed
below.

1. depth-first scheduling, youngest-first distribution.
2. oldest-first distribution,

3. semi-sort: if new goal is heavier or equal to end goal,
push in age order.

4. pure sort starting from last goal each enqueue.

5. limited sort (n = 50) starting from an insertion
pointer each engueus.

Table 1 gives the Sequent Symmetry execution times
(in seconds, for eight PEs) for the various programs pre-
viously discussed. The statistics are averaged over the
fastest three runs of each program. Garbage collections
(GCs) varied: Waltz had no GCs, each Semigroup
had -1 GCs and each Puzzle had 14-15 GCs Trian-
gle was eccentric because the youngest-first distribution
{scheme 1) invoked 7-8 GCs per run, whereas the other
distributions invoked only 3-1 GCs. Thus the new dis-
tribution schemes reduce garbage production by efficient
scheduling. Triangle, partially because it was generated
by automatic translation, has only one clause with more

“than one bedy goal. As a result, the weights are not

useful because goals with single body goals are reduced
immediately. Thus schemes 3-5 are equivalent to scheme
2. .

[1] 2] 8] 4] 5]
B Puzzle
E (sec) | 105,83 | 101,33 | 102.07 | 104.13 | 102,53

E,-FE 000 4.50 .77 1.70°) 3.30
K 0.17 0.93 0.37 0.19 0.90
EJE; 1.00 0.96 0.96 0.98 0.97
Semigroup
E| 4803 4400 | 44.97 | 4333 | 47.53
E,—-E .00 4.03 3.07 4.70 0.50
of 065 214 108 039 045
E[E, 1.00 0.92 .94 0.90 (.99
Waltz
£ 4173 | 4037 | 45.37 | 48.07 | 45.04
E,-FK .00 1.37 | -3.63 -f.34d -3.31
o 1.77 0.82 0.50 0.98 2.53
CEfEy| 1.00| 097 1.09) 115]| 1.08

Triangle
£ | 430.93 | 416.00
E,-F 000 |- 14.93

o 1.57 1.30
EfE, 1.00 0.97

Table 1: Performance of Distribution Schemes on 8 PEs
{times in seconds)

The performance gains measured for the new distri-
bution methods {Table 1, By — E) fall outside of one
standard deviation of the messurements., However, we
do not observe any significant performance increase—at
most 10% and in general 4% or less. Puzzle and Trian-
gle, both all-solutions search problems, obtain only 3%
speedup, partially because the default scheduler (acheme
1} is very efficient. For this type of program with a sin-
gle, regular tree with large branching factor, the oldest-
first method first distributes the goals near the roof,
giving high-performance. Schemes 3-5 erronecusly push
younger (high weight) goals onto the back of the goal-list
for distribution, thus actually slowing down execution.

Semigroup, a determinate problem, achieves the best
speedup possibly because it doesn't have a regular tree,
Waltz, using layered-streams, shows some speedup for
the oldest-first distribution (scheme 2}, but other meth-
ods cause slowdown. This is becauvse layered-streams
programs are susceptible to suspensions and have almost
no natural granularity, being a collection of many small
filters.

We are confident that reduction of the implementation
overheads and tuning of the new distribution schemes
can save at least 2% of the total execution time. In
addition, measurements on the current emulator, on all
benchmarks, are skewed because of the large overhead of
suspensions. Suspensions are slow because the architec-
ture nses & single, general-purpoze suspend instruction,
instead of lower-level optimizations to avoid work dur-
ing suspension. Also, the suspended variable is hooked

999

to the goal, thus npon resumption, the entire procedure
must be retried. A possible improvement is to hook the
variable 1o both the goal and an entry point within the
procedure. In any case, when suspension overhead de-
creases, the new distribution schemes presented here are
expected to improve with respect, to the original method.
Since the new schemes are incuwrring & larger number of
suspensions, a reduckion in suspension resumption over-
heads will benefit them most.

5 Conclusions

A method of estimating the granularity of procedure
calls in parallel logic programming languages is de-
geribed. This analysis method is statically done at
compile-time in one pass and is therefore efficient. With
the analysis are goal distribution methods such as ofdesi-
firsf and heaviest-firsi, which attempt to distribute high-
granularity goals to idle PEs in an on-demand basis.
Preliminary performance measurements of these meth-
ods (for KL1) indicate that speedups of less than 10%
are attained on eight PEs on a shared memory mmlti-
processor, There are several reasons for this. The Sym-
metry has a relatively low penalty for spawning a task
g0 that minor improvements i stheduling do el cause
major improvements in performance. Some of the all-
soluticns search programs measured have regular trees
that can be efficiently scheduled by any methed, The
other programs measured have little natural granular-
ity, using very fine-grained pipeline and layered-stream
parallelism. In addition, the programs display critical
timings wherein minor disruption of depth-first schedul-
ing can result in a significant increese of suspensions.

We expect further speedups when the KL1-B suspen-
sion mechanism is improved, and the distribution meth-
ods are more efficiently encoded. In addition, we ex-
pect that larger applications programs {where large nat-
ural granularity is buried) will be able to better exploit
these new distribution schemes because the weight met-
ric more closely estimates granularity than the age met-
ric in large programs. The programs measured here are
still small enough that they have fairly regular irees,
wherein age is a better estimator of granularity than is
weight.

Other parallel logic programming architectures, such
as independent- AND parallelism, can use the same tech-
nigues described in this paper in the context of stream-
AND parallelism. We expect that non-stream-based ar-
chitectures will also facilitate more accurate analysis of
granularity based on the “unification strength” of pro-
cedure arguments.

6 Acknowledgements

As far as T know, the idea of compile-time granulae-
ity analysis was born in a discussion with J. Conery in

1000

February 1988, This research was conducted at the Insti-
tute for New Generation Computer Technology (1C0T)
under the auspicies of the NSF-ICOT Visitors Program.
I thank M. Sato who wrote the KL1 system on the Se.
quent and helped debug the new schedulers.

REFERENCES

[1] 8. K. Debray and M. Hermenegildo. personal com-
muntcation, 1983,

[2] A. Goto. Parallel Inference Machine Research in
FGC3 Project. In Proceedings of the Firsi Japan-
0.5, Al Sympostum, pages 21-36, December 1987,

[3] M. V. Hermenegildo. Relating Goal Scheduling,
Precedence, and Memory Management in AND-
Parallel Execution of Logic Programs. In Fourth
International Conference on Logic Programming,
pages 556-575. University of Melbourne, MIT
Press, Cambridge MA, May 1987.

[4] N. Ichiyoshi. personal communication, April 1988,

[5] Y: Kimura and T. Chikayama. “Ano Abstract KL1
Machine and its Instruction Set. In.Symposium
on Logic Progremming, pages 468=477. IEEE Com-
puter Society, August 1987,

[6] A. Okumura and Y. Matsumoto. Parallel Program-
ming with Layered Streams. In Symposium on Logic
Programming, pages 224-233. IEEE Computer So-
eigty, August 1987

[7] M. Sato and et al. KL1 Execution Model for PIM
Cluster with Shared Memory, In Fourth Inter-
national Conference on Logic Programming, pages
338-355. University of Melbourne, MIT Press,
Cambridge MA, May 1987,

[8] M. Sato and A. Golo. Evaluation of the KL1 Par-
allel System on a Shared Memory Multiprocessor.
In Proceedings of Working Conference on Parallel
Processing. IFIP, Pisa, April 1988,

[9] K. Taki. Measurements and Evaluation for the
Multi-PSI/V1 System. - In France-Japan Artifi-
cial Intelligence and Computer Science Symposium,
pages 330-384, Cannes, November 1987,

{10] E. Tick. Performance of Parallel Logic Program-
ming Architectures. Technical report, ICOT, 1-4-
28 Mita, Minato-ku Tokyo 108, Japan, September
1988,

[11] K. Ueda. Guarded Horn Clauses. PhD thesis, Uni-
versity of Tokyo, March 1086,

[12] K. Ueda. Making Exhaustive Search Programs De-
terministic: Part 11 In Fourth International Con-
ference an Logic Programming, pages 356-375, Uni-
versity of Melbourne, MIT Press, Cambridge MA,
May 1987,

[13] D. H. D. Warren. The SRI Model for OR-Parallel
Execution of Prolog—Abstract Design and Imple-
mentation. In Symposium on Legic Programming,
pages 92-102. IEEE Computer Socicty, August
1987,

